Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L604-L617, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38442187

ABSTRACT

Postnatal lung development results in an increasingly functional organ prepared for gas exchange and pathogenic challenges. It is achieved through cellular differentiation and migration. Changes in the tissue architecture during this development process are well-documented and increasing cellular diversity associated with it are reported in recent years. Despite recent progress, transcriptomic and molecular pathways associated with human postnatal lung development are yet to be fully understood. In this study, we investigated gene expression patterns associated with healthy pediatric lung development in four major enriched cell populations (epithelial, endothelial, and nonendothelial mesenchymal cells, along with lung leukocytes) from 1-day-old to 8-yr-old organ donors with no known lung disease. For analysis, we considered the donors in four age groups [less than 30 days old neonates, 30 days to < 1 yr old infants, toddlers (1 to < 2 yr), and children 2 yr and older] and assessed differentially expressed genes (DEG). We found increasing age-associated transcriptional changes in all four major cell types in pediatric lung. Transition from neonate to infant stage showed highest number of DEG compared with the number of DEG found during infant to toddler- or toddler to older children-transitions. Profiles of differential gene expression and further pathway enrichment analyses indicate functional epithelial cell maturation and increased capability of antigen presentation and chemokine-mediated communication. Our study provides a comprehensive reference of gene expression patterns during healthy pediatric lung development that will be useful in identifying and understanding aberrant gene expression patterns associated with early life respiratory diseases.NEW & NOTEWORTHY This study presents postnatal transcriptomic changes in major cell populations in human lung, namely endothelial, epithelial, mesenchymal cells, and leukocytes. Although human postnatal lung development continues through early adulthood, our results demonstrate that greatest transcriptional changes occur in first few months of life during neonate to infant transition. These early transcriptional changes in lung parenchyma are particularly notable for functional maturation and activation of alveolar type II cell genes.


Subject(s)
Lung , Transcriptome , Humans , Lung/growth & development , Lung/metabolism , Infant, Newborn , Infant , Child , Child, Preschool , Male , Female , Sequence Analysis, RNA/methods , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental , Gene Expression Profiling
2.
BMC Med Genomics ; 17(1): 165, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898440

ABSTRACT

BACKGROUND: Respiratory Syncytial Virus (RSV) disease in young children ranges from mild cold symptoms to severe symptoms that require hospitalization and sometimes result in death. Studies have shown a statistical association between RSV subtype or phylogenic lineage and RSV disease severity, although these results have been inconsistent. Associations between variation within RSV gene coding regions or residues and RSV disease severity has been largely unexplored. METHODS: Nasal swabs from children (< 8 months-old) infected with RSV in Rochester, NY between 1977-1998 clinically presenting with either mild or severe disease during their first cold-season were used. Whole-genome RSV sequences were obtained using overlapping PCR and next-generation sequencing. Both whole-genome phylogenetic and non-phylogenetic statistical approaches were performed to associate RSV genotype with disease severity. RESULTS: The RSVB subtype was statistically associated with disease severity. A significant association between phylogenetic clustering of mild/severe traits and disease severity was also found. GA1 clade sequences were associated with severe disease while GB1 was significantly associated with mild disease. Both G and M2-2 gene variation was significantly associated with disease severity. We identified 16 residues in the G gene and 3 in the M2-2 RSV gene associated with disease severity. CONCLUSION: These results suggest that phylogenetic lineage and the genetic variability in G or M2-2 genes of RSV may contribute to disease severity in young children undergoing their first infection.


Subject(s)
Genetic Variation , Phylogeny , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Severity of Illness Index , Humans , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus Infections/virology , Infant , Respiratory Syncytial Virus, Human/genetics , Male , Genotype , Female , Genome, Viral
3.
Genes (Basel) ; 15(3)2024 02 26.
Article in English | MEDLINE | ID: mdl-38540357

ABSTRACT

While animal model studies have extensively defined the mechanisms controlling cell diversity in the developing mammalian lung, there exists a significant knowledge gap with regards to late-stage human lung development. The NHLBI Molecular Atlas of Lung Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and mouse lung. Transcriptomic profiling at the single-cell level created a cellular atlas of newborn human lungs. Frozen single-cell isolates obtained from two newborn human lungs from the LungMAP Human Tissue Core Biorepository, were captured, and library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed using the ToppGene functional analysis tool. Transcriptional interrogation of 5500 newborn human lung cells identified distinct clusters representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth muscle, immune cells and their gene signatures. Computational integration of data from newborn human cells and with 32,000 cells from postnatal days 1 through 10 mouse lungs generated by the LungMAP Cincinnati Research Center facilitated the identification of distinct cellular lineages among all the major cell types. Integration of the newborn human and mouse cellular transcriptomes also demonstrated cell type-specific differences in maturation states of newborn human lung cells. Specifically, newborn human lung matrix fibroblasts could be separated into those representative of younger cells (n = 393), or older cells (n = 158). Cells with each molecular profile were spatially resolved within newborn human lung tissue. This is the first comprehensive molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at distinct states of maturity.


Subject(s)
Gene Expression Profiling , Lung , Animals , Humans , Mice , Lung/metabolism , Mammals/genetics , Pericytes , Phenotype , Transcriptome/genetics , Infant, Newborn
SELECTION OF CITATIONS
SEARCH DETAIL