Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
J Chem Phys ; 159(8)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37615395

ABSTRACT

Nonlinear spectroscopy with quantum entangled photons is an emerging field of research that holds the promise to achieve superior signal-to-noise ratio and effectively isolate many-body interactions. Photon sources used for this purpose, however, lack the frequency tunability and spectral bandwidth demanded by contemporary molecular materials. Here, we present design strategies for efficient spontaneous parametric downconversion to generate biphoton states with adequate spectral bandwidth and at visible wavelengths. Importantly, we demonstrate, by suitable design of the nonlinear optical interaction, the scope to engineer the degree of spectral correlations between the photons of the pair. We also present an experimental methodology to effectively characterize such spectral correlations. Importantly, we believe that such a characterization tool can be effectively adapted as a spectroscopy platform to optically probe system-bath interactions in materials.

2.
Nano Lett ; 22(7): 2748-2754, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35343692

ABSTRACT

The transient optical response of plasmonic nanostructures has recently been the focus of extensive research. Accurate prediction of the ultrafast dynamics following excitation of hot electrons by ultrashort laser pulses is of major relevance in a variety of contexts from the study of light harvesting and photocatalytic processes to nonlinear nanophotonics and the all-optical modulation of light. So far, all studies have assumed the correspondence between the temporal evolution of the dynamic optical signal, retrieved by transient absorption spectroscopy, and that of the photoexcited hot electrons, described in terms of their temperature. Here, we show both theoretically and experimentally that this correspondence does not hold under a nonperturbative excitation regime. Our results indicate that the main mechanism responsible for the breaking of the correspondence between electronic and optical dynamics is universal in plasmonics, being dominated by the nonlinear smearing of the Fermi-Dirac occupation probability at high hot-electron temperatures.

3.
Phys Chem Chem Phys ; 24(36): 21750-21758, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36094295

ABSTRACT

Thionated nucleobases are obtained by replacing oxygen with sulphur atoms in the canonical nucleobases. They absorb light efficiently in the near-ultraviolet, populating singlet states which undergo intersystem crossing to the triplet manifold on an ultrashort time scale with a high quantum yield. Nonetheless there are still important open questions about the primary mechanisms responsible for this ultrafast transition. Here we track both the electronic and the vibrational ultrafast excited-state dynamics towards the triplet state for solvated 4-thiothymidine (4TT) and 4-thiouracil (4TU) with sub-30 fs broadband transient absorption spectroscopy in the ultraviolet. A global and target analysis allows us to simultaneously resolve the contributions of the different electronically and vibrationally excited states to the whole data set. Our experimental results, combined with state-of-the-art quantum mechanics/molecular mechanics simulations and Damped Oscillation Associated Spectra (DOAS) and target analysis, support that the relaxation to the triplet state is mediated by conical intersections promoted by vibrational coherences through the population of an intermediate singlet state. In addition, the analysis of the coherent vibrational dynamics reveals that, despite sharing the same relaxation mechanism and similar chemical structures, 4TT and 4TU exhibit rather different geometrical deformations, characterized by the conservation of planarity in 4TU and its partial rupture in 4TT.


Subject(s)
Molecular Dynamics Simulation , Vibration , Oxygen , Sulfur
4.
Proc Natl Acad Sci U S A ; 116(17): 8161-8166, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30952788

ABSTRACT

We investigate, with a combination of ultrafast optical spectroscopy and semiclassical modeling, the photothermal properties of various water-soluble nanocrystal assemblies. Broadband pump-probe experiments with ∼100-fs time resolution in the visible and near infrared reveal a complex scenario for their transient optical response that is dictated by their hybrid composition at the nanoscale, comprising metallic (Au) or semiconducting ([Formula: see text]) nanostructures and a matrix of organic ligands. We track the whole chain of energy flow that starts from light absorption by the individual nanocrystals and subsequent excitation of out-of-equilibrium carriers followed by the electron-phonon equilibration, occurring in a few picoseconds, and then by the heat release to the matrix on the 100-ps timescale. Two-dimensional finite-element method electromagnetic simulations of the composite nanostructure and multitemperature modeling of the energy flow dynamics enable us to identify the key mechanism presiding over the light-heat conversion in these kinds of nanomaterials. We demonstrate that hybrid (organic-inorganic) nanocrystal assemblies can operate as efficient nanoheaters by exploiting the high absorption from the individual nanocrystals, enabled by the dilution of the inorganic phase that is followed by a relatively fast heating of the embedding organic matrix, occurring on the 100-ps timescale.

5.
Molecules ; 27(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35208987

ABSTRACT

Understanding the primary steps following UV photoexcitation in sulphur-substituted DNA bases (thiobases) is fundamental for developing new phototherapeutic drugs. However, the investigation of the excited-state dynamics in sub-100 fs time scales has been elusive until now due to technical challenges. Here, we track the ultrafast decay mechanisms that lead to the electron trapping in the triplet manifold for 6-thioguanine in an aqueous solution, using broadband transient absorption spectroscopy with a sub-20 fs temporal resolution. We obtain experimental evidence of the fast internal conversion from the S2(ππ*) to the S1(nπ*) states, which takes place in about 80 fs and demonstrates that the S1(nπ*) state acts as a doorway to the triplet population in 522 fs. Our results are supported by MS-CASPT2 calculations, predicting a planar S2(ππ*) pseudo-minimum in agreement with the stimulated emission signal observed in the experiment.


Subject(s)
Thioguanine/chemistry , Spectrophotometry, Ultraviolet
6.
Opt Express ; 29(13): 20970-20980, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34266173

ABSTRACT

Compression, shaping and characterization of broadband mid-infrared (MIR) pulses based on an acousto-optic modulator (AOM) pulse shaper is presented. Characterization of the spectral phase is achieved by an AOM-shaper based implementation of a dispersion scan (d-scan). The abilities of the setup are demonstrated by imprinting several test phases with increasing complexity on broadband MIR pulses centered at 3.2 µm and retrieval of the imprinted phases with the presented d-scan method. Phase characterization with d-scan in combination with an evolutionary algorithm allows us to compress the MIR pulses below 50 fs FWHM autocorrelation after the shaper.

7.
Opt Express ; 28(9): 13714-13720, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403840

ABSTRACT

Pulse compression in a short, normal dispersion photonic-crystal fiber is investigated with a Yb:CaGdAlO4 laser pumped by a low-power fiber-coupled single-mode diode that delivers 70-fs pulses at 1050 nm central wavelength, with 45-mW average power at 60 MHz repetition rate. A simple and power-efficient compressor based on a ∼15-cm long, low-cost commercial nonlinear fiber, with normal dispersion at the laser wavelength, produces pulses as short as 14.9 fs, corresponding to ∼4.25 optical cycles, with 29 mW average power after a prism-pair compressor in double pass configuration. Pulse quality was investigated with frequency resolved optical gating (FROG) analysis. Furthermore, a comparative analysis of noise properties of the oscillator, pump laser and compressed pulses has been performed.

8.
Chemistry ; 26(1): 336-343, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31750960

ABSTRACT

Photoinduced processes in thiouracil derivatives have lately attracted considerable attention due to their suitability for innovative biological and pharmacological applications. Here, sub-20 fs broadband transient absorption spectroscopy in the near-UV are combined with CASPT2/MM decay path calculations to unravel the excited-state decay channels of water solvated 2-thio and 2,4-dithiouracil. These molecules feature linear absorption spectra with overlapping ππ* bands, leading to parallel decay routes which we systematically track for the first time. The results reveal that different processes lead to the triplet states population, both directly from the ππ* absorbing state and via the intermediate nπ* dark state. Moreover, the 2,4-dithiouracil decay pathways is shown to be strongly correlated either to those of 2- or 4-thiouracil, depending on the sulfur atom on which the electronic transition localizes.

9.
J Am Chem Soc ; 140(47): 16087-16093, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30380844

ABSTRACT

We combined sub-30 fs broadband transient absorption spectroscopy in the ultraviolet with state-of-the-art quantum mechanics/molecular mechanics simulations to study the ultrafast excited-state dynamics of the sulfur-substituted nucleobase 4-thiouracil. We observed a clear mismatch between the time scales for the decay of the stimulated emission from the bright ππ* state (76 ± 16 fs, experimentally elusive until now) and the buildup of the photoinduced absorption of the triplet state (225 ± 30 fs). These data provide evidence that the intersystem crossing occurs via a dark state, which is intermediately populated on the sub-100 fs time scale. Nonlinear spectroscopy simulations, extrapolated from a detailed CASPT2/MM decay path topology of the solvated system together with an excited state mixed quantum-classical nonadiabatic dynamics, reproduce the experimental results and explain the experimentally observed vibrational coherences. The theoretical analysis rationalizes the observed different triplet buildup times of 4- and 2-thiouracil.

10.
Nanotechnology ; 29(36): 365602, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-29911655

ABSTRACT

A hybrid metal-semiconductor nanosystem for the generation of THz radiation, based on the fabrication of GaAs quantum molecules-Ga metal nanoparticles complexes through a self assembly approach, is proposed. The role of the growth parameters, the substrate temperature, the Ga and As flux during the quantum dot molecule (QDM) fabrication and the metal nanoparticle alignment are discussed. The tuning of the relative positioning of QDMs and metal nanoparticles is obtained through the careful control of Ga droplet nucleation sites via Ga surface diffusion. The electronic structure of a typical QDM was evaluated on the base of the morphological characterizations performed by atomic force microscopy and cross sectional scanning electron microscopy, and the predicted results confirmed by micro-photoluminescence experiments, showing that the Ga metal nanoparticle-GaAs quantum molecule complexes are suitable for terahertz generation from intraband transition.

11.
Opt Express ; 24(25): 28491-28499, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27958492

ABSTRACT

We introduce a 2D electronic spectroscopy setup in the UV spectral range in the partially collinear pump-probe geometry. The required interferometrically phase-locked few-optical-cycle UV pulse pair is generated by combining a passive birefringent interferometer in the visible and nonlinear phase transfer. This is achieved by sum-frequency generation between the phase-locked visible pulse pair and narrowband infrared pulses. We demonstrate a pair of 16-fs, 330-nm pulses whose delay is interferometrically stable with an accuracy better than λ/450. 2DUV maps of pyrene solution probed in the UV and visible spectral ranges are demonstrated.

12.
Nature ; 467(7314): 440-3, 2010 Sep 23.
Article in English | MEDLINE | ID: mdl-20864998

ABSTRACT

Ever since the conversion of the 11-cis retinal chromophore to its all-trans form in rhodopsin was identified as the primary photochemical event in vision, experimentalists and theoreticians have tried to unravel the molecular details of this process. The high quantum yield of 0.65 (ref. 2), the production of the primary ground-state rhodopsin photoproduct within a mere 200 fs (refs 3-7), and the storage of considerable energy in the first stable bathorhodopsin intermediate all suggest an unusually fast and efficient photoactivated one-way reaction. Rhodopsin's unique reactivity is generally attributed to a conical intersection between the potential energy surfaces of the ground and excited electronic states enabling the efficient and ultrafast conversion of photon energy into chemical energy. But obtaining direct experimental evidence for the involvement of a conical intersection is challenging: the energy gap between the electronic states of the reacting molecule changes significantly over an ultrashort timescale, which calls for observational methods that combine high temporal resolution with a broad spectral observation window. Here we show that ultrafast optical spectroscopy with sub-20-fs time resolution and spectral coverage from the visible to the near-infrared allows us to follow the dynamics leading to the conical intersection in rhodopsin isomerization. We track coherent wave-packet motion from the photoexcited Franck-Condon region to the photoproduct by monitoring the loss of reactant emission and the subsequent appearance of photoproduct absorption, and find excellent agreement between the experimental observations and molecular dynamics calculations that involve a true electronic state crossing. Taken together, these findings constitute the most compelling evidence to date for the existence and importance of conical intersections in visual photochemistry.


Subject(s)
Photochemical Processes , Rhodopsin/chemistry , Rhodopsin/metabolism , Vision, Ocular/physiology , Animals , Cattle , Electrons , Isomerism , Kinetics , Photochemical Processes/radiation effects , Quantum Theory , Retinaldehyde/chemistry , Retinaldehyde/metabolism , Vibration , Vision, Ocular/radiation effects
13.
Opt Express ; 22(8): 9063-72, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24787794

ABSTRACT

We introduce a new scheme for two-dimensional IR spectroscopy in the partially collinear pump-probe geometry. Translating birefringent wedges allow generating phase-locked pump pulses with exceptional phase stability, in a simple and compact setup. A He-Ne tracking scheme permits to scan continuously the acquisition time. For a proof-of-principle demonstration we use lithium niobate, which allows operation up to 5 µm. Exploiting the inherent perpendicular polarizations of the two pump pulses, we also demonstrate signal enhancement and scattering suppression.

14.
Opt Express ; 22(21): 25295-306, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25401563

ABSTRACT

The investigation of fundamental mechanisms taking place on a femtosecond time scale is enabled by ultrafast pulsed laser sources. Here, the control of pulse duration, center wavelength, and especially the carrier-envelope phase has been shown to be of essential importance for coherent control of high harmonic generation and attosecond physics and, more recently, also for electron photoemission from metallic nanostructures. In this paper we demonstrate the realization of a source of 2-cycle laser pulses tunable between 1.2 and 2.1 µm, and with intrinsic CEP stability. The latter is guaranteed by difference frequency generation between the output pulse trains of two noncollinear optical parametric amplifier stages that share the same CEP variations. The CEP stability is better than 50 mrad over 20 minutes, when averaging over 100 pulses. We demonstrate the good CEP stability by measuring kinetic energy spectra of photoemitted electrons from a single metal nanostructure and by observing a clear variation of the electron yield with the CEP.


Subject(s)
Amplifiers, Electronic , Electricity , Optical Phenomena , Electrons , Interferometry , Kinetics , Lasers , Time Factors
15.
Opt Lett ; 39(6): 1485-8, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24690819

ABSTRACT

We present a pulse-shaping scheme operating in the mid-infrared (MIR) wavelength range up to 20 µm. The spectral phase is controlled by a specially designed large stroke 32-actuator deformable mirror in a grating-based 4f configuration. We demonstrate the shaper capability of compressing the MIR pulses, imparting parabolic and third-order spectral phases and splitting the spectral content to create two independent pulses.

16.
Opt Lett ; 39(13): 3849-52, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24978753

ABSTRACT

We introduce a scheme for the generation of tunable few-optical-cycle UV pulses based on sum-frequency generation between a broadband visible pulse and a narrowband pulse ranging from the visible to the near-IR. This configuration generates broadband UV pulses tunable from 0.3 to 0.4 µm, with energy up to 1.5 µJ. By exploiting nonlinear phase transfer, transform-limited pulse durations are achieved. Full characterization of the UV pulse spectral phase is obtained by two-dimensional spectral shearing interferometry, which is here extended to the UV spectral range. We demonstrate clean 8.4 fs UV pulses.


Subject(s)
Interferometry/methods , Ultraviolet Rays , Electricity , Models, Theoretical , Nonlinear Dynamics , Optical Devices , Optical Phenomena , Spectrophotometry, Ultraviolet
17.
Nat Commun ; 15(1): 5202, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898004

ABSTRACT

Acoustic vibrations of matter convey fundamental viscoelastic information that can be optically retrieved by hyperfine spectral analysis of the inelastic Brillouin scattered light. Increasing evidence of the central role of the viscoelastic properties in biological processes has stimulated the rise of non-contact Brillouin microscopy, yet this method faces challenges in turbid samples due to overwhelming elastic background light. Here, we introduce a common-path Birefringence-Induced Phase Delay (BIPD) filter to disentangle the polarization states of the Brillouin and Rayleigh signals, enabling the rejection of the background light using a polarizer. We demonstrate a 65 dB extinction ratio in a single optical pass collecting Brillouin spectra in extremely scattering environments and across highly reflective interfaces. We further employ the BIPD filter to image bone tissues from a mouse model of osteopetrosis, highlighting altered biomechanical properties compared to the healthy control. Results herald new opportunities in mechanobiology where turbid biological samples remain poorly characterized.


Subject(s)
Elasticity , Animals , Birefringence , Mice , Viscosity , Biomechanical Phenomena , Bone and Bones/diagnostic imaging , Light , Scattering, Radiation
18.
Opt Lett ; 37(15): 3027-9, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22859074

ABSTRACT

We introduce the translating wedge-based identical pulses encoding system, a novel device for the generation of collinear, interferometrically locked ultrashort pulse pairs. By means of birefringent wedges, we are able to control the pulse delay with attosecond precision and stability better that λ/360, without affecting the pulse duration and in a spectral range that spans from UV to mid-IR. This device is expected to dramatically simplify two-dimensional spectroscopy experiments.

19.
ACS Photonics ; 9(11): 3563-3572, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36411818

ABSTRACT

Fourier-plane microscopy is a powerful tool for measuring the angular optical response of a plethora of materials and photonic devices. Among them, optical microcavities feature distinctive energy-momentum dispersions, crucial for a broad range of fundamental studies and applications. However, measuring the whole momentum space (k-space) with sufficient spectral resolution using standard spectroscopic techniques is challenging, requiring long and alignment-sensitive scans. Here, we introduce a k-space hyperspectral microscope, which uses a common-path birefringent interferometer to image photoluminescent organic microcavities, obtaining an angle- and wavelength-resolved view of the samples in only one measurement. The exceptional combination of angular and spectral resolution of our technique allows us to reconstruct a three-dimensional (3D) map of the cavity dispersion in the energy-momentum space, revealing the polarization-dependent behavior of the resonant cavity modes. Furthermore, we apply our technique for the characterization of a dielectric nanodisk metasurface, evidencing the angular and spectral behavior of its anapole mode. This approach is able to provide a complete optical characterization for materials and devices with nontrivial angle-/wavelength-dependent properties, fundamental for future developments in the fields of topological photonics and optical metamaterials.

20.
Opt Express ; 19(9): 8357-66, 2011 Apr 25.
Article in English | MEDLINE | ID: mdl-21643087

ABSTRACT

Noise evolution in an optical parametric chirped-pulse amplifier (OPCPA) differs essentially from that of an optical parametric or a conventional laser amplifier, in that an incoherent pedestal is produced by superfluorescence that can overwhelm the signal under strong saturation. Using a model for the nonlinear dynamics consistent with quantum mechanics, we numerically study the evolution of excess noise in an OPCPA. The observed dynamics explain the macroscopic characteristics seen previously in experiments in the practically important saturation regime.


Subject(s)
Amplifiers, Electronic , Artifacts , Lasers , Models, Statistical , Signal Processing, Computer-Assisted/instrumentation , Computer Simulation , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL