ABSTRACT
Nociceptin and its receptor are widely distributed throughout the brain in regions associated with reward behavior, yet how and when they act is unknown. Here, we dissected the role of a nociceptin peptide circuit in reward seeking. We generated a prepronociceptin (Pnoc)-Cre mouse line that revealed a unique subpopulation of paranigral ventral tegmental area (pnVTA) neurons enriched in prepronociceptin. Fiber photometry recordings during progressive ratio operant behavior revealed pnVTAPnoc neurons become most active when mice stop seeking natural rewards. Selective pnVTAPnoc neuron ablation, inhibition, and conditional VTA nociceptin receptor (NOPR) deletion increased operant responding, revealing that the pnVTAPnoc nucleus and VTA NOPR signaling are necessary for regulating reward motivation. Additionally, optogenetic and chemogenetic activation of this pnVTAPnoc nucleus caused avoidance and decreased motivation for rewards. These findings provide insight into neuromodulatory circuits that regulate motivated behaviors through identification of a previously unknown neuropeptide-containing pnVTA nucleus that limits motivation for rewards.
Subject(s)
Motivation/drug effects , Opioid Peptides/pharmacology , Reward , Ventral Tegmental Area/metabolism , Action Potentials , Animals , Behavior, Animal/drug effects , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/physiology , Patch-Clamp Techniques , Protein Precursors/genetics , Receptors, Opioid/agonists , Receptors, Opioid/deficiency , Receptors, Opioid/genetics , Nociceptin Receptor , NociceptinABSTRACT
Broad-spectrum RAS inhibition has the potential to benefit roughly a quarter of human patients with cancer whose tumours are driven by RAS mutations1,2. RMC-7977 is a highly selective inhibitor of the active GTP-bound forms of KRAS, HRAS and NRAS, with affinity for both mutant and wild-type variants3. More than 90% of cases of human pancreatic ductal adenocarcinoma (PDAC) are driven by activating mutations in KRAS4. Here we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models. We observed broad and pronounced anti-tumour activity across models following direct RAS inhibition at exposures that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumour versus normal tissues. Treated tumours exhibited waves of apoptosis along with sustained proliferative arrest, whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. In the autochthonous KPC mouse model, RMC-7977 treatment resulted in a profound extension of survival followed by on-treatment relapse. Analysis of relapsed tumours identified Myc copy number gain as a prevalent candidate resistance mechanism, which could be overcome by combinatorial TEAD inhibition in vitro. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS-GTP inhibition in the setting of PDAC and identify a promising candidate combination therapeutic regimen to overcome monotherapy resistance.
Subject(s)
Antineoplastic Agents , Carcinoma, Pancreatic Ductal , Guanosine Triphosphate , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Animals , Female , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , DNA Copy Number Variations , Drug Resistance, Neoplasm/drug effects , Genes, myc , Guanosine Triphosphate/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Treatment Outcome , Xenograft Model Antitumor Assays , MutationABSTRACT
Anaerobic methane oxidation exerts a key control on greenhouse gas emissions1, yet factors that modulate the activity of microorganisms performing this function remain poorly understood. Here we discovered extraordinarily large, diverse DNA sequences that primarily encode hypothetical proteins through studying groundwater, sediments and wetland soil where methane production and oxidation occur. Four curated, complete genomes are linear, up to approximately 1 Mb in length and share genome organization, including replichore structure, long inverted terminal repeats and genome-wide unique perfect tandem direct repeats that are intergenic or generate amino acid repeats. We infer that these are highly divergent archaeal extrachromosomal elements with a distinct evolutionary origin. Gene sequence similarity, phylogeny and local divergence of sequence composition indicate that many of their genes were assimilated from methane-oxidizing Methanoperedens archaea. We refer to these elements as 'Borgs'. We identified at least 19 different Borg types coexisting with Methanoperedens spp. in four distinct ecosystems. Borgs provide methane-oxidizing Methanoperedens archaea access to genes encoding proteins involved in redox reactions and energy conservation (for example, clusters of multihaem cytochromes and methyl coenzyme M reductase). These data suggest that Borgs might have previously unrecognized roles in the metabolism of this group of archaea, which are known to modulate greenhouse gas emissions, but further studies are now needed to establish their functional relevance.
Subject(s)
Methanosarcinales , Amino Acids/genetics , Anaerobiosis , Cytochromes/genetics , Cytochromes/metabolism , Ecosystem , Geologic Sediments , Greenhouse Gases/metabolism , Methane/metabolism , Methanosarcinales/classification , Methanosarcinales/genetics , Methanosarcinales/metabolism , Oxidation-Reduction , Phylogeny , SoilABSTRACT
Metal micronutrients are essential for life and exist in a delicate balance to maintain an organism's health. The labile nature of metal-biomolecule interactions clouds the understanding of metal binders and metal-mediated conformational changes that are influential to health and disease. Mass spectrometry (MS)-based methods and technologies have been developed to better understand metal micronutrient dynamics in the intra- and extracellular environment. In this review, we describe the challenges associated with studying labile metals in human biology and highlight MS-based methods for the discovery and study of metal-biomolecule interactions.
Subject(s)
Metals , Humans , Metals/chemistry , Mass Spectrometry/methodsABSTRACT
The accurate and complete assembly of both haplotype sequences of a diploid organism is essential to understanding the role of variation in genome functions, phenotypes and diseases1. Here, using a trio-binning approach, we present a high-quality, diploid reference genome, with both haplotypes assembled independently at the chromosome level, for the common marmoset (Callithrix jacchus), an primate model system that is widely used in biomedical research2,3. The full spectrum of heterozygosity between the two haplotypes involves 1.36% of the genome-much higher than the 0.13% indicated by the standard estimation based on single-nucleotide heterozygosity alone. The de novo mutation rate is 0.43 × 10-8 per site per generation, and the paternal inherited genome acquired twice as many mutations as the maternal. Our diploid assembly enabled us to discover a recent expansion of the sex-differentiation region and unique evolutionary changes in the marmoset Y chromosome. In addition, we identified many genes with signatures of positive selection that might have contributed to the evolution of Callithrix biological features. Brain-related genes were highly conserved between marmosets and humans, although several genes experienced lineage-specific copy number variations or diversifying selection, with implications for the use of marmosets as a model system.
Subject(s)
Callithrix/genetics , Diploidy , Evolution, Molecular , Genome/genetics , Genomics/standards , Animals , Biomedical Research , DNA Copy Number Variations , Female , Germ-Line Mutation/genetics , Haplotypes/genetics , Heterozygote , Humans , INDEL Mutation/genetics , Male , Reference Standards , Selection, Genetic , Sex Differentiation/genetics , Y Chromosome/geneticsABSTRACT
Understanding the normal function of the Huntingtin (HTT) protein is of significance in the design and implementation of therapeutic strategies for Huntington's disease (HD). Expansion of the CAG repeat in the HTT gene, encoding an expanded polyglutamine (polyQ) repeat within the HTT protein, causes HD and may compromise HTT's normal activity contributing to HD pathology. Here, we investigated the previously defined role of HTT in autophagy specifically through studying HTT's association with ubiquitin. We find that HTT interacts directly with ubiquitin in vitro. Tandem affinity purification was used to identify ubiquitinated and ubiquitin-associated proteins that copurify with a HTT N-terminal fragment under basal conditions. Copurification is enhanced by HTT polyQ expansion and reduced by mimicking HTT serine 421 phosphorylation. The identified HTT-interacting proteins include RNA-binding proteins (RBPs) involved in mRNA translation, proteins enriched in stress granules, the nuclear proteome, the defective ribosomal products (DRiPs) proteome and the brain-derived autophagosomal proteome. To determine whether the proteins interacting with HTT are autophagic targets, HTT knockout (KO) cells and immunoprecipitation of lysosomes were used to investigate autophagy in the absence of HTT. HTT KO was associated with reduced abundance of mitochondrial proteins in the lysosome, indicating a potential compromise in basal mitophagy, and increased lysosomal abundance of RBPs which may result from compensatory up-regulation of starvation-induced macroautophagy. We suggest HTT is critical for appropriate basal clearance of mitochondrial proteins and RBPs, hence reduced HTT proteostatic function with mutation may contribute to the neuropathology of HD.
Subject(s)
Huntingtin Protein , Lysosomes , Mitochondria , RNA-Binding Proteins , Ubiquitin , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Lysosomes/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Humans , Ubiquitin/metabolism , Mitochondria/metabolism , Autophagy , Animals , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mice , Protein Binding , Huntington Disease/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Peptides/metabolismABSTRACT
While extensively studied in clinical cohorts, the phenotypic consequences of 22q11.2 copy-number variants (CNVs) in the general population remain understudied. To address this gap, we performed a phenome-wide association scan in 405,324 unrelated UK Biobank (UKBB) participants by using CNV calls from genotyping array. We mapped 236 Human Phenotype Ontology terms linked to any of the 90 genes encompassed by the region to 170 UKBB traits and assessed the association between these traits and the copy-number state of 504 genotyping array probes in the region. We found significant associations for eight continuous and nine binary traits associated under different models (duplication-only, deletion-only, U-shape, and mirror models). The causal effect of the expression level of 22q11.2 genes on associated traits was assessed through transcriptome-wide Mendelian randomization (TWMR), revealing that increased expression of ARVCF increased BMI. Similarly, increased DGCR6 expression causally reduced mean platelet volume, in line with the corresponding CNV effect. Furthermore, cross-trait multivariable Mendelian randomization (MVMR) suggested a predominant role of genuine (horizontal) pleiotropy in the CNV region. Our findings show that within the general population, 22q11.2 CNVs are associated with traits previously linked to genes in the region, and duplications and deletions act upon traits in different fashions. We also showed that gain or loss of distinct segments within 22q11.2 may impact a trait under different association models. Our results have provided new insights to help further the understanding of the complex 22q11.2 region.
Subject(s)
DNA Copy Number Variations , Phenomics , Humans , DNA Copy Number Variations/genetics , Phenotype , Chromosomes, Human, Pair 22ABSTRACT
BACKGROUND: Tarlatamab, a bispecific T-cell engager immunotherapy targeting delta-like ligand 3 and CD3, showed promising antitumor activity in a phase 1 trial in patients with previously treated small-cell lung cancer. METHODS: In this phase 2 trial, we evaluated the antitumor activity and safety of tarlatamab, administered intravenously every 2 weeks at a dose of 10 mg or 100 mg, in patients with previously treated small-cell lung cancer. The primary end point was objective response (complete or partial response), as assessed by blinded independent central review according to the Response Evaluation Criteria in Solid Tumors, version 1.1. RESULTS: Overall, 220 patients received tarlatamab; patients had previously received a median of two lines of treatment. Among patients evaluated for antitumor activity and survival, the median follow-up was 10.6 months in the 10-mg group and 10.3 months in the 100-mg group. An objective response occurred in 40% (97.5% confidence interval [CI], 29 to 52) of the patients in the 10-mg group and in 32% (97.5% CI, 21 to 44) of those in the 100-mg group. Among patients with an objective response, the duration of response was at least 6 months in 59% (40 of 68 patients). Objective responses at the time of data cutoff were ongoing in 22 of 40 patients (55%) in the 10-mg group and in 16 of 28 patients (57%) in the 100-mg group. The median progression-free survival was 4.9 months (95% CI, 2.9 to 6.7) in the 10-mg group and 3.9 months (95% CI, 2.6 to 4.4) in the 100-mg group; the estimates of overall survival at 9 months were 68% and 66% of patients, respectively. The most common adverse events were cytokine-release syndrome (in 51% of the patients in the 10-mg group and in 61% of those in the 100-mg group), decreased appetite (in 29% and 44%, respectively), and pyrexia (in 35% and 33%). Cytokine-release syndrome occurred primarily during treatment cycle 1, and events in most of the patients were grade 1 or 2 in severity. Grade 3 cytokine-release syndrome occurred less frequently in the 10-mg group (in 1% of the patients) than in the 100-mg group (in 6%). A low percentage of patients (3%) discontinued tarlatamab because of treatment-related adverse events. CONCLUSIONS: Tarlatamab, administered as a 10-mg dose every 2 weeks, showed antitumor activity with durable objective responses and promising survival outcomes in patients with previously treated small-cell lung cancer. No new safety signals were identified. (Funded by Amgen; DeLLphi-301 ClinicalTrials.gov number, NCT05060016.).
Subject(s)
Antineoplastic Agents, Immunological , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Cytokines , Lung Neoplasms/drug therapy , Small Cell Lung Carcinoma/drug therapy , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/therapeutic use , Administration, Intravenous , Cytokine Release Syndrome/chemically induced , Cytokine Release Syndrome/etiologyABSTRACT
During aging, proteostasis capacity declines and distinct proteins become unstable and can accumulate as protein aggregates inside and outside of cells. Both in disease and during aging, proteins selectively aggregate in certain tissues and not others. Yet, tissue-specific regulation of cytoplasmic protein aggregation remains poorly understood. Surprisingly, we found that the inhibition of 3 core protein quality control systems, namely chaperones, the proteasome, and macroautophagy, leads to lower levels of age-dependent protein aggregation in Caenorhabditis elegans pharyngeal muscles, but higher levels in body-wall muscles. We describe a novel safety mechanism that selectively targets newly synthesized proteins to suppress their aggregation and associated proteotoxicity. The safety mechanism relies on macroautophagy-independent lysosomal degradation and involves several previously uncharacterized components of the intracellular pathogen response (IPR). We propose that this protective mechanism engages an anti-aggregation machinery targeting aggregating proteins for lysosomal degradation.
Subject(s)
Caenorhabditis elegans , Protein Aggregates , Animals , Aging , Proteasome Endopeptidase Complex , ProteostasisABSTRACT
The impact of copy-number variations (CNVs) on complex human traits remains understudied. We called CNVs in 331,522 UK Biobank participants and performed genome-wide association studies (GWASs) between the copy number of CNV-proxy probes and 57 continuous traits, revealing 131 signals spanning 47 phenotypes. Our analysis recapitulated well-known associations (e.g., 1q21 and height), revealed the pleiotropy of recurrent CNVs (e.g., 26 and 16 traits for 16p11.2-BP4-BP5 and 22q11.21, respectively), and suggested gene functionalities (e.g., MARF1 in female reproduction). Forty-eight CNV signals (38%) overlapped with single-nucleotide polymorphism (SNP)-GWASs signals for the same trait. For instance, deletion of PDZK1, which encodes a urate transporter scaffold protein, decreased serum urate levels, while deletion of RHD, which encodes the Rhesus blood group D antigen, associated with hematological traits. Other signals overlapped Mendelian disorder regions, suggesting variable expressivity and broad impact of these loci, as illustrated by signals mapping to Rotor syndrome (SLCO1B1/3), renal cysts and diabetes syndrome (HNF1B), or Charcot-Marie-Tooth (PMP22) loci. Total CNV burden negatively impacted 35 traits, leading to increased adiposity, liver/kidney damage, and decreased intelligence and physical capacity. Thirty traits remained burden associated after correcting for CNV-GWAS signals, pointing to a polygenic CNV architecture. The burden negatively correlated with socio-economic indicators, parental lifespan, and age (survivorship proxy), suggesting a contribution to decreased longevity. Together, our results showcase how studying CNVs can expand biological insights, emphasizing the critical role of this mutational class in shaping human traits and arguing in favor of a continuum between Mendelian and complex diseases.
Subject(s)
DNA Copy Number Variations , Genome-Wide Association Study , DNA Copy Number Variations/genetics , Female , Humans , Liver-Specific Organic Anion Transporter 1 , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide/geneticsABSTRACT
Autosomal dominant polycystic kidney disease (ADPKD), characterized by progressive cyst formation/expansion, results in enlarged kidneys and often end stage kidney disease. ADPKD is genetically heterogeneous; PKD1 and PKD2 are the common loci (â¼78% and â¼15% of families) and GANAB, DNAJB11, and ALG9 are minor genes. PKD is a ciliary-associated disease, a ciliopathy, and many syndromic ciliopathies have a PKD phenotype. In a multi-cohort/-site collaboration, we screened ADPKD-diagnosed families that were naive to genetic testing (n = 834) or for whom no PKD1 and PKD2 pathogenic variants had been identified (n = 381) with a PKD targeted next-generation sequencing panel (tNGS; n = 1,186) or whole-exome sequencing (WES; n = 29). We identified monoallelic IFT140 loss-of-function (LoF) variants in 12 multiplex families and 26 singletons (1.9% of naive families). IFT140 is a core component of the intraflagellar transport-complex A, responsible for retrograde ciliary trafficking and ciliary entry of membrane proteins; bi-allelic IFT140 variants cause the syndromic ciliopathy, short-rib thoracic dysplasia (SRTD9). The distinctive monoallelic phenotype is mild PKD with large cysts, limited kidney insufficiency, and few liver cysts. Analyses of the cystic kidney disease probands of Genomics England 100K showed that 2.1% had IFT140 LoF variants. Analysis of the UK Biobank cystic kidney disease group showed probands with IFT140 LoF variants as the third most common group, after PKD1 and PKD2. The proximity of IFT140 to PKD1 (â¼0.5 Mb) in 16p13.3 can cause diagnostic confusion, and PKD1 variants could modify the IFT140 phenotype. Importantly, our studies link a ciliary structural protein to the ADPKD spectrum.
Subject(s)
Alleles , Carrier Proteins , Genetic Predisposition to Disease , Mutation , Polycystic Kidney, Autosomal Dominant/genetics , Adult , Aged , Amino Acid Substitution , Biological Specimen Banks , Cilia/pathology , DNA Copy Number Variations , Female , Genetic Association Studies , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Kidney Function Tests , Male , Middle Aged , Pedigree , Phenotype , Polycystic Kidney, Autosomal Dominant/diagnosis , Sequence Analysis, DNA , United Kingdom , Exome SequencingABSTRACT
BACKGROUND & AIMS: Autosomal dominant polycystic liver disease is a rare condition with a female preponderance, based mainly on pathogenic variants in 2 genes, PRKCSH and SEC63. Clinically, autosomal dominant polycystic liver disease is characterized by vast heterogeneity, ranging from asymptomatic to highly symptomatic hepatomegaly. To date, little is known about the prediction of disease progression at early stages, hindering clinical management, genetic counseling, and the design of randomized controlled trials. To improve disease prognostication, we built a consortium of European and US centers to recruit the largest cohort of patients with PRKCSH and SEC63 liver disease. METHODS: We analyzed an international multicenter cohort of 265 patients with autosomal dominant polycystic liver disease harboring pathogenic variants in PRKCSH or SEC63 for genotype-phenotype correlations, including normalized age-adjusted total liver volumes and polycystic liver disease-related hospitalization (liver event) as primary clinical end points. RESULTS: Classifying individual total liver volumes into predefined progression groups yielded predictive risk discrimination for future liver events independent of sex and underlying genetic defects. In addition, disease severity, defined by age at first liver event, was considerably more pronounced in female patients and patients with PRKCSH variants than in those with SEC63 variants. A newly developed sex-gene score was effective in distinguishing mild, moderate, and severe disease, in addition to imaging-based prognostication. CONCLUSIONS: Both imaging and clinical genetic scoring have the potential to inform patients about the risk of developing symptomatic disease throughout their lives. The combination of female sex, germline PRKCSH alteration, and rapid total liver volume progression is associated with the greatest odds of polycystic liver disease-related hospitalization.
Subject(s)
Hospitalization , Liver Diseases , Adult , Female , Humans , Male , Middle Aged , Calcium-Binding Proteins , Cysts/genetics , Cysts/diagnostic imaging , Cysts/pathology , Disease Progression , Europe , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Glucosidases/genetics , Hepatomegaly/genetics , Hepatomegaly/diagnostic imaging , Hospitalization/statistics & numerical data , Liver/pathology , Liver/diagnostic imaging , Liver Diseases/genetics , Liver Diseases/pathology , Liver Diseases/diagnostic imaging , Molecular Chaperones , Organ Size , Prognosis , Risk Assessment , Risk Factors , RNA-Binding Proteins , Severity of Illness Index , Sex Factors , United States/epidemiologyABSTRACT
BACKGROUND & AIMS: The highly heterogeneous cellular and molecular makeup of pancreatic ductal adenocarcinoma (PDAC) not only fosters exceptionally aggressive tumor biology, but contradicts the current concept of one-size-fits-all therapeutic strategies to combat PDAC. Therefore, we aimed to exploit the tumor biological implication and therapeutic vulnerabilities of a clinically relevant molecular PDAC subgroup characterized by SMAD4 deficiency and high expression of the nuclear factor of activated T cells (SMAD4-/-/NFATc1High). METHODS: Transcriptomic and clinical data were analyzed to determine the prognostic relevance of SMAD4-/-/NFATc1High cancers. In vitro and in vivo oncogenic transcription factor complex formation was studied by immunoprecipitation, proximity ligation assays, and validated cross model and species. The impact of SMAD4 status on therapeutically targeting canonical KRAS signaling was mechanistically deciphered and corroborated by genome-wide gene expression analysis and genetic perturbation experiments, respectively. Validation of a novel tailored therapeutic option was conducted in patient-derived organoids and cells and transgenic as well as orthotopic PDAC models. RESULTS: Our findings determined the tumor biology of an aggressive and chemotherapy-resistant SMAD4-/-/NFATc1High subgroup. Mechanistically, we identify SMAD4 deficiency as a molecular prerequisite for the formation of an oncogenic NFATc1/SMAD3/cJUN transcription factor complex, which drives the expression of RRM1/2. RRM1/2 replenishes nucleoside pools that directly compete with metabolized gemcitabine for DNA strand incorporation. Disassembly of the NFATc1/SMAD3/cJUN complex by mitogen-activated protein kinase signaling inhibition normalizes RRM1/2 expression and synergizes with gemcitabine treatment in vivo to reduce the proliferative index. CONCLUSIONS: Our results suggest that PDAC characterized by SMAD4 deficiency and oncogenic NFATc1/SMAD3/cJUN complex formation exposes sensitivity to a mitogen-activated protein kinase signaling inhibition and gemcitabine combination therapy.
Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Gemcitabine , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Smad4 Protein/genetics , Smad4 Protein/metabolism , Mitogen-Activated Protein Kinases/metabolism , Smad3 Protein/metabolismABSTRACT
Phosphatase and tensin homologue (PTEN) is the main antagonist of the phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR signalling pathway and mutated in 10-20% of individuals with autism spectrum disorder (ASD) exhibiting macrocephaly. Hyperactive mTOR signalling is responsible for some aspects during PTEN-ASD progression, e.g. neuronal hypertrophy and -excitability, but PI3K/mTOR-independent processes have additionally been described. There is emerging evidence that PTEN regulates gene transcription, spliceosome formation and pre-mRNA splicing independently of PI3K/mTOR. Altered splicing is a hallmark of brains from individuals with idiopathic and PTEN-ASD, however, molecular mechanisms are yet to be identified. We performed RNA-Seq followed by analysis of altered transcript splicing in Pten-deficient primary cortical mouse neurons, which we compared with published data from PTEN-deficient human neuronal stem cells. This analysis identified that transcripts were globally mis-spliced in a developmentally regulated fashion and cluster in synaptic and gene expression regulatory processes. Strikingly, splicing defects following Pten-deficiency represent a significant number of other known ASD-susceptibility genes. Furthermore, we show that exons with strong 3' splice sites are more frequently mis-spliced under Pten-deficient conditions. Our study indicates that PTEN-ASD is a multifactorial condition involving the dysregulation of other known ASD-susceptibility genes.
ABSTRACT
Osimertinib is prescribed to patients with metastatic non-small cell lung cancer (NSCLC) and a sensitizing EGFR mutation. Limited data exists on the impact of patient characteristics or osimertinib exposure on effectiveness outcomes. This was a Dutch, multicenter cohort study. Eligible patients were ≥18 years, with metastatic EGFRm+ NSCLC, receiving osimertinib. Primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS) and safety. Kaplan-Meier analyses and multivariate Cox proportional hazard models were performed. In total, 294 patients were included. Primary EGFR-mutations were mainly exon 19 deletions (54%) and p.L858R point mutations (30%). Osimertinib was given in first-line (40%), second-line (46%) or beyond (14%), with median PFS 14.4 (95% CI: 9.4-19.3), 13.9 (95% CI: 11.3-16.1) and 8.7 months (95% CI: 4.6-12.7), respectively. Patients with low BMI (<20.0 kg/m2 ) had significantly shorter PFS/OS compared to all other subgroups. Patients with a high plasma trough concentration in steady state (Cmin,SS ; >271 ng/mL) had shorter PFS compared to a low Cmin,SS (<163 ng/mL; aHR 2.29; 95% CI: 1.13-4.63). A significant longer PFS was seen in females (aHR = 0.61, 95% CI: 0.45-0.82) and patients with the exon 19 deletion (aHR = 0.58, 95% CI: 0.36-0.92). A trend towards longer PFS was seen for TP53 wild-type patients, while age did not impact PFS. Patients with a primary EGFR exon 19 deletion had longer PFS, while a low BMI, male sex and a high Cmin,SS were indicative for shorter PFS and/or OS. Age was not associated with effectiveness outcomes of osimertinib.
Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Female , Humans , Male , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Cohort Studies , Protein Kinase Inhibitors/therapeutic use , ErbB Receptors/genetics , Aniline Compounds/therapeutic use , MutationABSTRACT
Unmeasured confounding is often raised as a source of potential bias during the design of nonrandomized studies, but quantifying such concerns is challenging. We developed a simulation-based approach to assess the potential impact of unmeasured confounding during the study design stage. The approach involved generation of hypothetical individual-level cohorts using realistic parameters, including a binary treatment (prevalence 25%), a time-to-event outcome (incidence 5%), 13 measured covariates, a binary unmeasured confounder (u1; 10%), and a binary measured "proxy" variable (p1) correlated with u1. Strengths of unmeasured confounding and correlations between u1 and p1 were varied in simulation scenarios. Treatment effects were estimated with (1) no adjustment, (2) adjustment for measured confounders (level 1), and (3) adjustment for measured confounders and their proxy (level 2). We computed absolute standardized mean differences in u1 and p1 and relative bias with each level of adjustment. Across all scenarios, level 2 adjustment led to improvement in the balance of u1, but this improvement was highly dependent on the correlation between u1 and p1. Level 2 adjustments also had lower relative bias than level 1 adjustments (in strong u1 scenarios: relative bias of 9.2%, 12.2%, and 13.5% at correlations of 0.7, 0.5, and 0.3, respectively, vs 16.4%, 15.8%, and 15.0% for level 1). An approach using simulated individual-level data is useful to explicitly convey the potential for bias due to unmeasured confounding while designing nonrandomized studies, and can be helpful in informing design choices. This article is part of a Special Collection on Pharmacoepidemiology.
Subject(s)
Bias , Computer Simulation , Confounding Factors, Epidemiologic , Humans , Research Design , Databases, FactualABSTRACT
The objective of this study was to evaluate the safety, tolerability, pharmacokinetics (PK), and immunogenicity of VIR-2482 in healthy adult subjects. A phase 1, first-in-human, randomized, double-blind, placebo-controlled dose-escalation study was conducted. One hundred participants were allocated to four cohorts (60 mg, 300 mg, 1,200 mg, and 1,800 mg). In each cohort, participants were randomized in a 4:1 ratio (active:placebo) to receive either VIR-2482 or volume-matched placebo by gluteal intramuscular injection. Participants remained at the investigative site under observation for 48 h, and adverse events (AEs) were collected for 56 days. PK and immunogenicity were measured up to 52 weeks post-dose. VIR-2482 was well tolerated at all doses studied. The overall incidence of AEs was comparable between VIR-2482 (68.8%) and placebo (85.0%). Nineteen VIR-2482 (23.8%) and six placebo (30.0%) recipients had Grade 1 or 2 AEs that were considered to be related to the study intervention. There were no treatment-related serious AEs. Injection-site reactions (ISRs) were reported in six (7.5%) VIR-2482 recipients, while no such reactions were reported among the placebo recipients. All ISRs were Grade 1, and there was no relationship with the dose. Median VIR-2482 serum elimination half-life ranged from 56.7 to 70.6 days across cohorts. The serum area under the curve and Cmax were dose-proportional. Nasopharyngeal VIR-2482 concentrations were approximately 2%-5% of serum levels and were less than dose-proportional. The incidence of immunogenicity across all cohorts was 1.3%. Overall, the safety, tolerability, and pharmacokinetic profile of VIR-2482 at doses up to 1,800 mg supported its further investigation as a long-acting antibody for the prevention of influenza A illness. This study has been registered at ClinicalTrials.gov under identifier NCT04033406.
Subject(s)
Antibodies, Monoclonal , Influenza, Human , Adult , Humans , Antibodies, Monoclonal/adverse effects , Influenza, Human/drug therapy , Influenza, Human/prevention & control , Healthy Volunteers , Double-Blind MethodABSTRACT
BACKGROUND: Sotorasib is a specific, irreversible inhibitor of the GTPase protein, KRASG12C. We compared the efficacy and safety of sotorasib with a standard-of-care treatment in patients with non-small-cell lung cancer (NSCLC) with the KRASG12C mutation who had been previously treated with other anticancer drugs. METHODS: We conducted a randomised, open-label phase 3 trial at 148 centres in 22 countries. We recruited patients aged at least 18 years with KRASG12C-mutated advanced NSCLC, who progressed after previous platinum-based chemotherapy and a PD-1 or PD-L1 inhibitor. Key exclusion criteria included new or progressing untreated brain lesions or symptomatic brain lesions, previously identified oncogenic driver mutation other than KRASG12C for which an approved therapy is available (eg EGFR or ALK), previous treatment with docetaxel (neoadjuvant or adjuvant docetaxel was allowed if the tumour did not progress within 6 months after the therapy was terminated), previous treatment with a direct KRASG12C inhibitor, systemic anticancer therapy within 28 days of study day 1, and therapeutic or palliative radiation therapy within 2 weeks of treatment initiation. We randomly assigned (1:1) patients to oral sotorasib (960 mg once daily) or intravenous docetaxel (75 mg/m2 once every 3 weeks) in an open-label manner using interactive response technology. Randomisation was stratified by number of previous lines of therapy in advanced disease (1 vs 2 vs >2), ethnicity (Asian vs non-Asian), and history of CNS metastases (present or absent). Treatment continued until an independent central confirmation of disease progression, intolerance, initiation of another anticancer therapy, withdrawal of consent, or death, whichever occurred first. The primary endpoint was progression-free survival, which was assessed by a blinded, independent central review in the intention-to-treat population. Safety was assessed in all treated patients. This trial is registered at ClinicalTrials.gov, NCT04303780, and is active but no longer recruiting. FINDINGS: Between June 4, 2020, and April 26, 2021, 345 patients were randomly assigned to receive sotorasib (n=171 [50%]) or docetaxel (n=174 [50%]). 169 (99%) patients in the sotorasib group and 151 (87%) in the docetaxel group received at least one dose. After a median follow-up of 17·7 months (IQR 16·4-20·1), the study met its primary endpoint of a statistically significant increase in the progression-free survival for sotorasib, compared with docetaxel (median progression-free survival 5·6 months [95% CI 4·3-7·8] vs 4·5 months [3·0-5·7]; hazard ratio 0·66 [0·51-0·86]; p=0·0017). Sotorasib was well tolerated, with fewer grade 3 or worse (n=56 [33%] vs n=61 [40%]) and serious treatment-related adverse events compared with docetaxel (n=18 [11%] vs n=34 [23%]). For sotorasib, the most common treatment-related adverse events of grade 3 or worse were diarrhoea (n= 20 [12%]), alanine aminotransferase increase (n=13 [8%]), and aspartate aminotransferase increase (n=9 [5%]). For docetaxel, the most common treatment-related adverse events of grade 3 or worse were neutropenia (n=13 [9%]), fatigue (n=9 [6%]), and febrile neutropenia (n=8 [5%]). INTERPRETATION: Sotorasib significantly increased progression-free survival and had a more favourable safety profile, compared with docetaxel, in patients with advanced NSCLC with the KRASG12C mutation and who had been previously treated with other anticancer drugs. FUNDING: Amgen.
Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Adolescent , Adult , Carcinoma, Non-Small-Cell Lung/drug therapy , Docetaxel/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/therapeutic use , Lung Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Mutation , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Disease-Free SurvivalABSTRACT
Myoendothelial feedback (MEF), the endothelium-dependent vasodilation following sympathetic vasoconstriction (mediated by smooth muscle to endothelium gap junction communication), has been well studied in resistance arteries of males, but not females. We hypothesized that MEF responses would be similar between the sexes, but different in the relative contribution of the underlying nitric oxide and hyperpolarization mechanisms, given that these mechanisms differ between the sexes in agonist-induced endothelium-dependent dilation. We measured MEF responses (diameter changes) of male and female first- to second-order mouse mesenteric arteries to phenylephrine (10 µM) over 30 min using isolated pressure myography ± blinded inhibition of nitric oxide synthase (NOS) using Nω-nitro-l-arginine methyl ester (l-NAME; 0.1-1.0 mM), hyperpolarization using 35 mM KCl, or transient receptor potential vanilloid 4 (TRPV4) channels using GSK219 (0.1-1.0 µM) or RN-1734 (30 µM). MEF was similar [%dilation (means ± SE): males = 26.7 ± 2.0 and females = 26.1 ± 1.9 at 15 min] and significantly inhibited by l-NAME (1.0 mM) at 15 min [%dilation (means ± SE): males = 8.2 ± 3.3, P < 0.01; females = 6.8 ± 1.9, P < 0.001] and over time (P < 0.01) in both sexes. l-NAME (0.1 mM) + 35 mM KCl nearly eliminated MEF in both sexes (P < 0.001-0.0001). Activation of TRPV4 with GSK101 (0.1-10 µM) induced similar dilation between the sexes. Inhibition of TRPV4, which is reportedly involved in the hyperpolarization mechanism, did not inhibit MEF in either sex. Similar expression of eNOS was found between the sexes with Western blot. Thus, MEF is prominent and similar in murine first- and second-order mesenteric resistance arteries of both sexes, and reliant primarily on NOS and secondarily on hyperpolarization, but not TRPV4.NEW & NOTEWORTHY We found that female mesenteric resistance arteries have similar postconstriction dilatory responses (i.e., myoendothelial feedback) to a sympathetic neurotransmitter analog as male arteries. Both sexes use nitric oxide synthase (NOS) and hyperpolarization, but not TRPV4, in this response. Moreover, the key protein involved in this pathway (eNOS) is similarly expressed in these arteries between the sexes. These similarities are surprising given that agonist-induced endothelium-dependent dilatory mechanisms differ in these arteries between the sexes.
Subject(s)
Nitric Oxide Synthase , TRPV Cation Channels , Mice , Male , Female , Animals , NG-Nitroarginine Methyl Ester/pharmacology , Feedback , TRPV Cation Channels/metabolism , Mesenteric Arteries/metabolism , Vasodilation , Nitric Oxide/metabolism , Endothelium, Vascular/metabolismABSTRACT
Herpes simplex virus type 1 (HSV-1) is a common virus of mankind and HSV-1 infections are a significant cause of blindness. The current antiviral treatment of herpes infection relies on acyclovir and related compounds. However, acyclovir resistance emerges especially in the long term prophylactic treatment that is required for prevention of recurrent herpes keratitis. Earlier we have established antiviral siRNA swarms, targeting sequences of essential genes of HSV, as effective means of silencing the replication of HSV in vitro or in vivo. In this study, we show the antiviral efficacy of 2´-fluoro modified antiviral siRNA swarms against HSV-1 in human corneal epithelial cells (HCE). We studied HCE for innate immunity responses to HSV-1, to immunostimulatory cytotoxic double stranded RNA, and to the antiviral siRNA swarms, with or without a viral challenge. The panel of studied innate responses included interferon beta, lambda 1, interferon stimulated gene 54, human myxovirus resistance protein A, human myxovirus resistance protein B, toll-like receptor 3 and interferon kappa. Our results demonstrated that HCE cells are a suitable model to study antiviral RNAi efficacy and safety in vitro. In HCE cells, the antiviral siRNA swarms targeting the HSV UL29 gene and harboring 2´-fluoro modifications, were well tolerated, induced only modest innate immunity responses, and were highly antiviral with more than 99% inhibition of viral release. The antiviral effect of the 2'-fluoro modified swarm was more apparent than that of the unmodified antiviral siRNA swarm. Our results encourage further research in vitro and in vivo on antiviral siRNA swarm therapy of corneal HSV infection, especially with modified siRNA swarms.