Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Virol J ; 15(1): 193, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30587198

ABSTRACT

BACKGROUND: Zika virus (ZIKV) has become a global threat with immediate need for accurate diagnostics, efficacious vaccines and therapeutics. Several ZIKV envelope (Env)-based vaccines have been developed recently. However, many commercially available ZIKV Env are based on the African lineage and produced in insect cells. Here, we sought to produce Asian-lineage ZIKV Env in mammalian cells for research and clinical applications. METHODS: We designed various gene expression constructs to optimize the production of ZIKV using prM-Env and full or C-terminal truncations of Env; with or without a rat CD4 fusion partner to allow large-scale production of soluble protein in mammalian HEK293 cells. Protein expression was verified by mass spectrometry and western-blot with a pan-flavivirus antibody, a ZIKV Env monoclonal antibody and with immune sera from adenoviral (ChAdOx1) ZIKV Env-vaccinated mice. The resulting Env-CD4 was used as a coating reagent for immunoassay (ELISA) using both mouse and human seropositive sera. RESULTS: Replacement of the C-terminus transmembrane Env domain by a rat CD4 and addition of prM supported optimal expression and secretion of Env. Binding between the antigens and the antibodies was similar to binding when using commercially available ZIKV Env reagents. Furthermore, antibodies from ZIKV patients bound ZIKV Env-CD4 in ELISA assays, whereas sera from healthy blood donors yielded minimal OD background. The serological outcomes of this assay correlated also with ZIKV neutralisation capacity in vitro. CONCLUSIONS: Results obtained from this study indicate the potential of the Asian-lineage Zika Env-CD4 and Env proteins in ELISA assays to monitor humoral immune responses in upcoming clinical trials as well as a sero-diagnostic tool in ZIKV infection.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Recombinant Fusion Proteins/immunology , Viral Envelope Proteins/immunology , Viral Envelope Proteins/isolation & purification , Zika Virus/immunology , Animals , CD4 Antigens/genetics , Enzyme-Linked Immunosorbent Assay/methods , HEK293 Cells , Humans , Mexico , Mice , Neutralization Tests/methods , Rats , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Zika Virus/genetics
2.
J Virol Methods ; 294: 114175, 2021 08.
Article in English | MEDLINE | ID: mdl-34019939

ABSTRACT

Zika virus (ZIKV) is an emerging mosquito-borne flavivirus associated with congenital Zika syndrome and Guillain-Barré syndrome in adults. The recombinant ZIKV envelope (E) antigen can be useful for serodiagnosis of ZIKV infection and for monitoring immune responses during preclinical and clinical ZIKV vaccine development. In this study, we describe production of ZIKV E using the modified polyethyleneimine (PEI) transfection in HEK293 cells to improve cost-effective large-scale production. We show that the secretion of ZIKV E in HEK293 cells is dependent on cell culture incubation temperatures where incubation at a low temperature of 28 °C improved protein secretion of both, E-CD4 and E, whereas a substantial decrease in secretion was observed at 37 °C. The resulting E-CD4 produced at low temperature yielded similar binding profiles in ELISAs in comparison with a commercially available E protein using human seropositive sera to ZIKV. We also show that ZIKV NS1 and NS1 ß-ladder antigens produced in HEK293 cells, have similar binding profiles in ELISA which suggests that both NS1 or NS1 ß-ladder can be used for serodiagnosis of ZIKV. In conclusion, we propose a cost-effective production of the ZIKV E and NS1, suitable for both, clinical and research applications in endemic countries.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Antibodies, Viral , HEK293 Cells , Humans , Temperature , Viral Envelope , Viral Nonstructural Proteins/genetics , Zika Virus Infection/diagnosis
3.
Viruses ; 11(5)2019 05 01.
Article in English | MEDLINE | ID: mdl-31052472

ABSTRACT

Chikungunya fever is a debilitating disease caused by Chikungunya virus (CHIKV) that can result in long-lasting arthralgias. The early diagnosis of CHIKV relies on PCR during the acute infection phase to allow differential diagnosis with other co-circulating arboviruses such as dengue and Zika. Alternatively, serology can support diagnosis and provide epidemiological information on current and past outbreaks. Many commercial serological ELISA assays are based on the inactivated whole CHIKV, but their sensitivity and specificity show great variability. We produced recombinant CHIKV E2 that is suitable for ELISA assays, which was used for the serodiagnosis of CHIKV infections occurring in an arbovirus endemic Mexican region within Michoacán state. A cross-sectional study was conducted in 2016-2017; sera was obtained from 15 healthy donors and 68 patients presenting undifferentiated febrile illness. Serum samples were screened by RT-PCR and by our in-house ELISA assay. Our results indicate that IgM and IgG anti-CHIKV E2 antibodies were detected with our ELISA assay with higher sensitivity than a commercially available CHIKV ELISA kit. Our simple and sensitive ELISA assay for the serodiagnosis of CHIKV infections can be applied to population-based seroprevalence surveys and has potential for monitoring vaccine immunogenicity in CHIKV vaccine clinical trials.


Subject(s)
Chikungunya Fever/epidemiology , Chikungunya virus , Enzyme-Linked Immunosorbent Assay , Viral Proteins , Chikungunya Fever/immunology , Chikungunya Fever/virology , Chikungunya virus/genetics , Chikungunya virus/immunology , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Mexico/epidemiology , Public Health Surveillance , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Seroepidemiologic Studies , Viral Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL