ABSTRACT
The therapeutic potential for human type 2 innate lymphoid cells (ILC2s) has been underexplored. Although not observed in mouse ILC2s, we found that human ILC2s secrete granzyme B (GZMB) and directly lyse tumor cells by inducing pyroptosis and/or apoptosis, which is governed by a DNAM-1-CD112/CD155 interaction that inactivates the negative regulator FOXO1. Over time, the high surface density expression of CD155 in acute myeloid leukemia cells impairs the expression of DNAM-1 and GZMB, thus allowing for immune evasion. We describe a reliable platform capable of up to 2,000-fold expansion of human ILC2s within 4 weeks, whose molecular and cellular ILC2 profiles were validated by single-cell RNA sequencing. In both leukemia and solid tumor models, exogenously administered expanded human ILC2s show significant antitumor effects in vivo. Collectively, we demonstrate previously unreported properties of human ILC2s and identify this innate immune cell subset as a member of the cytolytic immune effector cell family.
Subject(s)
Granzymes , Immunity, Innate , Lymphocytes , Neoplasms , Animals , Humans , Mice , Apoptosis , Cytokines , Neoplasms/immunology , Neoplasms/therapyABSTRACT
Type I innate lymphoid cells (ILC1s) are critical regulators of inflammation and immunity in mammalian tissues. However, their function in cancer is mostly undefined. Here, we show that a high density of ILC1s induces leukemia stem cell (LSC) apoptosis in mice. At a lower density, ILC1s prevent LSCs from differentiating into leukemia progenitors and promote their differentiation into non-leukemic cells, thus blocking the production of terminal myeloid blasts. All of these effects, which require ILC1s to produce interferon-γ after cell-cell contact with LSCs, converge to suppress leukemogenesis in vivo. Conversely, the antileukemia potential of ILC1s wanes when JAK-STAT or PI3K-AKT signaling is inhibited. The relevant antileukemic properties of ILC1s are also functional in healthy individuals and impaired in individuals with acute myeloid leukemia (AML). Collectively, these findings identify ILC1s as anticancer immune cells that might be suitable for AML immunotherapy and provide a potential strategy to treat AML and prevent relapse of the disease.
Subject(s)
Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Animals , Immunity, Innate , Lymphocytes/metabolism , Mammals , Mice , Neoplastic Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolismABSTRACT
R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N6-methyladenosine (m6A) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m6A/MYC/CEBPA signaling.
Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Glioma/drug therapy , Glutarates/pharmacology , Leukemia/drug therapy , Signal Transduction/drug effects , Adenosine/analogs & derivatives , Adenosine/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Animals , Antineoplastic Agents/therapeutic use , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Line, Tumor , Glutarates/therapeutic use , HEK293 Cells , Humans , Jurkat Cells , Mice , Proto-Oncogene Proteins c-myc/metabolism , RNA Processing, Post-TranscriptionalABSTRACT
R-2-hydroxyglutarate (R-2HG), a metabolite produced by mutant isocitrate dehydrogenases (IDHs), was recently reported to exhibit anti-tumor activity. However, its effect on cancer metabolism remains largely elusive. Here we show that R-2HG effectively attenuates aerobic glycolysis, a hallmark of cancer metabolism, in (R-2HG-sensitive) leukemia cells. Mechanistically, R-2HG abrogates fat-mass- and obesity-associated protein (FTO)/N6-methyladenosine (m6A)/YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated post-transcriptional upregulation of phosphofructokinase platelet (PFKP) and lactate dehydrogenase B (LDHB) (two critical glycolytic genes) expression and thereby suppresses aerobic glycolysis. Knockdown of FTO, PFKP, or LDHB recapitulates R-2HG-induced glycolytic inhibition in (R-2HG-sensitive) leukemia cells, but not in normal CD34+ hematopoietic stem/progenitor cells, and inhibits leukemogenesis in vivo; conversely, their overexpression reverses R-2HG-induced effects. R-2HG also suppresses glycolysis and downregulates FTO/PFKP/LDHB expression in human primary IDH-wild-type acute myeloid leukemia (AML) cells, demonstrating the clinical relevance. Collectively, our study reveals previously unrecognized effects of R-2HG and RNA modification on aerobic glycolysis in leukemia, highlighting the therapeutic potential of targeting cancer epitranscriptomics and metabolism.
Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Antineoplastic Agents/pharmacology , Glutarates/pharmacology , Glycolysis/genetics , Lactate Dehydrogenases/genetics , Leukemia, Myeloid, Acute/drug therapy , Phosphofructokinase-1, Type C/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/antagonists & inhibitors , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Fluorouracil/pharmacology , Gene Expression Regulation, Neoplastic , Glycolysis/drug effects , HEK293 Cells , Humans , K562 Cells , Lactate Dehydrogenases/antagonists & inhibitors , Lactate Dehydrogenases/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oxidative Phosphorylation/drug effects , Phosphofructokinase-1, Type C/antagonists & inhibitors , Phosphofructokinase-1, Type C/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Signal Transduction , Survival Analysis , Xenograft Model Antitumor AssaysABSTRACT
ABSTRACT: We report on the antileukemic activity of homoharringtonine (HHT) in T-cell acute lymphoblastic leukemia (T-ALL). We showed that HHT inhibited the NOTCH/MYC pathway and induced significantly longer survival in mouse and patient-derived T-ALL xenograft models, supporting HHT as a promising agent for T-ALL.
Subject(s)
Harringtonines , Homoharringtonine , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins c-myc , Receptors, Notch , Signal Transduction , Xenograft Model Antitumor Assays , Homoharringtonine/pharmacology , Homoharringtonine/therapeutic use , Animals , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Humans , Mice , Harringtonines/pharmacology , Harringtonines/therapeutic use , Receptors, Notch/metabolism , Receptors, Notch/antagonists & inhibitors , Signal Transduction/drug effects , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Mice, SCID , Mice, Inbred NODABSTRACT
ABSTRACT: Treatment resistance of leukemia stem cells (LSCs) and suppression of the autologous immune system represent major challenges to achieve a cure in acute myeloid leukemia (AML). Although AML blasts generally retain high levels of surface CD38 (CD38pos), LSCs are frequently enriched in the CD34posCD38neg blast fraction. Here, we report that interferon gamma (IFN-γ) reduces LSCs clonogenic activity and induces CD38 upregulation in both CD38pos and CD38neg LSC-enriched blasts. IFN-γ-induced CD38 upregulation depends on interferon regulatory factor 1 transcriptional activation of the CD38 promoter. To leverage this observation, we created a novel compact, single-chain CD38-CD3 T-cell engager (BN-CD38) designed to promote an effective immunological synapse between CD38pos AML cells and both CD8pos and CD4pos T cells. We demonstrate that BN-CD38 engages autologous CD4pos and CD8pos T cells and CD38pos AML blasts, leading to T-cell activation and expansion and to the elimination of leukemia cells in an autologous setting. Importantly, BN-CD38 engagement induces the release of high levels of IFN-γ, driving the expression of CD38 on CD34posCD38neg LSC-enriched blasts and their subsequent elimination. Critically, although BN-CD38 showed significant in vivo efficacy across multiple disseminated AML cell lines and patient-derived xenograft models, it did not affect normal hematopoietic stem cell clonogenicity and the development of multilineage human immune cells in CD34pos humanized mice. Taken together, this study provides important insights to target and eliminate AML LSCs.
Subject(s)
Interferon-gamma , Leukemia, Myeloid, Acute , T-Lymphocytes , Animals , Humans , Mice , ADP-ribosyl Cyclase 1/immunology , ADP-ribosyl Cyclase 1/metabolism , Antigens, CD34/metabolism , Cell Line, Tumor , Hematopoietic Stem Cells/metabolism , Interferon-gamma/drug effects , Interferon-gamma/metabolism , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphocyte Activation/drug effectsABSTRACT
ABSTRACT: Although CD20×CD3 bispecific antibodies are effective against systemic B-cell lymphomas, their efficacy in central nervous system (CNS) lymphoma is unknown. Here, we report the CD20×CD3 bispecific glofitamab penetrates the blood-brain barrier, stimulates immune-cell infiltration of CNS tumors, and induces clinical responses in patients with secondary CNS.
Subject(s)
Antibodies, Bispecific , Central Nervous System Neoplasms , Humans , Central Nervous System Neoplasms/immunology , Central Nervous System Neoplasms/pathology , Central Nervous System Neoplasms/drug therapy , Antibodies, Bispecific/therapeutic use , Blood-Brain Barrier/pathology , Antigens, CD20/immunology , CD3 Complex/immunology , Female , Male , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/drug therapy , Lymphoma/immunology , Lymphoma/pathology , Lymphoma/drug therapy , Middle AgedABSTRACT
MicroRNAs and heterogeneous ribonucleoproteins (hnRNPs) are posttranscriptional gene regulators that bind mRNA in a sequence-specific manner. Here, we report that loss of miR-328 occurs in blast crisis chronic myelogenous leukemia (CML-BC) in a BCR/ABL dose- and kinase-dependent manner through the MAPK-hnRNP E2 pathway. Restoration of miR-328 expression rescues differentiation and impairs survival of leukemic blasts by simultaneously interacting with the translational regulator poly(rC)-binding protein hnRNP E2 and with the mRNA encoding the survival factor PIM1, respectively. The interaction with hnRNP E2 is independent of the microRNA's seed sequence and it leads to release of CEBPA mRNA from hnRNP E2-mediated translational inhibition. Altogether, these data reveal the dual ability of a microRNA to control cell fate both through base pairing with mRNA targets and through a decoy activity that interferes with the function of regulatory proteins.
Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , MicroRNAs/metabolism , Animals , Blast Crisis , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Line, Tumor , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Mice , Proto-Oncogene Proteins c-pim-1/metabolism , RNA-Induced Silencing Complex/metabolismABSTRACT
MiR-126 and miR-155 are key microRNAs (miRNAs) that regulate, respectively, hematopoietic cell quiescence and proliferation. Herein we showed that in acute myeloid leukemia (AML), the biogenesis of these two miRNAs is interconnected through a network of regulatory loops driven by the FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD). In fact, FLT3-ITD induces the expression of miR-155 through a noncanonical mechanism of miRNA biogenesis that implicates cytoplasmic Drosha ribonuclease III (DROSHA). In turn, miR-155 down-regulates SH2-containing inositol phosphatase 1 (SHIP1), thereby increasing phosphor-protein kinase B (AKT) that in turn serine-phosphorylates, stabilizes, and activates Sprouty related EVH1 domain containing 1 (SPRED1). Activated SPRED1 inhibits the RAN/XPO5 complex and blocks the nucleus-to-cytoplasm transport of pre-miR-126, which cannot then complete the last steps of biogenesis. The net result is aberrantly low levels of mature miR-126 that allow quiescent leukemia blasts to be recruited into the cell cycle and proliferate. Thus, miR-126 down-regulation in proliferating AML blasts is downstream of FLT3-ITDdependent miR-155 expression that initiates a complex circuit of concatenated regulatory feedback (i.e., miR-126/SPRED1, miR-155/human dead-box protein 3 [DDX3X]) and feed-forward (i.e., miR-155/SHIP1/AKT/miR-126) regulatory loops that eventually converge into an output signal for leukemic growth.
Subject(s)
Leukemia, Myeloid, Acute , MicroRNAs , fms-Like Tyrosine Kinase 3 , DEAD-box RNA Helicases/metabolism , Down-Regulation , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , MicroRNAs/metabolism , Mutation , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolismABSTRACT
BACKGROUND: This study evaluated the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of 8-chloro-adenosine (8-Cl-Ado) in patients with relapsed/refractory acute myeloid leukemia (AML). METHODS: 8-Cl-Ado was administered daily for 5 days; the starting dose was 100 mg/m2 , the highest dose tested was 800 mg/m2 . The end points were toxicity, disease response, and PK/PD measurements. RESULTS: The predominant nonhematologic toxicity was cardiac with grade ≥3 toxicity. Plasma PK in all patients suggested heterogeneity among patients, yet, some dose-dependency for the accumulation of 8-Cl-Ado. Two 8-Cl-Ado metabolites accumulated at similar levels to 8-Cl-Ado. Cellular PK in eight patients indicated accumulation of 8-Cl-ATP, which was associated with AML blast cytoreduction in peripheral blood. The authors determined the RP2D of 8-Cl-Ado to be 400 mg/m2 . CONCLUSIONS: Given the cardiac adverse events observed, patients require monitoring for arrhythmias and QT interval during infusion. Although peripheral blood cytoreduction was observed, responses were transient, suggesting combination strategies will be required.
Subject(s)
2-Chloroadenosine , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , 2-Chloroadenosine/analogs & derivatives , 2-Chloroadenosine/pharmacokinetics , 2-Chloroadenosine/therapeutic useABSTRACT
Therapy-related acute lymphoblastic leukaemia (tr-ALL) is a disease entity attributed to previous exposure to chemotherapy and/or radiation for antecedent malignancy. There is observed female predominance for tr-ALL, likely due to high prevalence and excellent curable rate for non-metastatic breast cancer as well as the frequent use of carcinogenic agents as part of adjuvant therapy. Here, we reviewed 37 women with diagnosis of ALL following breast cancer treatment with focus on cytogenetic categorization. Philadelphia chromosome positivity (Ph+), KMT2A alterations and other cytogenetic change groups were observed in 32%, 22% and 46% of patients respectively. Median overall survival (OS) and relapse-free survival (RFS) were 19.4 and 12.9 months, overall while both OS and RFS were superior in tr-ALL with Ph+ disease compared to KMT2Ar and other cytogenetics respectively. Seventeen (45.9%) patients underwent consolidative allogeneic haematopoietic cell transplantation (alloHCT) in CR1 out of which 4 (24%) relapsed following transplant. Both OS and RFS were superior in the KMT2Ar cytogenetics group following alloHCT. Ph chromosome represents the largest genetic entity of tr-ALL following breast cancer therapy, and it may be associated with superior survival outcomes while KMT2Ar may be associated with poorer outcomes that can perhaps be mitigated by alloHSCT.
Subject(s)
Breast Neoplasms , Hematopoietic Stem Cell Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Female , Breast Neoplasms/therapy , Breast Neoplasms/mortality , Middle Aged , Adult , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Aged , Neoplasms, Second Primary/etiology , Neoplasms, Second Primary/therapy , Neoplasms, Second Primary/epidemiology , Philadelphia Chromosome , Myeloid-Lymphoid Leukemia Protein/genetics , Retrospective Studies , Histone-Lysine N-MethyltransferaseABSTRACT
Differentiation blockade is a hallmark of acute myeloid leukemia (AML). A strategy to overcome such a blockade is a promising approach against the disease. The lack of understanding of the underlying mechanisms hampers development of such strategies. Dysregulated ribonucleotide reductase (RNR) is considered a druggable target in proliferative cancers susceptible to deoxynucleoside triphosphate (dNTP) depletion. Herein, we report an unanticipated discovery that hyperactivating RNR enables differentiation and decreases leukemia cell growth. We integrate pharmacogenomics and metabolomics analyses to identify that pharmacologically (eg, nelarabine) or genetically upregulating RNR subunit M2 (RRM2) creates a dNTP pool imbalance and overcomes differentiation arrest. Moreover, R-loop-mediated DNA replication stress signaling is responsible for RRM2 activation by nelarabine treatment. Further aggravating dNTP imbalance by depleting the dNTP hydrolase SAM domain and HD domain-containing protein 1 (SAMHD1) enhances ablation of leukemia stem cells by RRM2 hyperactivation. Mechanistically, excessive activation of extracellular signal-regulated kinase (ERK) signaling downstream of the imbalance contributes to cellular outcomes of RNR hyperactivation. A CRISPR screen identifies a synthetic lethal interaction between loss of DUSP6, an ERK-negative regulator, and nelarabine treatment. These data demonstrate that dNTP homeostasis governs leukemia maintenance, and a combination of DUSP inhibition and nelarabine represents a therapeutic strategy.
Subject(s)
Leukemia, Myeloid, Acute , Ribonucleotide Reductases , DNA Replication , Homeostasis , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Polyphosphates , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolismABSTRACT
Acute Myeloid Leukemia is mainly a disease of the elderly: however, the knowledge on the outcomes of treatment in core binding factor AML (CBFAML) in older population, is limited. We retrospectively collected data on 229 patients with CBF- AML followed long-term in the last two decades. A 5-year overall survival (OS) of 44.2% (95%CI, 39.9-47.5) and a 5-year event - free survival (EFS) of 32.9% (95%CI, 25.5-40.1) was observed. In a subgroup of >70-year patients who completed intensive therapy (induction + >3 courses of consolidation including autologous stem cell transplant: 10 patients) the median EFS was 11.8 months (95%CI, 9.4 - 15.2) and OS was 40.0% (95%CI, 36.4 - 44.1) at 5yr. In univariate analysis, age >70 (hazard ratio (HR) 1.78, [95%CI, 1.15 - 2.54], p=.008), failure to achieve remission following induction (HR, 8.96 [95%CI, 5.5 - 13.8], p=<.0001), no consolidation therapy (HR, 0.75 [95%CI, 0.47 - 1.84], p=.04) and less than 3 cycles of consolidation (HR, 1.48 [95%CI, 0.75 - 3.2], p=.0004), predicted poorer EFS. Our study shows that intensive therapy, in selected older CBF-AML patients, leads to longer survival. Achieving a CR seems to be the most important first step and at least 3 cycles of consolidation, an important second one. The analysis suggests that these patients should not be excluded from studies with intensive therapies.
ABSTRACT
Blinatumomab as a single agent has demonstrated superiority over salvage chemotherapy in patients with relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL), with manageable safety and efficacy. Though known to have anticipated drug toxicities including cytokine release syndrome (CRS) and neurotoxicity, there is only one prior report of macrophage activating syndrome (MAS) due to blinatumomab. Case Presentation: We report the first case of blinatumomab-induced MAS in an adult. The patient presented with fever, cough, and weakness on the second cycle of blinatumomab. Complete blood count was notable for severe leukopenia, with comprehensive metabolic panel notable for elevated alkaline phosphatase, AST, ALT, LDH, and hyperferritinemia consistent with MAS. The patient was already in MRD-negative remission at presentation with MAS. She responded rapidly to withholding the drug and administration of both tocilizumab and dexamethasone. She was able to restart therapy with blinatumomab dosed at 9 mcg/day with no recurrence of symptoms. Though MAS is not an expected association with blinatumomab, the risk for CRS is. Secondary MAS in this case likely shares a mechanism with other hyperinflammatory conditions. Management includes holding the offending agent, like blinatumomab, and administering tocilizumab and dexamethasone. Future research will be needed to predict which patients are at highest risk to develop MAS after similar T-cell therapies.
Subject(s)
Antibodies, Bispecific , Macrophage Activation Syndrome , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Antibodies, Bispecific/adverse effects , Antibodies, Bispecific/therapeutic use , Female , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Macrophage Activation Syndrome/chemically induced , Macrophage Activation Syndrome/etiology , Adult , Dexamethasone/adverse effects , Dexamethasone/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic useABSTRACT
Improved first progression-free survival following allogeneic hematopoietic cell transplantation relapse with the use of immunotherapy.
Subject(s)
Hematopoietic Stem Cell Transplantation , Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Recurrence , Transplantation, Homologous , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Male , Female , Adult , Middle Aged , Allografts , Treatment Outcome , AgedABSTRACT
Allogeneic hematopoietic cell transplantation (HCT) offers a potential cure in Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL); nonetheless, relapses are common and the major cause of mortality. One strategy to prevent relapse is tyrosine kinase inhibitor (TKI) maintenance post-HCT, but published clinical experience is primarily with the first-generation TKI imatinib while data with newer generation TKIs are limited. We conducted a retrospective analysis of 185 Ph+ ALL patients who underwent HCT followed by TKI maintenance from 2003 to 2021 at City of Hope. Initially, 50 (27.0%) received imatinib, 118 (63.8%) received a second-generation TKI (2G-TKI), and 17 (9.2%) received ponatinib. A total of 77 patients (41.6%) required a dose reduction of their initial TKI due to toxicity. Sixty-six patients (35.7%) did not complete maintenance due to toxicity; 69 patients (37.3%) discontinued 1 TKI, and 11 (5.9%) discontinued 2 TKIs due to toxicity. Initial imatinib versus 2G-TKI versus ponatinib maintenance was discontinued in 19 (38.0%) versus 68 (57.6%) versus 3 (17.6%) patients due to toxicity (p = .003), respectively. Patients on ponatinib as their initial TKI had a longer duration of TKI maintenance versus 2G-TKI: 576.0 days (range, 72-921) versus 254.5 days (range, 3-2740; p = .02). The most common reasons for initial TKI discontinuation include gastrointestinal (GI) intolerance (15.1%), cytopenia (8.6%), and fluid retention (3.8%). The 5-year overall survival and progression-free survival for the total population were 78% and 71%, respectively. Our findings demonstrate the challenges of delivering post-HCT TKI maintenance in a large real-world cohort as toxicities leading to TKI interruptions, discontinuation, and dose reduction were common.
Subject(s)
Hematopoietic Stem Cell Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Protein Kinase Inhibitors , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/administration & dosage , Male , Female , Middle Aged , Adult , Retrospective Studies , Aged , Maintenance Chemotherapy , Philadelphia Chromosome , Pyridazines/therapeutic use , Pyridazines/adverse effects , Pyridazines/administration & dosage , Imatinib Mesylate/therapeutic use , Imatinib Mesylate/adverse effects , Imatinib Mesylate/administration & dosage , Imidazoles/adverse effects , Imidazoles/administration & dosage , Imidazoles/therapeutic use , Young Adult , Transplantation, Homologous , AdolescentABSTRACT
INTRODUCTION: Midostaurin is a multikinase inhibitor approved for the treatment of adult patients with newly diagnosed FMS-like tyrosine kinase 3 mutated (FLT3m) acute myeloid leukemia (AML). Azole antifungal medications are commonly used in AML and are known to interact with anti-cancer drugs such as midostaurin through the CYP3A pathway. However, there are no midostaurin related dose modifications recommended with strong CYP3A inhibitors. METHODS: We retrospectively reviewed 40 patients between 2017-2022 and compared efficacy and safety outcomes in patients who received azole antifungals concurrently to those who did not receive an azole or received it sequentially to midostaurin for treatment of FLT3m AML. RESULTS: Median age of both groups was approximately 55 years and 70% of patients harbored FLT-3 internal tandem duplication mutations. Most patients in the concurrent arm were on either posaconazole (33%) or isavuconazole (50%) for antifungal prophylaxis and micafungin (72%) for the sequential/no azole arm. Overall CR/CRi rate with concurrent versus sequential/no azole were 72% and 77%, and non-hematologic grade 3 toxicities were 22% and 40% (p = 0.21), respectively. Rates of dose reductions (6% vs. 0%, p = 0.26) and held doses (17% vs. 14%, p = 0.79) were not different between concurrent and sequential/no azole. There were no differences in the rates of new fungal infection during induction between the two groups. CONCLUSION: Azoles given concurrently or sequentially with midostaurin were found to be equally safe and effective in the treatment of newly diagnosed FLT3 AML. Additional confirmatory studies are needed due to our limited sample size.
ABSTRACT
BRAF mutations are rare in myeloid neoplasms and are reported to be associated with poor treatment outcomes. The purpose of our study is to characterize BRAF mutations in myeloid neoplasms using a next-generation sequencing (NGS) panel based on the experiences of a single cancer center. We conducted a retrospective review of patients with myeloid neoplasms who underwent the HopeSeq studies between January 2018 and September 2023. A total of 14 patients with myeloid neoplasms carrying BRAF mutations were included in our cohort. The clinical, pathological, and molecular features of these patients were investigated. Our study indicates that BRAF mutations are rare in myeloid neoplasms, constituting only 0.53% (14/2632) of all myeloid neoplasm cases, with the most common BRAF mutation being BRAF V600E (4/14; 28.6%). Interestingly, we observed that six out of seven patients with acute myeloid leukemia (AML) exhibited AML with monocytic differentiation, and all the patients with AML exhibited an extremely poor prognosis compared to those without BRAF mutations. TET2 (5/14; 35.7%), ASXL1 (4/14; 28.6%), and JAK2 (4/14; 28.6%) were the three most frequently co-mutated genes in these patients. Moreover, we noted concurrent KMT2A gene rearrangement with BRAF mutations in three patients with AML (3/7; 42.9%). Our study suggests that although BRAF mutations are rare in myeloid neoplasms, they play a crucial role in the pathogenesis of specific AML subtypes. Furthermore, RAS pathway alterations, including BRAF mutations, are associated with KMT2A gene rearrangement in AML. However, these findings warrant further validation in larger studies.
Subject(s)
High-Throughput Nucleotide Sequencing , Leukemia, Myeloid, Acute , Mutation , Proto-Oncogene Proteins B-raf , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Dioxygenases , DNA-Binding Proteins/genetics , High-Throughput Nucleotide Sequencing/methods , Janus Kinase 2/genetics , Leukemia, Myeloid, Acute/genetics , Prognosis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics , Repressor Proteins/genetics , Retrospective StudiesABSTRACT
The accurate diagnosis and classification of myelodysplastic/myeloproliferative neoplasm (MDS/MPN) are challenging due to the overlapping pathological and molecular features of myelodysplastic syndrome (MDS) and myeloproliferative neoplasm (MPN). We investigated the genomic landscape in different MDS/MPN subtypes, including chronic myelomonocytic leukemia (CMML; n = 97), atypical chronic myeloid leukemia (aCML; n = 8), MDS/MPN-unclassified (MDS/MPN-U; n = 44), and MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T; n = 12). Our study indicated that MDS/MPN is characterized by mutations commonly identified in myeloid neoplasms, with TET2 (52%) being the most frequently mutated gene, followed by ASXL1 (38.7%), SRSF2 (34.7%), and JAK2 (19.7%), among others. However, the distribution of recurrent mutations differs across the MDS/MPN subtypes. We confirmed that specific gene combinations correlate with specific MDS/MPN subtypes (e.g., TET2/SRSF2 in CMML, ASXL1/SETBP1 in aCML, and SF3B1/JAK2 in MDS/MPN-RS-T), with MDS/MPN-U being the most heterogeneous. Furthermore, we found that older age (≥65 years) and mutations in RUNX1 and TP53 were associated with poorer clinical outcomes in CMML (p < 0.05) by multivariate analysis. In MDS/MPN-U, CBL mutations (p < 0.05) were the sole negative prognostic factors identified in our study by multivariate analysis (p < 0.05). Overall, our study provides genetic insights into various MDS/MPN subtypes, which may aid in diagnosis and clinical decision-making for patients with MDS/MPN.