Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Arterioscler Thromb Vasc Biol ; 42(7): 839-856, 2022 07.
Article in English | MEDLINE | ID: mdl-35587694

ABSTRACT

BACKGROUND: HDL (high-density lipoprotein) and its major protein component, apoA-I (apolipoprotein A-I), play a unique role in cholesterol homeostasis and immunity. ApoA-I deficiency in hyperlipidemic, atheroprone mice was shown to drive cholesterol accumulation and inflammatory cell activation/proliferation. The present study was aimed at investigating the impact of apoA-I deficiency on lipid deposition and local/systemic inflammation in normolipidemic conditions. METHODS: ApoE deficient mice, apoE/apoA-I double deficient (DKO) mice, DKO mice overexpressing human apoA-I, and C57Bl/6J control mice were fed normal laboratory diet until 30 weeks of age. Plasma lipids were quantified, atherosclerosis development at the aortic sinus and coronary arteries was measured, skin ultrastructure was evaluated by electron microscopy. Blood and lymphoid organs were characterized through histological, immunocytofluorimetric, and whole transcriptome analyses. RESULTS: DKO were characterized by almost complete HDL deficiency and by plasma total cholesterol levels comparable to control mice. Only DKO showed xanthoma formation and severe inflammation in the skin-draining lymph nodes, whose transcriptome analysis revealed a dramatic impairment in energy metabolism and fatty acid oxidation pathways. An increased presence of CD4+ T effector memory cells was detected in blood, spleen, and skin-draining lymph nodes of DKO. A worsening of atherosclerosis at the aortic sinus and coronary arteries was also observed in DKO versus apoE deficient. Human apoA-I overexpression in the DKO background was able to rescue the skin phenotype and halt atherosclerosis development. CONCLUSIONS: HDL deficiency, in the absence of hyperlipidemia, is associated with severe alterations of skin morphology, aortic and coronary atherosclerosis, local and systemic inflammation.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Hyperlipidemias , Xanthomatosis , Animals , Apolipoprotein A-I , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Cholesterol/metabolism , Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Hyperlipidemias/complications , Hyperlipidemias/genetics , Inflammation/complications , Inflammation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout
2.
Arterioscler Thromb Vasc Biol ; 41(2): 651-667, 2021 02.
Article in English | MEDLINE | ID: mdl-33327742

ABSTRACT

OBJECTIVE: HDL (high-density lipoprotein) particles are known to possess several antiatherogenic properties that include the removal of excess cholesterol from peripheral tissues, the maintenance of endothelial integrity, antioxidant, and anti-inflammatory activities. ApoA-I overexpression in apoE-deficient (EKO) mice has been shown to increase HDL levels and to strongly reduce atherosclerosis development. The aim of the study was to investigate gene expression patterns associated with atherosclerosis development in the aorta of EKO mice and how HDL plasma levels relate to gene expression patterns at different stages of atherosclerosis development and with different dietary treatments. Approach and Results: Eight-week-old EKO mice, EKO mice overexpressing human apoA-I, and wild-type mice as controls were fed either normal laboratory or Western diet for 6 or 22 weeks. Cholesterol distribution among lipoproteins was evaluated, and atherosclerosis of the aorta was quantified. High-throughput sequencing technologies were used to analyze the transcriptome of the aorta of the 3 genotypes in each experimental condition. In addition to the well-known activation of inflammation and immune response, the impairment of sphingolipid metabolism, phagosome-lysosome system, and osteoclast differentiation emerged as relevant players in atherosclerosis development. The reduced atherosclerotic burden in the aorta of EKO mice expressing high levels of apoA-I was accompanied by a reduced activation of immune system markers, as well as reduced perturbation of lysosomal activity and a better regulation of the sphingolipid synthesis pathway. CONCLUSIONS: ApoA-I modulates atherosclerosis development in the aorta of EKO mice affecting the expression of pathways additional to those associated with inflammation and immune response.


Subject(s)
Aorta/metabolism , Aortic Diseases/genetics , Apolipoprotein A-I/metabolism , Atherosclerosis/genetics , Inflammation/genetics , Lysosomes/genetics , Sphingolipids/metabolism , Transcriptome , Animals , Aorta/pathology , Aortic Diseases/metabolism , Aortic Diseases/pathology , Apolipoprotein A-I/blood , Apolipoprotein A-I/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cells, Cultured , Cholesterol/blood , Diet, High-Fat , Disease Models, Animal , Gene Expression Profiling , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Inflammation/metabolism , Inflammation/pathology , Lysosomes/metabolism , Lysosomes/pathology , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Protein Interaction Maps , Signal Transduction , Sphingolipids/blood , Time Factors , Triglycerides/blood
3.
Pharmacol Res ; 141: 189-200, 2019 03.
Article in English | MEDLINE | ID: mdl-30593851

ABSTRACT

Topiramate is an anticonvulsant drug also prescribed for migraine prophylaxis that acts through several mechanisms of action. Several studies indicate that topiramate induces weight loss and a moderate reduction of plasma lipids and glucose. Based on these favourable metabolic effects, aim of this study was to evaluate if topiramate could modulate atherosclerosis development and protect target organs of dysmetabolic conditions. Thirty apoE-deficient mice were divided into three groups and fed for 12 weeks a high fat diet (Control) or the same diet containing topiramate at 0.125% and 0.250%. Body weight, water and food intake were monitored throughout the study. Plasma lipids and glucose levels were measured and a glucose tolerance test was performed. Atherosclerosis development was evaluated in the whole aorta and at the aortic sinus. Histological analysis of liver, kidney and adipose tissue was performed. Topiramate did not affect weight gain and food intake. Glucose tolerance and plasma lipids were not changed and, in turn, atherosclerosis development was not different among groups. Topiramate did not modify liver and adipose tissue histology. Conversely, in the kidneys, the treatment reduced the occurrence of glomerular lipidosis by decreasing foam cells accumulation and reducing the expression of inflammatory markers. Blood urea nitrogen levels were also reduced by treatment. Our results indicate that topiramate does not affect atherosclerosis development, but preserves kidney structure and function. The study suggests that topiramate could be investigated in drug repurposing studies for the treatment of glomerular lipidosis.


Subject(s)
Kidney/drug effects , Lipidoses/prevention & control , Protective Agents/pharmacology , Topiramate/pharmacology , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Blood Glucose/analysis , Diet, High-Fat , Female , Kidney/metabolism , Kidney/pathology , Lipidoses/metabolism , Lipidoses/pathology , Lipids/blood , Mice, Knockout, ApoE
4.
Exp Cell Res ; 338(1): 105-12, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26241937

ABSTRACT

Cutaneous lipids, endogenously synthetized and transported by lipoproteins, play a pivotal role in maintaining skin barrier. An impairment of extracutaneous lipid trafficking leads to the development of xanthomas, mostly arising in hyperlipidemic patients, but also in subjects with high-density lipoprotein (HDL) deficiency. The aim of this work was to evaluate, in a genetically modified mouse model, lacking two protein components of HDL particles, apolipoprotein(apo)E and apoA-I, the effect of HDL deficiency on skin morphology. Control mice (C57BL/6), apoE deficient mice (EKO), apoA-I deficient mice (A-IKO) and apoA-I/apoE double knockout mice (A-IKO/EKO) were maintained on a low-fat/low-cholesterol diet up to 30 weeks of age. At sacrifice, skin biopsies were processed for light (LM) and transmission electron microscopy (TEM). Whereas the skin of EKO, A-IKO, and C57BL/6 mice was comparable, LM analysis in A-IKO/EKO mice showed an increase in dermal thickness and the presence of foam cells and T lymphocytes in reticular dermis. TEM analysis revealed the accumulation of cholesterol clefts in the papillary dermis and of cholesterol crystals within foam cells. In conclusion, A-IKO/EKO mice represent an experimental model for investigating the cutaneous phenotype of human HDL deficiency, thus mimicking a condition in which human xanthomatous lesions can develop.


Subject(s)
Hypoalphalipoproteinemias/pathology , Skin/pathology , Animals , Apolipoprotein A-I/genetics , Apolipoproteins E/genetics , Mice, Inbred C57BL , Mice, Knockout , Xanthomatosis/genetics , Xanthomatosis/pathology
5.
Mar Drugs ; 14(6)2016 Jun 08.
Article in English | MEDLINE | ID: mdl-27338419

ABSTRACT

Cardiovascular disease remains the most common health problem in developed countries, and residual risk after implementing all current therapies is still high. Permanent changes in lifestyle may be hard to achieve and people may not always be motivated enough to make the recommended modifications. Emerging research has explored the application of natural food-based strategies in disease management. In recent years, much focus has been placed on the beneficial effects of fish consumption. Many of the positive effects of fish consumption on dyslipidemia and heart diseases have been attributed to n-3 polyunsaturated fatty acids (n-3 PUFAs, i.e., EPA and DHA); however, fish is also an excellent source of protein and, recently, fish protein hydrolysates containing bioactive peptides have shown promising activities for the prevention/management of cardiovascular disease and associated health complications. The present review will focus on n-3 PUFAs and bioactive peptides effects on cardiovascular disease risk factors. Moreover, since considerable controversy exists regarding the association between n-3 PUFAs and major cardiovascular endpoints, we have also reviewed the main clinical trials supporting or not this association.


Subject(s)
Biological Factors/administration & dosage , Biological Factors/chemistry , Cardiovascular Diseases/prevention & control , Cardiovascular System/drug effects , Dyslipidemias/prevention & control , Fishes/metabolism , Animals , Clinical Trials as Topic , Dietary Supplements , Dyslipidemias/drug therapy , Fatty Acids, Omega-3/metabolism , Fish Oils/pharmacokinetics , Humans , Risk Factors
6.
Mol Imaging ; 132014.
Article in English | MEDLINE | ID: mdl-24825406

ABSTRACT

The aim of this study was to identify, by magnetic resonance imaging (MRI), the ability of the blood-pool contrast agent B22956/1 to detect atherosclerotic plaques developing at the brachiocephalic artery of apolipoprotein E knockout (apoE-KO) mice and to possibly identify vulnerable atherosclerotic lesions. After high-fat feeding for 8 or 12 weeks, MRIs of brachiocephalic arteries were acquired before and after B22956/1 administration; then vessels were removed and analyzed by histology. B22956/1 injection caused a rapid increase in plaque signal enhancement and plaque to muscle contrast values, which remained stable up to 70 minutes. A linear correlation between signal enhancement and macrophage content was found 10 minutes after B22956/1 injection (p < .01). Signal enhancement and plaque to muscle contrast values correlated with macrophage content 40 minutes after contrast agent administration (p < .01). Finally, 70 minutes after B22956/1 infusion, plaque to muscle contrast significantly correlated with the percentage of stenosis (p < .005). B22956/1 administration to high fat-fed apoE-KO mice resulted in a rapid enhancement of atherosclerotic plaques and in a great ability to rapidly visualize vulnerable plaques, characterized by a high macrophage content. These results suggest that B22956/1 could represent an interesting tool for the identification of atherosclerotic plaques potentially leading to acute cardiovascular events.


Subject(s)
Brachiocephalic Trunk/pathology , Contrast Media , Organometallic Compounds , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/diagnosis , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Brachiocephalic Trunk/diagnostic imaging , Diet, High-Fat , Magnetic Resonance Imaging , Male , Mice , Mice, Knockout , Plaque, Atherosclerotic/pathology , Radiography , Radionuclide Imaging
7.
Heliyon ; 10(11): e31852, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38841495

ABSTRACT

Previous reports suggest an association between the development of atherosclerosis and alterations in the aortic sympathetic nervous system, but there is no agreement on whether atherosclerotic plaques are accompanied by increased or decreased sympathetic innervation in the arterial wall. In the present study, the aortic transcriptional profile of mice with different predisposition to atherosclerosis was investigated to clarify how the expression of genes involved in sympathetic neurotransmission varied. Eight-week-old C57Bl/6J control mice, Apoe knockout mice (EKO), EKO mice overexpressing human apoA-I (EKO/hA-I) and double Apoe/Apoa1 knockout mice (DKO) mice were fed either a standard rodent diet or a Western-type diet for 22 weeks. Atherosclerosis was quantified, and the aortic transcriptome was analyzed by RNAseq. Western-type diet administration deeply modified the aortic transcriptome. In the genetically modified atherosclerosis-prone mouse lines, an upregulated expression of genes associated with the immunomodulatory response was observed, paralleled by a downregulated expression of the genes related to sympathetic nervous system. Functional enrichment analysis indicated that the presence of advanced atherosclerosis was accompanied by reduced neuronal generation, modulation of synapse chemical transmission, and catecholamine biosynthesis, supporting a relationship between atherosclerosis, dyslipidemia, and sympathetic neurotransmission.

8.
Br J Nutr ; 110(8): 1394-401, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23458494

ABSTRACT

Many functional foods and dietary supplements have been reported to be beneficial for the management of dyslipidaemia, one of the major risk factors for CVD. Soluble fibres and legume proteins are known to be a safe and practical approach for cholesterol reduction. The present study aimed at investigating the hypocholesterolaemic effect of the combinations of these bioactive vegetable ingredients and their possible effects on the expression of genes regulating cholesterol homeostasis. A total of six groups of twelve rats each were fed, for 28 d, Nath's hypercholesterolaemic diets, differing in protein and fibre sources, being, respectively, casein and cellulose (control), pea proteins and cellulose (pea), casein and oat fibres (oat), casein and apple pectin (pectin), pea proteins and oat fibres (pea+oat) and pea proteins and apple pectin (pea+pectin). Administration of each vegetable-containing diet was associated with lower total cholesterol concentrations compared with the control. The combinations (pea+oat and pea+pectin) were more efficacious than fibres alone in modulating cholesterolaemia ( - 53 and - 54%, respectively, at 28 d; P< 0·005). In rats fed the diets containing oat fibres or apple pectin, alone or in combination with pea proteins, a lower hepatic cholesterol content (P< 0·005) and higher hepatic mRNA concentrations of CYP7A1 and NTCP were found when compared with the control rats (P< 0·05). In summary, the dietary combinations of pea proteins and oat fibres or apple pectin are extremely effective in lowering plasma cholesterol concentrations in rats and affect cellular cholesterol homeostasis by up-regulating genes involved in hepatic cholesterol turnover.


Subject(s)
Cholesterol/metabolism , Dietary Fiber/metabolism , Dyslipidemias/diet therapy , Dyslipidemias/metabolism , Pisum sativum/chemistry , Plant Proteins/metabolism , Animals , Avena/chemistry , Bile Acids and Salts/metabolism , Cardiovascular Diseases/prevention & control , Caseins/therapeutic use , Cellulose/therapeutic use , Homeostasis , Liver/metabolism , Male , Malus/chemistry , Pectins/therapeutic use , Rats , Rats, Sprague-Dawley , Risk Factors , Time Factors
9.
Mol Nutr Food Res ; 67(2): e2200367, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36419336

ABSTRACT

SCOPE: Specific lipid molecules circulating in plasma at low concentrations have emerged as biomarkers of atherosclerotic risk. The aim of the present study is that of evaluating, in an athero-prone mouse model, how different diets can affect plasma and aorta lipidome. METHODS AND RESULTS: Thirty-six apoE knockout mice are divided in three groups and feed 12 weeks with diets differing for cholesterol and fatty acid content. Atherosclerosis is measured at the aortic sinus and aorta. Lipids are quantified in plasma and aorta with mass spectrometry. The cholesterol content of the diets is the main driver of lipid accumulation in plasma and aorta. The fatty acid composition of the diets affects plasma levels both of essential (linoleic acid) and nonessential (myristic and arachidonic acid) ones. Lipidomics show a comparable distribution, in plasma and aorta, of the main lipid components of oxidized LDL, including cholesteryl esters and lysophosphatidylcholines. Interestingly, lactosylceramide, glucosyl/galactosylceramide, and individual ceramide species are found to accumulate in diseased aortic segments. CONCLUSION: Both the cholesterol and fatty acid content of the diets profoundly affect plasma lipidome. Aorta lipidome is likewise affected with the accumulation of specific lipids known as markers of atherosclerosis.


Subject(s)
Aorta , Atherosclerosis , Cholesterol, Dietary , Diet , Fatty Acids , Lipidomics , Animals , Mice , Aorta/metabolism , Apolipoproteins E/genetics , Atherosclerosis/blood , Atherosclerosis/metabolism , Fatty Acids/blood , Fatty Acids/metabolism , Mice, Knockout , Cholesterol, Dietary/blood , Cholesterol, Dietary/metabolism , Biomarkers/blood , Biomarkers/metabolism
10.
iScience ; 26(9): 107615, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37664585

ABSTRACT

The molecular mechanism by which lipid/lipoprotein biosynthesis is regulated in mammals involves a very large number of genes that are subject to multiple levels of regulation. miRNAs are recognized contributors to lipid homeostasis at the post-transcriptional level, although the elucidation of their role is made difficult by the multiplicity of their targets and the ability of more miRNAs to affect the same mRNAs. In this study, an evaluation of how miRNA expression varies in organs playing a key role in lipid/lipoprotein metabolism was conducted in control mice and in two mouse models carrying genetic ablations which differently affect low-density lipoprotein metabolism. Mice were fed a lipid-poor standard diet and a diet enriched in cholesterol and saturated fat. The results obtained showed that there are no miRNAs whose expression constantly vary with dietary or genetic changes. Furthermore, it appears that diet, more than genotype, impacts on organ-specific miRNA expression profiles.

11.
Dis Model Mech ; 16(3)2023 03 01.
Article in English | MEDLINE | ID: mdl-36810932

ABSTRACT

Gonadotropin-releasing hormone (GnRH) deficiency (GD) is a disorder characterized by absent or delayed puberty, with largely unknown genetic causes. The purpose of this study was to obtain and exploit gene expression profiles of GnRH neurons during development to unveil novel biological mechanisms and genetic determinants underlying GD. Here, we combined bioinformatic analyses of immortalized and primary embryonic GnRH neuron transcriptomes with exome sequencing from GD patients to identify candidate genes implicated in the pathogenesis of GD. Among differentially expressed and filtered transcripts, we found loss-of-function (LoF) variants of the autism-linked neuroligin 3 (NLGN3) gene in two unrelated patients co-presenting with GD and neurodevelopmental traits. We demonstrated that NLGN3 is upregulated in maturing GnRH neurons and that NLGN3 wild-type, but not mutant, protein promotes neuritogenesis when overexpressed in developing GnRH cells. Our data represent proof of principle that this complementary approach can identify new candidate GD genes and demonstrate that LoF NLGN3 variants can contribute to GD. This novel genotype-phenotype correlation implies common genetic mechanisms underlying neurodevelopmental disorders, such as GD and autistic spectrum disorder.


Subject(s)
Autistic Disorder , Humans , Autistic Disorder/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Gonadotropin-Releasing Hormone/metabolism
12.
Liver Int ; 32(9): 1363-71, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22845860

ABSTRACT

BACKGROUND/AIMS: Apolipoprotein (apo)A-I(M) (ilano), is a molecular variant of apoA-I(wild-type), associated with dramatically low HDL-cholesterol levels, but no increased risk for cardiovascular disease. In view of the present uncertainties on the role of apoA-I in liver cholesterol removal by way of bile acids and neutral sterols, and of the greater capacity of apoA-I(M) (ilano) to remove arterial cholesterol, biliary sterol metabolism was evaluated in transgenic mice expressing apoA-I(M) (ilano). METHODS: ApoA-I(M) (ilano) mice were fed a high-cholesterol/high-fat diet, and compared with human apoA-I(wild-type) mice. Plasma lipid levels, hepatic bile flow and composition, hepatic and intestinal cholesterol and bile acid content, and faecal sterol content were measured. Moreover, the expression of hepatic ABCA1, SR-B1 and that of hepatic and intestinal genes involved in bile acid metabolism were evaluated. RESULTS: The dietary treatment led to a strong elevation in HDL-cholesterol levels in A-I(M) (ilano) mice, associated with an increased expression of hepatic ABCA1. ApoA-I(M) (ilano) mice showed lower cholesterol output from the liver compared with apoA-I(wild-type) mice, in the absence of liver sterol accumulation. Faecal excretion of neutral sterols and bile acids was similar in the two mouse lines. CONCLUSIONS: In spite of a different response to the dietary challenge, with an increased ABCA1 expression and a lower hepatic cholesterol output in apoA-I(M) (ilano) mice, the net sterol excretion is comparable in the two transgenic lines.


Subject(s)
Apolipoprotein A-I/genetics , Bile/metabolism , Cholesterol, HDL/metabolism , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/metabolism , Animals , Apolipoprotein A-I/metabolism , Bile/chemistry , Cholesterol, HDL/analysis , Disease Models, Animal , Feces/chemistry , Gastrointestinal Contents/chemistry , Gene Expression Profiling , Humans , Liver/chemistry , Male , Mice , Models, Animal , Scavenger Receptors, Class B/metabolism
13.
Eur Biophys J ; 40(1): 59-68, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20882274

ABSTRACT

Binding of ligands to DNA gives rise to several relevant biological and biomedical effects. Here, through the use of atomic force microscopy (AFM), we studied the consequences of drug binding on the morphology of single DNA molecules. In particular, we quantitatively analyzed the effects of three different DNA-binding molecules (doxorubicin, ethidium bromide, and netropsin) that exert various pharmacologic and therapeutic effects. The results of this study show the consequences of intercalation and groove molecular binding on DNA conformation. These single-molecule measurements demonstrate morphological features that reflect the specific modes of drug-DNA interaction. This experimental approach may have implications in the design of therapeutically effective agents.


Subject(s)
DNA/chemistry , Doxorubicin/chemistry , Ethidium/chemistry , Netropsin/chemistry , DNA/drug effects , DNA/ultrastructure , Doxorubicin/pharmacology , Ethidium/pharmacology , Intercalating Agents/chemistry , Intercalating Agents/pharmacology , Ligands , Microscopy, Atomic Force/methods , Netropsin/pharmacology , Nucleic Acid Conformation/drug effects
14.
Sci Rep ; 11(1): 23458, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34873191

ABSTRACT

Functional enrichment analysis is an analytical method to extract biological insights from gene expression data, popularized by the ever-growing application of high-throughput techniques. Typically, expression profiles are generated for hundreds to thousands of genes/proteins from samples belonging to two experimental groups, and after ad-hoc statistical tests, researchers are left with lists of statistically significant entities, possibly lacking any unifying biological theme. Functional enrichment tackles the problem of putting overall gene expression changes into a broader biological context, based on pre-existing knowledge bases of reference: database collections of known expression regulation, relationships and molecular interactions. STRING is among the most popular tools, providing both protein-protein interaction networks and functional enrichment analysis for any given set of identifiers. For complex experimental designs, manually retrieving, interpreting, analyzing and abridging functional enrichment results is a daunting task, usually performed by hand by the average wet-biology researcher. We have developed reString, a cross-platform software that seamlessly retrieves from STRING functional enrichments from multiple user-supplied gene sets, with just a few clicks, without any need for specific bioinformatics skills. Further, it aggregates all findings into human-readable table summaries, with built-in features to easily produce user-customizable publication-grade clustermaps and bubble plots. Herein, we outline a complete reString protocol, showcasing its features on a real use-case.


Subject(s)
Cluster Analysis , Computational Biology/methods , Data Mining/methods , Gene Expression Regulation , Pattern Recognition, Automated , Animals , Aorta/metabolism , Databases, Genetic , Gene Expression Profiling/methods , Humans , Internet , Mice , Polymerase Chain Reaction , Programming Languages , Protein Interaction Maps , Proteins , RNA-Seq , Signal Transduction , Software , User-Computer Interface
15.
Sci Rep ; 10(1): 13368, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32770020

ABSTRACT

Lipidomic analyses address the problem of characterizing the lipid components of given cells, tissues and organisms by means of chromatographic separations coupled to high-resolution, tandem mass spectrometry analyses. A number of software tools have been developed to help in the daunting task of mass spectrometry signal processing and cleaning, peak analysis and compound identification, and a typical finished lipidomic dataset contains hundreds to thousands of individual molecular lipid species. To provide researchers without a specific technical expertise in mass spectrometry the possibility of broadening the exploration of lipidomic datasets, we have developed liputils, a Python module that specializes in the extraction of fatty acid moieties from individual molecular lipids. There is no prerequisite data format, as liputils extracts residues from RefMet-compliant textual identifiers and from annotations of other commercially available services. We provide three examples of real-world data processing with liputils, as well as a detailed protocol on how to readily process an existing dataset that can be followed with basic informatics skills.

16.
Mol Nutr Food Res ; 64(15): e1900835, 2020 08.
Article in English | MEDLINE | ID: mdl-32579743

ABSTRACT

SCOPE: Protein malnutrition is characterized by stunted growth, hepatic steatosis and a damaged gut mucosal architecture. Since high-fat shaped gut microbiota (HFM) has an increased ability in providing nutrients and energy from food to the host, the aim of this study is to determine whether such a microbiota could beneficially impact on the consequences of malnutrition. METHODS AND RESULTS: The cecal content of specific pathogen free C57Bl/6J mice fed a high-fat diet or a low-protein diet is transplanted in two groups of germ-free C57Bl/6J recipient mice, which are subsequently fed a low-protein diet for 8 weeks. Body weight gain is comparable between the two groups of microbiota-recipient mice. The HFM led to a worsening of microvesicular steatosis and a decrease of plasma lipids compared to the low-protein shaped microbiota. In the small intestine of mice receiving the HFM, although significant histological differences are not observed, the expression of antimicrobial genes promoting oxidative stress and immune response at the ileal epithelium (Duox2, Duoxa2, Saa1, Ang4, Defa5) is increased. CONCLUSION: The transplant of HFM in mice fed a low-protein diet represents a noxious stimulus for the ileal mucosa and impairs hepatic lipoprotein secretion, favoring the occurrence of hepatic microvesicular steatosis.


Subject(s)
Diet, High-Fat , Diet, Protein-Restricted/adverse effects , Gastrointestinal Microbiome/physiology , Non-alcoholic Fatty Liver Disease/microbiology , Animals , Cecum/microbiology , Cholesterol/blood , Dysbiosis/genetics , Dysbiosis/microbiology , Eating , Feces/microbiology , Gene Expression , Male , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , Organ Size , Triglycerides/blood , Weight Gain
17.
Br J Pharmacol ; 177(2): 328-345, 2020 01.
Article in English | MEDLINE | ID: mdl-31621898

ABSTRACT

BACKGROUND AND PURPOSE: Fenretinide, a synthetic retinoid derivative first investigated for cancer prevention and treatment, has been shown to ameliorate glucose tolerance, improve plasma lipid profile and reduce body fat mass. These effects, together with its ability to inhibit ceramide synthesis, suggest that fenretinide may have an anti-atherosclerotic action. EXPERIMENTAL APPROACH: To this aim, nine-week-old apoE-knockout (EKO) female mice were fed for twelve weeks a Western diet, without (control) or with (0.1% w/w) fenretinide. As a reference, wild-type (WT) mice were treated similarly. Growth and metabolic parameters were monitored throughout the study. Atherosclerosis development was evaluated in the aorta and at the aortic sinus. Blood and lymphoid organs were further characterized with thorough cytological/histological and immunocytofluorimetric analyses. KEY RESULTS: Fenretinide treatment significantly lowered body weight, glucose levels and plasma levels of total cholesterol, triglycerides, and phospholipids. In the liver, fenretinide remarkably reduced hepatic glycogenosis and steatosis driven by the Western diet. Treated spleens were abnormally enlarged, with severe follicular atrophy and massive extramedullary haematopoiesis. Severe renal hemosiderin deposition was observed in treated EKO mice. Treatment resulted in a threefold increase of total leukocytes (WT and EKO) and raised the activated/resting monocyte ratio in EKO mice. Finally, atherosclerosis development was markedly increased at the aortic arch, thoracic and abdominal aorta of fenretinide-treated mice. CONCLUSIONS AND IMPLICATIONS: We provide the first evidence that, despite beneficial metabolic effects, fenretinide treatment may enhance the development of atherosclerosis.


Subject(s)
Antineoplastic Agents/toxicity , Aorta/drug effects , Aortic Diseases/chemically induced , Atherosclerosis/chemically induced , Energy Metabolism/drug effects , Fenretinide/toxicity , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Blood Glucose/drug effects , Blood Glucose/metabolism , Diet, Western , Disease Models, Animal , Disease Progression , Female , Lipids/blood , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Spleen/drug effects , Spleen/metabolism , Spleen/pathology , Weight Loss/drug effects
18.
Cardiovasc Res ; 116(8): 1458-1472, 2020 07 01.
Article in English | MEDLINE | ID: mdl-31688894

ABSTRACT

AIMS: Increased Ankyrin Repeat Domain 1 (ANKRD1) levels linked to gain of function mutations have been associated to total anomalous pulmonary venous return and adult cardiomyopathy occurrence in humans. The link between increased ANKRD1 level and cardiac structural and functional disease is not understood. To get insight into this problem, we have generated a gain of function ANKRD1 mouse model by overexpressing ANKRD1 in the myocardium. METHODS AND RESULTS: Ankrd1 is expressed non-homogeneously in the embryonic myocardium, with a dynamic nucleo-sarcomeric localization in developing cardiomyocytes. ANKRD1 transgenic mice present sinus venosus defect, which originates during development by impaired remodelling of early embryonic heart. Adult transgenic hearts develop diastolic dysfunction with preserved ejection fraction, which progressively evolves into heart failure, as shown histologically and haemodynamically. Transgenic cardiomyocyte structure, sarcomeric assembly, and stability are progressively impaired from embryonic to adult life. Postnatal transgenic myofibrils also present characteristic functional alterations: impaired compliance at neonatal stage and impaired lusitropism in adult hearts. Altogether, our combined analyses suggest that impaired embryonic remodelling and adult heart dysfunction in ANKRD1 transgenic mice present a common ground of initial cardiomyocyte defects, which are exacerbated postnatally. Molecular analysis showed transient activation of GATA4-Nkx2.5 transcription in early transgenic embryos and subsequent dynamic transcriptional modulation within titin gene. CONCLUSIONS: ANKRD1 is a fine mediator of cardiomyocyte response to haemodynamic load in the developing and adult heart. Increased ANKRD1 levels are sufficient to initiate an altered cellular phenotype, which is progressively exacerbated into a pathological organ response by the high ventricular workload during postnatal life. Our study defines for the first time a unifying picture for ANKRD1 role in heart development and disease and provides the first mechanistic link between ANKRD1 overexpression and cardiac disease onset.


Subject(s)
Heart Septal Defects, Atrial/metabolism , Muscle Proteins/metabolism , Myocardium/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Function, Left , Animals , Diastole , Female , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism , Gene Expression Regulation, Developmental , Heart Septal Defects, Atrial/genetics , Heart Septal Defects, Atrial/pathology , Heart Septal Defects, Atrial/physiopathology , Homeobox Protein Nkx-2.5/genetics , Homeobox Protein Nkx-2.5/metabolism , Male , Mice, Transgenic , Muscle Proteins/genetics , Myocardium/pathology , Nuclear Proteins/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Repressor Proteins/genetics , Up-Regulation , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology
19.
Int J Cancer ; 125(10): 2456-64, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19536774

ABSTRACT

Delimotecan (MEN 4901/T-0128) is a new cytotoxic prodrug constituted by a camptothecin analog (T-2513) bound to carboxymethyl dextran through a triglycine linker. A significant antitumor activity of delimotecan against human metastatic melanoma xenograft model Me15392 is reported. Dacarbazine, the drug approved for the treatment of metastatic melanoma, was ineffective in this melanoma model. Pharmacokinetic studies, together with the expression analysis of mRNA for enzymes involved in delimotecan metabolism, showed that T-2513 and other cytotoxic metabolites of delimotecan (SN 38 and T-0055) are generated in greater quantities in the tumor tissue than in toxicity target tissues, such as liver, thus accounting for the antitumoral activity. Moreover, we demonstrated that human metastatic melanoma cells are able to phagocytose delimotecan and cleave it to release the cytotoxic moieties T-2513 in the tumoral environment. Further flow cytometric analysis showed a higher recruitment of macrophages in xenografted human metastatic melanoma, when compared with other human tumors. Thus, the antitumoral activity of delimotecan exerted on metastatic melanoma is due to several factors: (i) the ability of melanoma cells to phagocytose and metabolise delimotecan; (ii) the accumulation of delimotecan in tumoral mass; (iii) the recruitment of macrophage cells to the melanoma nodule and (iv) the expression in melanoma cells of a pattern of enzymes that converts delimotecan into cytotoxic metabolites. Based on these results, delimotecan might be exploited as a new anticancer agent for the therapy of metastatic melanoma because of its high efficacy and good selectivity, and therefore clinical trials for this indication are warranted.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Dextrans/pharmacokinetics , Dextrans/therapeutic use , Melanoma/drug therapy , Topotecan/analogs & derivatives , Animals , Chromatography, High Pressure Liquid , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Female , Humans , Leukemia, Myeloid/drug therapy , Leukemia, Myeloid/pathology , Macrophages/drug effects , Melanoma/secondary , Mice , Mice, Nude , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Tissue Distribution , Topotecan/pharmacokinetics , Topotecan/therapeutic use , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
20.
Nutrients ; 12(1)2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31892152

ABSTRACT

It is widely recognized that the microorganisms inhabiting our gastrointestinal tract-the gut microbiota-deeply affect the pathophysiology of the host. Gut microbiota composition is mostly modulated by diet, and gut microorganisms communicate with the different organs and tissues of the human host by synthesizing hormones and regulating their release. Herein, we will provide an updated review on the most important classes of gut microbiota-derived hormones and their sensing by host receptors, critically discussing their impact on host physiology. Additionally, the debated interplay between microbial hormones and the development of cardiovascular disease will be thoroughly analysed and discussed.


Subject(s)
Cardiovascular Diseases/physiopathology , Endocrine Glands , Gastrointestinal Microbiome/physiology , Hormones/biosynthesis , Animals , Atherosclerosis/physiopathology , Bile Acids and Salts/metabolism , Choline/metabolism , Diet , Fatty Acids, Volatile/metabolism , Humans , Neurotransmitter Agents/physiology , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL