Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Transl Med ; 21(1): 257, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055772

ABSTRACT

BACKGROUND: Gene expression profiling is increasingly being utilised as a diagnostic, prognostic and predictive tool for managing cancer patients. Single-sample scoring approach has been developed to alleviate instability of signature scores due to variations from sample composition. However, it is a challenge to achieve comparable signature scores across different expressional platforms. METHODS: The pre-treatment biopsies from a total of 158 patients, who have received single-agent anti-PD-1 (n = 84) or anti-PD-1 + anti-CTLA-4 therapy (n = 74), were performed using NanoString PanCancer IO360 Panel. Multiple immune-related signature scores were measured from a single-sample rank-based scoring approach, singscore. We assessed the reproducibility and the performance in reporting immune profile of singscore based on NanoString assay in advance melanoma. To conduct cross-platform analyses, singscores between the immune profiles of NanoString assay and the previous orthogonal whole transcriptome sequencing (WTS) data were compared through linear regression and cross-platform prediction. RESULTS: singscore-derived signature scores reported significantly high scores in responders in multiple PD-1, MHC-1-, CD8 T-cell-, antigen presentation-, cytokine- and chemokine-related signatures. We found that singscore provided stable and reproducible signature scores among the repeats in different batches and cross-sample normalisations. The cross-platform comparisons confirmed that singscores derived via NanoString and WTS were comparable. When singscore of WTS generated by the overlapping genes to the NanoString gene set, the signatures generated highly correlated cross-platform scores (Spearman correlation interquartile range (IQR) [0.88, 0.92] and r2 IQR [0.77, 0.81]) and better prediction on cross-platform response (AUC = 86.3%). The model suggested that Tumour Inflammation Signature (TIS) and Personalised Immunotherapy Platform (PIP) PD-1 are informative signatures for predicting immunotherapy-response outcomes in advanced melanoma patients treated with anti-PD-1-based therapies. CONCLUSIONS: Overall, the outcome of this study confirms that singscore based on NanoString data is a feasible approach to produce reliable signature scores for determining patients' immune profiles and the potential clinical utility in biomarker implementation, as well as to conduct cross-platform comparisons, such as WTS.


Subject(s)
Melanoma , Humans , Reproducibility of Results , Melanoma/therapy , Melanoma/drug therapy , Biomarkers , Gene Expression Profiling , Immunotherapy
2.
J Immunother Cancer ; 11(10)2023 10.
Article in English | MEDLINE | ID: mdl-37865395

ABSTRACT

BACKGROUND: Tumor microenvironment (TME) characteristics are potential biomarkers of response to immune checkpoint inhibitors in metastatic melanoma. This study developed a method to perform unsupervised classification of TME of metastatic melanoma. METHODS: We used multiplex immunohistochemical and quantitative pathology-derived assessment of immune cell compositions of intratumoral and peritumoral regions of metastatic melanoma baseline biopsies to classify TME in relation to response to anti-programmed cell death protein 1 (PD-1) monotherapy or in combination with anti-cytotoxic T-cell lymphocyte-4 (ipilimumab (IPI)+PD-1). RESULTS: Spatial profiling of CD8+T cells, macrophages, and melanoma cells, as well as phenotypic PD-1 receptor ligand (PD-L1) and CD16 proportions, were used to identify and classify patients into one of three mutually exclusive TME classes: immune-scarce, immune-intermediate, and immune-rich tumors. Patients with immune-rich tumors were characterized by a lower proportion of melanoma cells and higher proportions of immune cells, including higher PD-L1 expression. These patients had higher response rates and longer progression-free survival (PFS) than those with immune-intermediate and immune-scarce tumors. At a median follow-up of 18 months (95% CI: 6.7 to 49 months), the 1-year PFS was 76% (95% CI: 64% to 90%) for patients with an immune-rich tumor, 56% (95% CI: 44% to 72%) for those with an immune-intermediate tumor, and 33% (95% CI: 23% to 47%) for patients with an immune-scarce tumor. A higher response rate was observed in patients with an immune-scarce or immune-intermediate tumor when treated with IPI+PD-1 compared with those treated with PD-1 alone. CONCLUSIONS: Our study provides an automatic TME classification method that may predict the clinical efficacy of immunotherapy for patients with metastatic melanoma.


Subject(s)
B7-H1 Antigen , Melanoma , Humans , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Melanoma/drug therapy , Ipilimumab/therapeutic use , Immunotherapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL