Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Cell ; 187(3): 712-732.e38, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38194967

ABSTRACT

Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.


Subject(s)
Brain , Organoids , Humans , Brain/cytology , Brain/growth & development , Brain/metabolism , Central Nervous System/metabolism , Extracellular Matrix/metabolism , Pluripotent Stem Cells/metabolism , Prosencephalon/cytology , Tissue Culture Techniques , Stem Cells/metabolism , Morphogenesis
2.
Cell ; 157(3): 740-52, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24766815

ABSTRACT

To understand regulatory systems, it would be useful to uniformly determine how different components contribute to the expression of all other genes. We therefore monitored mRNA expression genome-wide, for individual deletions of one-quarter of yeast genes, focusing on (putative) regulators. The resulting genetic perturbation signatures reflect many different properties. These include the architecture of protein complexes and pathways, identification of expression changes compatible with viability, and the varying responsiveness to genetic perturbation. The data are assembled into a genetic perturbation network that shows different connectivities for different classes of regulators. Four feed-forward loop (FFL) types are overrepresented, including incoherent type 2 FFLs that likely represent feedback. Systematic transcription factor classification shows a surprisingly high abundance of gene-specific repressors, suggesting that yeast chromatin is not as generally restrictive to transcription as is often assumed. The data set is useful for studying individual genes and for discovering properties of an entire regulatory system.


Subject(s)
Gene Expression Regulation, Fungal , Gene Regulatory Networks , Genetic Techniques , Saccharomyces cerevisiae/genetics , Transcriptome , Gene Deletion , Gene Knockout Techniques
3.
Cell ; 143(6): 991-1004, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-21145464

ABSTRACT

To understand relationships between phosphorylation-based signaling pathways, we analyzed 150 deletion mutants of protein kinases and phosphatases in S. cerevisiae using DNA microarrays. Downstream changes in gene expression were treated as a phenotypic readout. Double mutants with synthetic genetic interactions were included to investigate genetic buffering relationships such as redundancy. Three types of genetic buffering relationships are identified: mixed epistasis, complete redundancy, and quantitative redundancy. In mixed epistasis, the most common buffering relationship, different gene sets respond in different epistatic ways. Mixed epistasis arises from pairs of regulators that have only partial overlap in function and that are coupled by additional regulatory links such as repression of one by the other. Such regulatory modules confer the ability to control different combinations of processes depending on condition or context. These properties likely contribute to the evolutionary maintenance of paralogs and indicate a way in which signaling pathways connect for multiprocess control.


Subject(s)
Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Signal Transduction , Epistasis, Genetic , Gene Expression Profiling , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Phosphotransferases/genetics , Phosphotransferases/metabolism
4.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article in English | MEDLINE | ID: mdl-33500353

ABSTRACT

Neuroblastoma is the most common extracranial solid tumor and accounts for ∼10% of pediatric cancer-related deaths. The exact cell of origin has yet to be elucidated, but it is generally accepted that neuroblastoma derives from the neural crest and should thus be considered an embryonal malignancy. About 50% of primary neuroblastoma tumors arise in the adrenal gland. Here, we present an atlas of the developing mouse adrenal gland at a single-cell level. Five main cell cluster groups (medulla, cortex, endothelial, stroma, and immune) make up the mouse adrenal gland during fetal development. The medulla group, which is of neural crest origin, is further divided into seven clusters. Of interest is the Schwann cell precursor ("SCP") and the "neuroblast" cluster, a highly cycling cluster that shares markers with sympathoblasts. The signature of the medullary SCP cluster differentiates neuroblastoma patients based on disease phenotype: The SCP signature score anticorrelates with ALK and MYCN expression, two indicators of poor prognosis. Furthermore, a high SCP signature score is associated with better overall survival rates. This study provides an insight into the developing adrenal gland and introduces the SCP gene signature as being of interest for further research in understanding neuroblastoma phenotype.


Subject(s)
Adrenal Glands/pathology , Neuroblastoma/pathology , Schwann Cells/pathology , Single-Cell Analysis , Adrenal Medulla/pathology , Animals , Cell Aggregation , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred C57BL , Neoplasm Staging , Neural Stem Cells , Neuroblastoma/genetics , Phenotype
5.
Cell ; 133(4): 581-4, 2008 May 16.
Article in English | MEDLINE | ID: mdl-18485867

ABSTRACT

Transcription by RNA polymerase II (Pol II) is thought to be predominantly regulated by recruitment of Pol II to promoters. Recent genome-wide analyses demonstrate that many genes are in fact regulated after recruitment of Pol II, by mechanisms such as pausing of Pol II proximal to promoters.


Subject(s)
Gene Expression Regulation , RNA Polymerase II/metabolism , Transcription, Genetic , Animals , Genome , Humans , Models, Genetic , Promoter Regions, Genetic
6.
Dev Dyn ; 250(11): 1568-1583, 2021 11.
Article in English | MEDLINE | ID: mdl-33848015

ABSTRACT

BACKGROUND: Nephron progenitor cells (NPCs) undergo a stepwise process to generate all mature nephron structures. Mesenchymal to epithelial transition (MET) is considered a multistep process of NPC differentiation to ensure progressive establishment of new nephrons. However, despite this important role, to date, no marker for NPCs undergoing MET in the nephron exists. RESULTS: Here, we identify LGR6 as a NPC marker, expressed in very early cap mesenchyme, pre-tubular aggregates, renal vesicles, and in segments of S-shaped bodies, following the trajectory of MET. By using a lineage tracing approach in embryonic explants in combination with confocal imaging and single-cell RNA sequencing, we provide evidence for the multiple fates of LGR6+ cells during embryonic nephrogenesis. Moreover, by using long-term in vivo lineage tracing, we show that postnatal LGR6+ cells are capable of generating the multiple lineages of the nephrons. CONCLUSIONS: Given the profound early mesenchymal expression and MET signature of LGR6+ cells, together with the lineage tracing of mesenchymal LGR6+ cells, we conclude that LGR6+ cells contribute to all nephrogenic segments by undergoing MET. LGR6+ cells can therefore be considered an early committed NPC population during embryonic and postnatal nephrogenesis with potential regenerative capability.


Subject(s)
Nephrons , Stem Cells , Cell Differentiation , Mesoderm , Organogenesis/genetics
7.
Nucleic Acids Res ; 47(16): e95, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31226206

ABSTRACT

Cell type identification is essential for single-cell RNA sequencing (scRNA-seq) studies, currently transforming the life sciences. CHETAH (CHaracterization of cEll Types Aided by Hierarchical classification) is an accurate cell type identification algorithm that is rapid and selective, including the possibility of intermediate or unassigned categories. Evidence for assignment is based on a classification tree of previously available scRNA-seq reference data and includes a confidence score based on the variance in gene expression per cell type. For cell types represented in the reference data, CHETAH's accuracy is as good as existing methods. Its specificity is superior when cells of an unknown type are encountered, such as malignant cells in tumor samples which it pinpoints as intermediate or unassigned. Although designed for tumor samples in particular, the use of unassigned and intermediate types is also valuable in other exploratory studies. This is exemplified in pancreas datasets where CHETAH highlights cell populations not well represented in the reference dataset, including cells with profiles that lie on a continuum between that of acinar and ductal cell types. Having the possibility of unassigned and intermediate cell types is pivotal for preventing misclassification and can yield important biological information for previously unexplored tissues.


Subject(s)
Algorithms , Cell Lineage/genetics , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , RNA, Messenger/analysis , Sequence Analysis, RNA/statistics & numerical data , Single-Cell Analysis/methods , Acinar Cells/immunology , Acinar Cells/pathology , Base Sequence , Cell Lineage/immunology , Cluster Analysis , Datasets as Topic , Dendritic Cells/immunology , Dendritic Cells/pathology , Gene Expression Profiling , Humans , Neoplasms/immunology , Neoplasms/pathology , Organ Specificity , Pancreas/immunology , Pancreas/pathology , RNA, Messenger/genetics , Software , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Tumor Cells, Cultured
8.
Mol Cell ; 45(1): 132-9, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22244335

ABSTRACT

Histone H2B ubiquitylation is a transcription-dependent modification that not only regulates nucleosome dynamics but also controls the trimethylation of histone H3 on lysine 4 by promoting ubiquitylation of Swd2, a component of both the histone methyltransferase COMPASS complex and the cleavage and polyadenylation factor(CPF). We show that preventing either H2B ubiquitylation or H2B-dependent modification of Swd2 results in nuclear accumulation of poly(A) RNA due to a defect in the integrity and stability of APT, a subcomplex of the CPF. Ubiquitin-regulated APT complex dynamics is required for the correct recruitment of the mRNA export receptor Mex67 to nuclear mRNPs. While H2B ubiquitylation controls the recruitment of the different Mex67 adaptors to mRNPs, the effect of Swd2 ubiquitylation is restricted to Yra1 and Nab2, which, in turn, controls poly(A) tail length. Modification of H2B thus participates in the crosstalk between cotranscriptional events and assembly of mRNPs linking nuclear processing and mRNA export.


Subject(s)
Histones/metabolism , Ribonucleoproteins/metabolism , Ubiquitination , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Nuclear Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism
9.
Mol Cell ; 42(4): 536-49, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21596317

ABSTRACT

Packaging of DNA into chromatin has a profound impact on gene expression. To understand how changes in chromatin influence transcription, we analyzed 165 mutants of chromatin machinery components in Saccharomyces cerevisiae. mRNA expression patterns change in 80% of mutants, always with specific effects, even for loss of widespread histone marks. The data are assembled into a network of chromatin interaction pathways. The network is function based, has a branched, interconnected topology, and lacks strict one-to-one relationships between complexes. Chromatin pathways are not separate entities for different gene sets, but share many components. The study evaluates which interactions are important for which genes and predicts additional interactions, for example between Paf1C and Set3C, as well as a role for Mediator in subtelomeric silencing. The results indicate the presence of gene-dependent effects that go beyond context-dependent binding of chromatin factors and provide a framework for understanding how specificity is achieved through regulating chromatin.


Subject(s)
Chromatin/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Gene Expression Regulation, Fungal , Gene Silencing , Histone Deacetylases/metabolism , Histones/metabolism , Mediator Complex/metabolism , Metabolic Networks and Pathways , Nuclear Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Telomere/metabolism , Transcription, Genetic
10.
Nucleic Acids Res ; 45(16): 9302-9318, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28637236

ABSTRACT

Ribosome assembly requires the concerted expression of hundreds of genes, which are transcribed by all three nuclear RNA polymerases. Transcription elongation involves dynamic interactions between RNA polymerases and chromatin. We performed a synthetic lethal screening in Saccharomyces cerevisiae with a conditional allele of SPT6, which encodes one of the factors that facilitates this process. Some of these synthetic mutants corresponded to factors that facilitate pre-rRNA processing and ribosome biogenesis. We found that the in vivo depletion of one of these factors, Arb1, activated transcription elongation in the set of genes involved directly in ribosome assembly. Under these depletion conditions, Spt6 was physically targeted to the up-regulated genes, where it helped maintain their chromatin integrity and the synthesis of properly stable mRNAs. The mRNA profiles of a large set of ribosome biogenesis mutants confirmed the existence of a feedback regulatory network among ribosome assembly genes. The transcriptional response in this network depended on both the specific malfunction and the role of the regulated gene. In accordance with our screening, Spt6 positively contributed to the optimal operation of this global network. On the whole, this work uncovers a feedback control of ribosome biogenesis by fine-tuning transcription elongation in ribosome assembly factor-coding genes.


Subject(s)
Gene Regulatory Networks , Histone Chaperones/genetics , Organelle Biogenesis , Ribosomes/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Elongation, Genetic , Transcriptional Elongation Factors/genetics , ATP-Binding Cassette Transporters/genetics , Adenosine Triphosphatases/genetics , Feedback, Physiological , Histone Chaperones/metabolism , Mutation , RNA Processing, Post-Transcriptional , RNA, Ribosomal/metabolism , Ribosomal Proteins/genetics , Ribosomes/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Synthetic Lethal Mutations , Transcriptional Elongation Factors/metabolism , Transcriptome
11.
Mol Cell ; 31(4): 531-543, 2008 Aug 22.
Article in English | MEDLINE | ID: mdl-18722179

ABSTRACT

To study the in vivo role of TFIID in the transcriptional regulation of hepatic genes, we generated mice with liver-specific disruption of the TAF10 gene. Inactivation of TAF10 in hepatocytes resulted in the dissociation of TFIID into individual components. This correlated with the downregulation of most hepatocyte-specific genes during embryonic life and a defect in liver organogenesis. Unexpectedly, however, the transcription of less than 5% of active genes was affected by TAF10 inactivation and TFIID disassembly in adult liver. The extent of changes in transcription of the affected genes was dependent on the timing of their activation during liver development, relative to that of TAF10 inactivation. Furthermore, TFIID dissociation from promoters leads to the re-expression of several postnatally silenced hepatic genes. Promoter occupancy analyses, combined with expression profiling, demonstrate that TFIID is required for the initial activation or postnatal repression of genes, while it is dispensable for maintaining ongoing transcription.


Subject(s)
Gene Expression Regulation, Developmental , Liver/metabolism , Transcription Factor TFIID/metabolism , Animals , Gene Expression Profiling , Gene Targeting , Hepatocytes/cytology , Hepatocytes/metabolism , Liver/embryology , Mice , Mice, Knockout , Models, Genetic , Organ Specificity , Phenotype , Promoter Regions, Genetic/genetics , Protein Binding , Protein Subunits/metabolism , RNA Polymerase II/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transcription, Genetic
12.
Mol Syst Biol ; 10: 732, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24952590

ABSTRACT

Growth condition perturbation or gene function disruption are commonly used strategies to study cellular systems. Although it is widely appreciated that such experiments may involve indirect effects, these frequently remain uncharacterized. Here, analysis of functionally unrelated Saccharyomyces cerevisiae deletion strains reveals a common gene expression signature. One property shared by these strains is slower growth, with increased presence of the signature in more slowly growing strains. The slow growth signature is highly similar to the environmental stress response (ESR), an expression response common to diverse environmental perturbations. Both environmental and genetic perturbations result in growth rate changes. These are accompanied by a change in the distribution of cells over different cell cycle phases. Rather than representing a direct expression response in single cells, both the slow growth signature and ESR mainly reflect a redistribution of cells over different cell cycle phases, primarily characterized by an increase in the G1 population. The findings have implications for any study of perturbation that is accompanied by growth rate changes. Strategies to counter these effects are presented and discussed.


Subject(s)
Gene Deletion , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/genetics , Cell Cycle , Culture Media , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Fungal , Genes, Fungal , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/cytology , Stress, Physiological
13.
PLoS Genet ; 8(9): e1002952, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23028359

ABSTRACT

Histone H3 di- and trimethylation on lysine 4 are major chromatin marks that correlate with active transcription. The influence of these modifications on transcription itself is, however, poorly understood. We have investigated the roles of H3K4 methylation in Saccharomyces cerevisiae by determining genome-wide expression-profiles of mutants in the Set1 complex, COMPASS, that lays down these marks. Loss of H3K4 trimethylation has virtually no effect on steady-state or dynamically-changing mRNA levels. Combined loss of H3K4 tri- and dimethylation results in steady-state mRNA upregulation and delays in the repression kinetics of specific groups of genes. COMPASS-repressed genes have distinct H3K4 methylation patterns, with enrichment of H3K4me3 at the 3'-end, indicating that repression is coupled to 3'-end antisense transcription. Further analyses reveal that repression is mediated by H3K4me3-dependent 3'-end antisense transcription in two ways. For a small group of genes including PHO84, repression is mediated by a previously reported trans-effect that requires the antisense transcript itself. For the majority of COMPASS-repressed genes, however, it is the process of 3'-end antisense transcription itself that is the important factor for repression. Strand-specific qPCR analyses of various mutants indicate that this more prevalent mechanism of COMPASS-mediated repression requires H3K4me3-dependent 3'-end antisense transcription to lay down H3K4me2, which seems to serve as the actual repressive mark. Removal of the 3'-end antisense promoter also results in derepression of sense transcription and renders sense transcription insensitive to the additional loss of SET1. The derepression observed in COMPASS mutants is mimicked by reduction of global histone H3 and H4 levels, suggesting that the H3K4me2 repressive effect is linked to establishment of a repressive chromatin structure. These results indicate that in S. cerevisiae, the non-redundant role of H3K4 methylation by Set1 is repression, achieved through promotion of 3'-end antisense transcription to achieve specific rather than global effects through two distinct mechanisms.


Subject(s)
Histone-Lysine N-Methyltransferase , Methylation , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Chromatin/genetics , Gene Expression Regulation, Fungal , Genome, Fungal , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Oligoribonucleotides, Antisense/biosynthesis , Oligoribonucleotides, Antisense/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
14.
Nat Commun ; 15(1): 4034, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740814

ABSTRACT

Mechanisms underlying human hepatocyte growth in development and regeneration are incompletely understood. In vitro, human fetal hepatocytes (FH) can be robustly grown as organoids, while adult primary human hepatocyte (PHH) organoids remain difficult to expand, suggesting different growth requirements between fetal and adult hepatocytes. Here, we characterize hepatocyte organoid outgrowth using temporal transcriptomic and phenotypic approaches. FHs initiate reciprocal transcriptional programs involving increased proliferation and repressed lipid metabolism upon initiation of organoid growth. We exploit these insights to design maturation conditions for FH organoids, resulting in acquisition of mature hepatocyte morphological traits and increased expression of functional markers. During PHH organoid outgrowth in the same culture condition as for FHs, the adult transcriptomes initially mimic the fetal transcriptomic signatures, but PHHs rapidly acquire disbalanced proliferation-lipid metabolism dynamics, resulting in steatosis and halted organoid growth. IL6 supplementation, as emerged from the fetal dataset, and simultaneous activation of the metabolic regulator FXR, prevents steatosis and promotes PHH proliferation, resulting in improved expansion of the derived organoids. Single-cell RNA sequencing analyses reveal preservation of their fetal and adult hepatocyte identities in the respective organoid cultures. Our findings uncover mitogen requirements and metabolic differences determining proliferation of hepatocytes changing from development to adulthood.


Subject(s)
Cell Proliferation , Hepatocytes , Lipid Metabolism , Organoids , Transcriptome , Humans , Hepatocytes/metabolism , Hepatocytes/cytology , Organoids/metabolism , Fetus/metabolism , Adult , Interleukin-6/metabolism , Interleukin-6/genetics , Cells, Cultured
15.
Cancer Cell ; 42(2): 283-300.e8, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38181797

ABSTRACT

Pediatric patients with high-risk neuroblastoma have poor survival rates and urgently need more effective treatment options with less side effects. Since novel and improved immunotherapies may fill this need, we dissect the immunoregulatory interactions in neuroblastoma by single-cell RNA-sequencing of 24 tumors (10 pre- and 14 post-chemotherapy, including 5 pairs) to identify strategies for optimizing immunotherapy efficacy. Neuroblastomas are infiltrated by natural killer (NK), T and B cells, and immunosuppressive myeloid populations. NK cells show reduced cytotoxicity and T cells have a dysfunctional profile. Interaction analysis reveals a vast immunoregulatory network and identifies NECTIN2-TIGIT as a crucial immune checkpoint. Combined blockade of TIGIT and PD-L1 significantly reduces neuroblastoma growth, with complete responses (CR) in vivo. Moreover, addition of TIGIT+PD-L1 blockade to standard relapse treatment in a chemotherapy-resistant Th-ALKF1174L/MYCN 129/SvJ syngeneic model induces CR. In conclusion, our integrative analysis provides promising targets and a rationale for immunotherapeutic combination strategies.


Subject(s)
B7-H1 Antigen , Neuroblastoma , Humans , Child , Neoplasm Recurrence, Local , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Receptors, Immunologic/genetics , Immunotherapy , Sequence Analysis, RNA
16.
Cancer Res Commun ; 3(10): 2158-2169, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37823774

ABSTRACT

Novel therapeutic strategies are urgently needed for patients with high-risk Ewing sarcoma and for the reduction of severe side effects for all patients. Immunotherapy may fill this need, but its successful application has been hampered by a lack of knowledge on the composition and function of the Ewing sarcoma immune microenvironment. Here, we explore the immune microenvironment of Ewing sarcoma, by single-cell RNA sequencing of 18 Ewing sarcoma primary tissue samples. Ewing sarcoma is infiltrated by natural killer, T, and B cells, dendritic cells, and immunosuppressive macrophages. Ewing sarcoma-associated T cells show various degrees of dysfunction. The antigen-presenting cells found in Ewing sarcoma lack costimulatory gene expression, implying functional impairment. Interaction analysis reveals a clear role for Ewing sarcoma tumor cells in turning the Ewing sarcoma immune microenvironment into an immunosuppressive niche. These results provide novel insights into the functional state of immune cells in the Ewing sarcoma tumor microenvironment and suggest mechanisms by which Ewing sarcoma tumor cells interact with, and shape, the immune microenvironment. SIGNIFICANCE: This study is the first presenting a detailed analysis of the Ewing sarcoma microenvironment using single-cell RNA sequencing. We provide novel insight into the functional state of immune cells and suggests mechanisms by which Ewing tumor cells interact with, and shape, their immune microenvironment. These insights provide help in understanding the failures and successes of immunotherapy in Ewing sarcoma and may guide novel targeted (immuno) therapeutic approaches.


Subject(s)
Neuroectodermal Tumors, Primitive, Peripheral , Sarcoma, Ewing , Humans , Sarcoma, Ewing/genetics , Single-Cell Gene Expression Analysis , Cell Line, Tumor , Antigen-Presenting Cells/metabolism , Tumor Microenvironment/genetics
17.
Nat Commun ; 14(1): 3074, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37244912

ABSTRACT

Paediatric rhabdomyosarcoma (RMS) is a soft tissue malignancy of mesenchymal origin that is thought to arise as a consequence of derailed myogenic differentiation. Despite intensive treatment regimens, the prognosis for high-risk patients remains dismal. The cellular differentiation states underlying RMS and how these relate to patient outcomes remain largely elusive. Here, we use single-cell mRNA sequencing to generate a transcriptomic atlas of RMS. Analysis of the RMS tumour niche reveals evidence of an immunosuppressive microenvironment. We also identify a putative interaction between NECTIN3 and TIGIT, specific to the more aggressive fusion-positive (FP) RMS subtype, as a potential cause of tumour-induced T-cell dysfunction. In malignant RMS cells, we define transcriptional programs reflective of normal myogenic differentiation and show that these cellular differentiation states are predictive of patient outcomes in both FP RMS and the less aggressive fusion-negative subtype. Our study reveals the potential of therapies targeting the immune microenvironment of RMS and suggests that assessing tumour differentiation states may enable a more refined risk stratification.


Subject(s)
Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Child , Humans , Transcriptome , Cell Proliferation/genetics , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Gene Expression Profiling , Cell Line, Tumor , Tumor Microenvironment/genetics
18.
Science ; 382(6669): 451-458, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37883554

ABSTRACT

Enteroendocrine cells (EECs) are hormone-producing cells residing in the epithelium of stomach, small intestine (SI), and colon. EECs regulate aspects of metabolic activity, including insulin levels, satiety, gastrointestinal secretion, and motility. The generation of different EEC lineages is not completely understood. In this work, we report a CRISPR knockout screen of the entire repertoire of transcription factors (TFs) in adult human SI organoids to identify dominant TFs controlling EEC differentiation. We discovered ZNF800 as a master repressor for endocrine lineage commitment, which particularly restricts enterochromaffin cell differentiation by directly controlling an endocrine TF network centered on PAX4. Thus, organoid models allow unbiased functional CRISPR screens for genes that program cell fate.


Subject(s)
CRISPR-Cas Systems , Cell Lineage , Enteroendocrine Cells , Gene Expression Regulation , Repressor Proteins , Zinc Fingers , Humans , Cell Differentiation/genetics , Enteroendocrine Cells/cytology , Enteroendocrine Cells/metabolism , Organoids , Adult , Cell Lineage/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism
19.
BMC Genomics ; 13: 239, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22697265

ABSTRACT

BACKGROUND: Cellular glucose availability is crucial for the functioning of most biological processes. Our understanding of the glucose regulatory system has been greatly advanced by studying the model organism Saccharomyces cerevisiae, but many aspects of this system remain elusive. To understand the organisation of the glucose regulatory system, we analysed 91 deletion mutants of the different glucose signalling and metabolic pathways in Saccharomyces cerevisiae using DNA microarrays. RESULTS: In general, the mutations do not induce pathway-specific transcriptional responses. Instead, one main transcriptional response is discerned, which varies in direction to mimic either a high or a low glucose response. Detailed analysis uncovers established and new relationships within and between individual pathways and their members. In contrast to signalling components, metabolic components of the glucose regulatory system are transcriptionally more frequently affected. A new network approach is applied that exposes the hierarchical organisation of the glucose regulatory system. CONCLUSIONS: The tight interconnection between the different pathways of the glucose regulatory system is reflected by the main transcriptional response observed. Tps2 and Tsl1, two enzymes involved in the biosynthesis of the storage carbohydrate trehalose, are predicted to be the most downstream transcriptional components. Epistasis analysis of tps2Δ double mutants supports this prediction. Although based on transcriptional changes only, these results suggest that all changes in perceived glucose levels ultimately lead to a shift in trehalose biosynthesis.


Subject(s)
Glucose/metabolism , Saccharomyces cerevisiae/metabolism , Transcription, Genetic/genetics , Trehalose/metabolism , Gene Expression Regulation , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Oligonucleotide Array Sequence Analysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
20.
Leukemia ; 36(1): 58-67, 2022 01.
Article in English | MEDLINE | ID: mdl-34304246

ABSTRACT

Infants with MLL-rearranged infant acute lymphoblastic leukemia (MLL-r iALL) undergo intense therapy to counter a highly aggressive malignancy with survival rates of only 30-40%. The majority of patients initially show therapy response, but in two-thirds of cases the leukemia returns, typically during treatment. The glucocorticoid drug prednisone is established as a major player in the treatment of leukemia and the in vivo response to prednisone monotreatment is currently the best indicator of risk for MLL-r iALL. We used two different single-cell RNA sequencing technologies to analyze the expression of a prednisone-dependent signature, derived from an independent study, in diagnostic bone marrow and peripheral blood biopsies. This allowed us to classify individual leukemic cells as either resistant or sensitive to treatment and show that quantification of these two groups can be used to better predict the occurrence of future relapse in individual patients. This work also sheds light on the nature of the therapy-resistant subpopulation of relapse-initiating cells. Leukemic cells associated with high relapse risk are characterized by basal activation of glucocorticoid response, smaller size, and a quiescent gene expression program with cell stemness properties. These results improve current risk stratification and elucidate leukemic therapy-resistant subpopulations at diagnosis.


Subject(s)
Biomarkers, Tumor/genetics , Gene Rearrangement , Histone-Lysine N-Methyltransferase/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Neoplasm Recurrence, Local/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Single-Cell Analysis/methods , Transcriptome , Adult , Child , Child, Preschool , Female , Follow-Up Studies , Gene Expression Regulation, Leukemic , Humans , Infant , Infant, Newborn , Male , Neoplasm Recurrence, Local/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , Survival Rate , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL