Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Infect Dis ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687883

ABSTRACT

BACKGROUND: Invasive meningococcal isolates in South Africa have in previous years (<2008) been characterized by serogroup B, C, W and Y lineages over time, with penicillin intermediate resistance (peni) at 6%. We describe the population structure and genomic markers of peni among invasive meningococcal isolates in South Africa, 2016-2021. METHODS: Meningococcal isolates were collected through national, laboratory-based invasive meningococcal disease (IMD) surveillance. Phenotypic antimicrobial susceptibility testing and whole-genome sequencing were performed, and the mechanism of reduced penicillin susceptibility was assessed in silico. RESULTS: Of 585 IMD cases reported during the study period, culture and PCR-based capsular group was determined for 477/585 (82%); and 241/477 (51%) were sequenced. Predominant serogroups included NmB (210/477; 44%), NmW (116/477; 24%), NmY (96/477; 20%) and NmC (48/477; 10%). Predominant clonal complexes (CC) were CC41/44 in NmB (27/113; 24%), CC11 in NmW (46/56; 82%), CC167 in NmY (23/44; 53%), and CC865 in NmC (9/24; 38%). Peni was detected in 16% (42/262) of isolates, and was due to the presence of a penA mosaic, with the majority harboring penA7, penA9 or penA14. CONCLUSION: IMD lineages circulating in South Africa were consistent with those circulating prior to 2008, however peni was higher than previously reported, and occurred in a variety of lineages.

2.
Emerg Infect Dis ; 30(3): 460-468, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38407254

ABSTRACT

During January 28-May 5, 2019, a meningitis outbreak caused by Neisseria meningitidis serogroup C (NmC) occurred in Burkina Faso. Demographic and laboratory data for meningitis cases were collected through national case-based surveillance. Cerebrospinal fluid was collected and tested by culture and real-time PCR. Among 301 suspected cases reported in 6 districts, N. meningitidis was the primary pathogen detected; 103 cases were serogroup C and 13 were serogroup X. Whole-genome sequencing revealed that 18 cerebrospinal fluid specimens tested positive for NmC sequence type (ST) 10217 within clonal complex 10217, an ST responsible for large epidemics in Niger and Nigeria. Expansion of NmC ST10217 into Burkina Faso, continued NmC outbreaks in the meningitis belt of Africa since 2019, and ongoing circulation of N. meningitidis serogroup X in the region underscore the urgent need to use multivalent conjugate vaccines in regional mass vaccination campaigns to reduce further spread of those serogroups.


Subject(s)
Meningitis , Neisseria meningitidis, Serogroup C , Neisseria meningitidis , Humans , Burkina Faso/epidemiology , Serogroup , Neisseria meningitidis, Serogroup C/genetics , Disease Outbreaks , Neisseria meningitidis/genetics
3.
MMWR Morb Mortal Wkly Rep ; 73(5): 99-103, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329923

ABSTRACT

Meningococcal disease, caused by the bacterium Neisseria meningitidis, is a rare but life-threatening illness that requires prompt antibiotic treatment for patients and antibiotic prophylaxis for their close contacts. Historically, N. meningitidis isolates in the United States have been largely susceptible to the antibiotics recommended for prophylaxis, including ciprofloxacin. Since 2019, however, the number of meningococcal disease cases caused by ciprofloxacin-resistant strains has increased. Antibiotic prophylaxis with ciprofloxacin in areas with ciprofloxacin resistance might result in prophylaxis failure. Health departments should preferentially consider using antibiotics other than ciprofloxacin as prophylaxis for close contacts when both of the following criteria have been met in a local catchment area during a rolling 12-month period: 1) the reporting of two or more invasive meningococcal disease cases caused by ciprofloxacin-resistant strains, and 2) ≥20% of all reported invasive meningococcal disease cases are caused by ciprofloxacin-resistant strains. Other than ciprofloxacin, alternative recommended antibiotic options include rifampin, ceftriaxone, or azithromycin. Ongoing monitoring for antibiotic resistance of meningococcal isolates through surveillance and health care providers' reporting of prophylaxis failures will guide future updates to prophylaxis considerations and recommendations.


Subject(s)
Meningococcal Infections , Neisseria meningitidis , Humans , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Ceftriaxone/therapeutic use , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Meningococcal Infections/drug therapy , Meningococcal Infections/epidemiology , Meningococcal Infections/prevention & control , United States/epidemiology
4.
Clin Infect Dis ; 76(11): 1889-1895, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36722332

ABSTRACT

BACKGROUND: Nontypeable Haemophilus influenzae (NTHi) is the most common cause of invasive H. influenzae disease in the United States (US). We evaluated the epidemiology of invasive NTHi disease in the US, including among pregnant women, infants, and people with human immunodeficiency virus (PWH). METHODS: We used data from population- and laboratory-based surveillance for invasive H. influenzae disease conducted in 10 sites to estimate national incidence of NTHi, and to describe epidemiology in women of childbearing age, infants aged ≤30 days (neonates), and PWH living in the surveillance catchment areas. H. influenzae isolates were sent to the Centers for Disease Control and Prevention for species confirmation, serotyping, and whole genome sequencing of select isolates. RESULTS: During 2008-⁠2019, average annual NTHi incidence in the US was 1.3/100 000 population overall, 5.8/100 000 among children aged <1 year, and 10.2/100 000 among adults aged ≥80 years. Among 225 reported neonates with NTHi, 92% had a positive culture within the first week of life and 72% were preterm. NTHi risk was 23 times higher among preterm compared to term neonates, and 5.6 times higher in pregnant/postpartum compared to nonpregnant women. More than half of pregnant women with invasive NTHi had loss of pregnancy postinfection. Incidence among PWH aged ≥13 years was 9.5 cases per 100 000, compared to 1.1 cases per 100 000 for non-PWH (rate ratio, 8.3 [95% confidence interval, 7.1-9.7]; P < .0001). CONCLUSIONS: NTHi causes substantial invasive disease, especially among older adults, pregnant/postpartum women, and neonates. Enhanced surveillance and evaluation of targeted interventions to prevent perinatal NTHi infections may be warranted.


Subject(s)
Haemophilus Infections , Infant, Newborn, Diseases , Infant , Child , Infant, Newborn , Humans , Female , Pregnancy , United States/epidemiology , Aged , Haemophilus influenzae/genetics , Haemophilus Infections/epidemiology , Serotyping , Incidence , Postpartum Period
5.
MMWR Morb Mortal Wkly Rep ; 72(15): 386-390, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37053119

ABSTRACT

Haemophilus influenzae (Hi) can cause meningitis and other serious invasive disease. Encapsulated Hi is classified into six serotypes (a-f) based on chemical composition of the polysaccharide capsule; unencapsulated strains are termed nontypeable Hi (NTHi). Hi serotype b (Hib) was the most common cause of bacterial meningitis in children in the pre-Hib vaccine era, and secondary transmission of Hi among children (e.g., to household contacts and in child care facilities) (1,2) led to the Advisory Committee on Immunization Practices (ACIP) recommendation for antibiotic chemoprophylaxis to prevent Hib disease in certain circumstances.* High Hib vaccination coverage since the 1990s has substantially reduced Hib disease, and other serotypes now account for most Hi-associated invasive disease in the United States (3). Nevertheless, CDC does not currently recommend chemoprophylaxis for contacts of persons with invasive disease caused by serotypes other than Hib and by NTHi (non-b Hi). Given this changing epidemiology, U.S. surveillance data were reviewed to investigate secondary cases of invasive disease caused by Hi. The estimated prevalence of secondary transmission was 0.32% among persons with encapsulated Hi disease (≤60 days of one another) and 0.12% among persons with NTHi disease (≤14 days of one another). Isolates from all Hi case pairs were genetically closely related, and all patients with potential secondary infection had underlying medical conditions. These results strongly suggest that secondary transmission of non-b Hi occurs. Expansion of Hi chemoprophylaxis recommendations might be warranted to control invasive Hi disease in certain populations in the United States, but further analysis is needed to evaluate the potential benefits against the risks, such as increased antibiotic use.


Subject(s)
Haemophilus Infections , Haemophilus Vaccines , Humans , United States/epidemiology , Infant , Haemophilus influenzae , Incidence , Haemophilus Infections/epidemiology , Haemophilus Infections/prevention & control , Haemophilus Infections/microbiology , Serogroup , Anti-Bacterial Agents/therapeutic use
6.
J Infect Dis ; 225(11): 1871-1875, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35266516

ABSTRACT

BACKGROUND: Historically, antimicrobial resistance has been rare in US invasive meningococcal disease cases. METHODS: Meningococcal isolates (n = 695) were collected through population-based surveillance, 2012-2016, and national surveillance, 2015-2016. Antimicrobial susceptibility was assessed by broth microdilution. Resistance mechanisms were characterized using whole-genome sequencing. RESULTS: All isolates were susceptible to 6 antibiotics (cefotaxime, ceftriaxone, meropenem, rifampin, minocycline, and azithromycin). Approximately 25% were penicillin or ampicillin intermediate; among these, 79% contained mosaic penA gene mutations. Less than 1% of isolates were penicillin, ampicillin, ciprofloxacin, or levofloxacin resistant. CONCLUSIONS: Penicillin- and ampicillin-intermediate isolates were common, but resistance to clinically relevant antibiotics remained rare.


Subject(s)
Meningococcal Infections , Neisseria meningitidis , Ampicillin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Ceftriaxone/pharmacology , Ciprofloxacin/pharmacology , Humans , Meningococcal Infections/epidemiology , Microbial Sensitivity Tests , Neisseria meningitidis/genetics , Penicillins , United States/epidemiology
7.
J Clin Microbiol ; 60(4): e0211121, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35306833

ABSTRACT

To monitor the burden and changes in Haemophilus influenzae (Hi) disease, direct real-time PCR (drt-PCR) assays have been developed for Hi detection in monoplex form and its six serotypes in triplex form, directly from cerebrospinal fluid (CSF) specimens. These assays target the phoB gene for the species detection (Hi-phoB) and serotype-specific genes in region II of the capsule biosynthesis locus (Hi-abf and Hi-cde), identified through comparative analysis of Hi and non-Hi whole-genome sequences. The lower limit of detection (LLD) is 293 CFU/mL for the Hi-phoB assay and ranged from 11 to 130 CFU/mL for the triplex serotyping assays. Using culture as a reference method, the sensitivity and specificity of Hi-phoB, Hi-abf, and Hi-cde were 100%. Triplex serotyping assays also showed 100% agreement for each serotype compared to their corresponding monoplex serotyping assay. These highly sensitive and specific drt-PCR assays do not require DNA extraction and thereby reduce the time, cost, and handling required to process CSF specimens. Furthermore, triplex drt-PCR assays combine the detection of three serotypes in a single reaction, further improving testing efficiency, which is critical for laboratories that process high volumes of Hi specimens for surveillance and diagnostic purposes.


Subject(s)
Haemophilus influenzae , Multiplex Polymerase Chain Reaction , DNA , Haemophilus influenzae/genetics , Humans , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Serotyping/methods
8.
J Clin Microbiol ; 57(3)2019 03.
Article in English | MEDLINE | ID: mdl-30567750

ABSTRACT

Invasive meningococcal disease is mainly caused by Neisseria meningitidis serogroups A, B, C, X, W, and Y. The serogroup is typically determined by slide agglutination serogrouping (SASG) and real-time PCR (RT-PCR). We describe a whole-genome sequencing (WGS)-based method to characterize the capsule polysaccharide synthesis (cps) locus, classify N. meningitidis serogroups, and identify mechanisms for nongroupability using 453 isolates from a global strain collection. We identified novel genomic organizations within functional cps loci, consisting of insertion sequence (IS) elements in unique positions that did not disrupt the coding sequence. Genetic mutations (partial gene deletion, missing genes, IS insertion, internal stop, and phase-variable off) that led to nongroupability were identified. The results of WGS and SASG were in 91% to 100% agreement for all serogroups, while the results of WGS and RT-PCR showed 99% to 100% agreement. Among isolates determined to be nongroupable by WGS (31 of 453), the results of all three methods agreed 100% for those without a capsule polymerase gene. However, 61% (WGS versus SASG) and 36% (WGS versus RT-PCR) agreements were observed for the isolates, particularly those with phase variations or internal stops in cps loci, which warrant further characterization by additional tests. Our WGS-based serogrouping method provides comprehensive characterization of the N. meningitidis capsule, which is critical for meningococcal surveillance and outbreak investigations.


Subject(s)
Bacterial Capsules/genetics , Genome, Bacterial , Genome-Wide Association Study , Meningococcal Infections/microbiology , Neisseria meningitidis/genetics , Serogroup , Bacterial Capsules/metabolism , Humans , Phylogeny
10.
Emerg Infect Dis ; 23(4): 686-690, 2017 04.
Article in English | MEDLINE | ID: mdl-28322707

ABSTRACT

In February 2016, three influenza B/Victoria/2/87 lineage viruses exhibiting 4- to 158-fold reduced inhibition by neuraminidase inhibitors were detected in Laos. These viruses had an H134N substitution in the neuraminidase and replicated efficiently in vitro and in ferrets. Current antiviral drugs may be ineffective in controlling infections caused by viruses harboring this mutation.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Influenza B virus/drug effects , Influenza, Human/epidemiology , Influenza, Human/virology , Neuraminidase/genetics , Adolescent , Adult , Aged , Amino Acid Substitution , Child , Child, Preschool , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Viral , Humans , Infant , Influenza B virus/genetics , Laos/epidemiology , Male , Middle Aged , Young Adult
11.
J Virol ; 90(23): 10446-10458, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27630240

ABSTRACT

The pandemic threat posed by emerging zoonotic influenza A viruses necessitates development of antiviral agents effective against various antigenic subtypes. Human monoclonal antibody (hMAb) targeting the hemagglutinin (HA) stalk offers a promising approach to control influenza virus infections. Here, we investigated the ability of the hMAb 81.39a to inhibit in vitro replication of human and zoonotic viruses, representing 16 HA subtypes. The majority of viruses were effectively neutralized by 81.39a at a 50% effective concentration (EC50) of <0.01 to 4.9 µg/ml. Among group 2 HA viruses tested, a single A(H7N9) virus was not neutralized at 50 µg/ml; it contained HA2-Asp19Gly, an amino acid position previously associated with resistance to neutralization by the group 2 HA-neutralizing MAb CR8020. Notably, among group 1 HA viruses, H11-H13 and H16 subtypes were not neutralized at 50 µg/ml; they shared the substitution HA2-Asp19Asn/Ala. Conversely, H9 viruses harboring HA2-Asp19Ala were fully susceptible to neutralization. Therefore, amino acid variance at HA2-Asp19 has subtype-specific adverse effects on in vitro neutralization. Mice given a single injection (15 or 45 mg/kg of body weight) at 24 or 48 h after infection with recently emerged A(H5N2), A(H5N8), A(H6N1), or A(H7N9) viruses were protected from mortality and showed drastically reduced lung viral titers. Furthermore, 81.39a protected mice infected with A(H7N9) harboring HA2-Asp19Gly, although the antiviral effect was lessened. A(H1N1)pdm09-infected ferrets receiving a single dose (25 mg/kg) had reduced viral titers and showed less lung tissue injury, despite 24- to 72-h-delayed treatment. Taken together, this study provides experimental evidence for the therapeutic potential of 81.39a against diverse influenza A viruses. IMPORTANCE: Zoonotic influenza viruses, such as A(H5N1) and A(H7N9) subtypes, have caused severe disease and deaths in humans, raising public health concerns. Development of novel anti-influenza therapeutics with a broad spectrum of activity against various subtypes is necessary to mitigate disease severity. Here, we demonstrate that the hemagglutinin (HA) stalk-targeting human monoclonal antibody 81.39a effectively neutralized the majority of influenza A viruses tested, representing 16 HA subtypes. Furthermore, delayed treatment with 81.39a significantly suppressed virus replication in the lungs, prevented dramatic body weight loss, and increased survival rates of mice infected with A(H5Nx), A(H6N1), or A(H7N9) viruses. When tested in ferrets, delayed 81.39a treatment reduced viral titers, particularly in the lower respiratory tract, and substantially alleviated disease symptoms associated with severe A(H1N1)pdm09 influenza. Collectively, our data demonstrated the effectiveness of 81.39a against both seasonal and emerging influenza A viruses.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Antigenic Variation/genetics , Antigenic Variation/immunology , Female , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus/classification , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , In Vitro Techniques , Influenza A virus/classification , Influenza A virus/genetics , Influenza, Human/immunology , Influenza, Human/virology , Lung/pathology , Lung/virology , Male , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/therapy , Orthomyxoviridae Infections/virology , Treatment Outcome
12.
J Virol ; 89(10): 5419-26, 2015 May.
Article in English | MEDLINE | ID: mdl-25740997

ABSTRACT

UNLABELLED: Human infections by avian influenza A(H7N9) virus entail substantial morbidity and mortality. Treatment of infected patients with the neuraminidase (NA) inhibitor oseltamivir was associated with emergence of viruses carrying NA substitutions. In the NA inhibition (NI) assay, R292K conferred highly reduced inhibition by oseltamivir, while E119V and I222K each caused reduced inhibition. To facilitate establishment of laboratory correlates of clinically relevant resistance, experiments were conducted in ferrets infected with virus carrying wild-type or variant NA genes recovered from the A/Taiwan/1/2013 isolate. Oseltamivir treatment (5 or 25 mg/kg of body weight/dose) was given 4 h postinfection, followed by twice-daily treatment for 5 days. Treatment of ferrets infected with wild-type virus resulted in a modest dose-dependent reduction (0.7 to 1.5 log10 50% tissue culture infectious dose [TCID50]) in nasal wash viral titers and inflammation response. Conversely, treatment failed to significantly inhibit the replication of R292K or E119V virus. A small reduction of viral titers was detected on day 5 in ferrets infected with the I222K virus. The propensity for oseltamivir resistance emergence was assessed in oseltamivir-treated animals infected with wild-type virus; emergence of R292K virus was detected in 3 of 6 ferrets within 5 to 7 days postinfection. Collectively, we demonstrate that R292K, E119V, and I222K reduced the inhibitory activity of oseltamivir, not only in the NI assay, but also in infected ferrets, judged particularly by viral loads in nasal washes, and may signal the need for alternative therapeutics. Thus, these clinical outcomes measured in the ferret model may correlate with clinically relevant oseltamivir resistance in humans. IMPORTANCE: This report provides more evidence for using the ferret model to assess the susceptibility of influenza A(H7N9) viruses to oseltamivir, the most prescribed anti-influenza virus drug. The information gained can be used to assist in the establishment of laboratory correlates of human disease and drug therapy. The rapid emergence of viruses with R292K in treated ferrets correlates well with the multiple reports on this NA variant in treated human patients. Our findings highlight the importance of the discovery and characterization of new antiviral drugs with different mechanisms of action and the use of combination treatment strategies against emerging viruses with pandemic potential, such as avian H7N9 virus, particularly against those carrying drug resistance markers.


Subject(s)
Antiviral Agents/pharmacology , Influenza A Virus, H7N9 Subtype/drug effects , Influenza A Virus, H7N9 Subtype/genetics , Influenza, Human/drug therapy , Influenza, Human/virology , Neuraminidase/genetics , Oseltamivir/pharmacology , Animals , Disease Models, Animal , Drug Resistance, Viral/genetics , Enzyme Inhibitors/pharmacology , Ferrets , Genes, Viral , Humans , Influenza A Virus, H7N9 Subtype/physiology , Male , Mutation , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/pathology , Respiratory Tract Infections/virology , Virus Replication/drug effects
13.
J Infect Dis ; 211(2): 249-57, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25124927

ABSTRACT

BACKGROUND: Patients contracting influenza A(H7N9) infection often developed severe disease causing respiratory failure. Neuraminidase (NA) inhibitors (NAIs) are the primary option for treatment, but information on drug-resistance markers for influenza A(H7N9) is limited. METHODS: Four NA variants of A/Taiwan/1/2013(H7N9) virus containing a single substitution (NA-E119V, NA-I222K, NA-I222R, or NA-R292K) recovered from an oseltamivir-treated patient were tested for NAI susceptibility in vitro; their replicative fitness was evaluated in cell culture, mice, and ferrets. RESULTS: NA-R292K led to highly reduced inhibition by oseltamivir and peramivir, while NA-E119V, NA-I222K, and NA-I222R caused reduced inhibition by oseltamivir. Mice infected with any virus showed severe clinical signs with high mortality rates. NA-I222K virus was the most virulent in mice, whereas virus lacking NA change (NA-WT) and NA-R292K virus seemed the least virulent. Sequence analysis suggests that PB2-S714N increased virulence of NA-I222K virus in mice; NS1-K126R, alone or in combination with PB2-V227M, produced contrasting effects in NA-WT and NA-R292K viruses. In ferrets, all viruses replicated to high titers in the upper respiratory tract but produced only mild illness. NA-R292K virus, showed reduced replicative fitness in this animal model. CONCLUSIONS: Our data highlight challenges in assessment of the replicative fitness of H7N9 NA variants that emerged in NAI-treated patients.


Subject(s)
Antiviral Agents/therapeutic use , Drug Resistance, Viral , Influenza A Virus, H7N9 Subtype/drug effects , Influenza, Human/drug therapy , Influenza, Human/virology , Oseltamivir/therapeutic use , Animals , Disease Models, Animal , Ferrets , Humans , Influenza A Virus, H7N9 Subtype/enzymology , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/isolation & purification , Mice, Inbred BALB C , Microbial Sensitivity Tests , Mutant Proteins/genetics , Mutation, Missense , Neuraminidase/genetics , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Viral Proteins/genetics , Virus Cultivation , Virus Replication
14.
J Infect Dis ; 210(3): 435-40, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24569063

ABSTRACT

Human infections caused by avian influenza A virus type subtype H7N9 have been associated with substantial morbidity and mortality. Emergence of virus variants carrying markers of decreased susceptibility to neuraminidase inhibitors was reported. Here we show that DAS181 (Fludase), an antiviral drug with sialidase activity, potently inhibited replication of wild-type influenza A(H7N9) and its oseltamivir-resistant R292K variants in mice. A once-daily administration initiated early after lethal infection hampered body weight loss and completely protected mice from lethality. We observed a time-dependent effect for 24-72-hour delayed DAS181 treatments on morbidity and mortality. The results warrant further investigation of DAS181 for influenza treatment.


Subject(s)
Influenza A Virus, H7N9 Subtype/drug effects , Orthomyxoviridae Infections/drug therapy , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Virus Replication/physiology , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Resistance, Viral , Genetic Variation , Influenza A Virus, H7N9 Subtype/physiology , Mice , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/virology , Zoonoses
15.
J Virol ; 87(7): 3741-51, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23325689

ABSTRACT

Several novel anti-influenza compounds are in various phases of clinical development. One of these, T-705 (favipiravir), has a mechanism of action that is not fully understood but is suggested to target influenza virus RNA-dependent RNA polymerase. We investigated the mechanism of T-705 activity against influenza A (H1N1) viruses by applying selective drug pressure over multiple sequential passages in MDCK cells. We found that T-705 treatment did not select specific mutations in potential target proteins, including PB1, PB2, PA, and NP. Phenotypic assays based on cell viability confirmed that no T-705-resistant variants were selected. In the presence of T-705, titers of infectious virus decreased significantly (P < 0.0001) during serial passage in MDCK cells inoculated with seasonal influenza A (H1N1) viruses at a low multiplicity of infection (MOI; 0.0001 PFU/cell) or with 2009 pandemic H1N1 viruses at a high MOI (10 PFU/cell). There was no corresponding decrease in the number of viral RNA copies; therefore, specific virus infectivity (the ratio of infectious virus yield to viral RNA copy number) was reduced. Sequence analysis showed enrichment of G→A and C→T transversion mutations, increased mutation frequency, and a shift of the nucleotide profiles of individual NP gene clones under drug selection pressure. Our results demonstrate that T-705 induces a high rate of mutation that generates a nonviable viral phenotype and that lethal mutagenesis is a key antiviral mechanism of T-705. Our findings also explain the broad spectrum of activity of T-705 against viruses of multiple families.


Subject(s)
Amides/pharmacology , Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Mutagenesis/drug effects , Orthomyxoviridae Infections/drug therapy , Pyrazines/pharmacology , Analysis of Variance , Animals , Dogs , Drug Discovery/methods , In Vitro Techniques , Influenza A Virus, H1N1 Subtype/pathogenicity , Madin Darby Canine Kidney Cells , Mutagenesis/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
16.
Open Forum Infect Dis ; 11(1): ofad696, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38288348

ABSTRACT

Persons with HIV (PWH) are at increased risk for bacterial infections, and previous publications document an increased risk for invasive meningococcal disease (IMD) in particular. This analysis provides evidence that PWH face a 6-fold increase in risk for IMD based on Active Bacterial Core surveillance data collected during 2009-2019.

17.
Emerg Infect Dis ; 19(12): 1963-71, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24274711

ABSTRACT

We assessed drug susceptibilities of 125 avian influenza A(H5N1) viruses isolated from poultry in Vietnam during 2009-2011. Of 25 clade 1.1 viruses, all possessed a marker of resistance to M2 blockers amantadine and rimantadine; 24 were inhibited by neuraminidase inhibitors. One clade 1.1 virus contained the R430W neuraminidase gene and reduced inhibition by oseltamivir, zanamivir, and laninamivir 12-, 73-, and 29-fold, respectively. Three of 30 clade 2.3.4 viruses contained a I223T mutation and showed 7-fold reduced inhibition by oseltamivir. One of 70 clade 2.3.2.1 viruses had the H275Y marker of oseltamivir resistance and exhibited highly reduced inhibition by oseltamivir and peramivir; antiviral agents DAS181 and favipiravir inhibited H275Y mutant virus replication in MDCK-SIAT1 cells. Replicative fitness of the H275Y mutant virus was comparable to that of wildtype virus. These findings highlight the role of drug susceptibility monitoring of H5N1 subtype viruses circulating among birds to inform antiviral stockpiling decisions for pandemic preparedness.


Subject(s)
Antiviral Agents/pharmacology , Influenza A Virus, H5N1 Subtype/drug effects , Influenza in Birds/epidemiology , Influenza in Birds/virology , Animals , Cell Line , Drug Resistance, Viral , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Mutation , Neuraminidase/genetics , Neuraminidase/metabolism , Oseltamivir/pharmacology , Phylogeny , Poultry/virology , Public Health Surveillance , Vietnam/epidemiology , Virus Replication/drug effects
18.
Antimicrob Agents Chemother ; 57(11): 5209-15, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23917311

ABSTRACT

The QFlu prototype bioluminescence-based neuraminidase (NA) inhibition (NI) assay kit was designed to detect NA inhibitor (NAI)-resistant influenza viruses at point of care. Here, we evaluated its suitability for drug susceptibility assessment at a surveillance laboratory. A comprehensive panel of reference viruses (n = 14) and a set of 90 seasonal influenza virus A and B isolates were included for testing with oseltamivir and/or zanamivir in the QFlu assay using the manufacturer-recommended protocol and a modified version attuned to surveillance requirements. The 50% inhibitory concentrations (IC50s) generated were compared with those of NI assays currently used for monitoring influenza drug susceptibility, the fluorescent (FL) and chemiluminescent (CL) assays. To provide proof of principle, clinical specimens (n = 235) confirmed by real-time reverse transcription (RT)-PCR to contain influenza virus A(H1N1)pdm09 and prescreened for the oseltamivir resistance marker H275Y using pyrosequencing were subsequently tested in the QFlu assay. All three NI assays were able to discriminate the reference NA variants and their matching wild-type viruses based on the difference in their IC50s. Unless the antigenic types were first identified, certain NA variants (e.g., H3N2 with E119V) could be detected among seasonal viruses using the FL assays only. Notably, the QFlu assay identified oseltamivir-resistant A(H1N1)pdm09 viruses carrying the H275Y marker directly in clinical specimens, which is not feasible with the other two phenotypic assays, which required prior virus culturing in cells. Furthermore, The QFlu assay allows detection of the influenza virus A and B isolates carrying established and potential NA inhibitor resistance markers and may become a useful tool for monitoring drug resistance in clinical specimens.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral/drug effects , Neuraminidase/antagonists & inhibitors , Oseltamivir/pharmacology , Viral Proteins/antagonists & inhibitors , Zanamivir/pharmacology , Enzyme Assays , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza B virus/drug effects , Influenza B virus/isolation & purification , Influenza, Human/virology , Kinetics , Luminescent Measurements , Microbial Sensitivity Tests , Neuraminidase/metabolism , Protein Binding , Viral Proteins/metabolism
19.
J Virol ; 86(2): 1233-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22072752

ABSTRACT

Triple reassortant swine influenza viruses (SIVs) and 2009 pandemic H1N1 (pH1N1) virus contain an avian-origin PB2 with 271A, 590S, 591R, and 627E. To evaluate the role of PB2 271A, 590S, and 591R in the replication and virulence of SIV, single (1930-TX98-PB2-271T)-, double (1930-TX98-PB2-590A591A)-, and triple (1930-TX98-PB2-271T590A591A)-mutated viruses were generated in the background of the H1N1 A/swine/Iowa/15/30 (1930) virus with an avian-origin PB2 from the triple-reassortant A/swine/Texas/4199-2/98 (TX98) virus, called the parental 1930-TX98-PB2. Compared to parental virus and single- and double-mutated viruses, the triple-mutated virus replicated less efficiently in cell cultures and was attenuated in mice. These results suggest that a combination of 271A with the 590/591 SR polymorphism is critical for pH1N1 and triple-reassortant SIVs for efficient replication and adaptation in mammals.


Subject(s)
Influenza A Virus, H1N1 Subtype/pathogenicity , Orthomyxoviridae Infections/veterinary , Polymorphism, Single Nucleotide , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , Swine Diseases/virology , Viral Proteins/chemistry , Viral Proteins/genetics , Virus Replication , Animals , Cell Line , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/virology , Mice , Mutation , Orthomyxoviridae Infections/virology , RNA-Dependent RNA Polymerase/metabolism , Reassortant Viruses/genetics , Reassortant Viruses/pathogenicity , Reassortant Viruses/physiology , Swine , Swine Diseases/mortality , Viral Proteins/metabolism , Virulence
20.
J Infect Dis ; 205(2): 262-71, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22102733

ABSTRACT

Influenza impressively reflects the paradigm of a viral disease in which continued evolution of the virus is of paramount importance for annual epidemics and occasional pandemics in humans. Because of the continuous threat of novel influenza outbreaks, it is essential to gather further knowledge about viral pathogenicity determinants. Here, we explored the adaptive potential of the influenza A virus subtype H1N1 variant isolate A/Hamburg/04/09 (HH/04) by sequential passaging in mice lungs. Three passages in mice lungs were sufficient to dramatically enhance pathogenicity of HH/04. Sequence analysis identified 4 nonsynonymous mutations in the third passage virus. Using reverse genetics, 3 synergistically acting mutations were defined as pathogenicity determinants, comprising 2 mutations in the hemagglutinin (HA[D222G] and HA[K163E]), whereby the HA(D222G) mutation was shown to determine receptor binding specificity and the polymerase acidic (PA) protein F35L mutation increasing polymerase activity. In conclusion, synergistic action of all 3 mutations results in a mice lethal pandemic H1N1 virus.


Subject(s)
Hemagglutinins, Viral/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/pathogenicity , Orthomyxoviridae Infections/genetics , Protein Subunits/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Amino Acid Sequence , Amino Acid Substitution/genetics , Animals , DNA Mutational Analysis , Influenza A Virus, H1N1 Subtype/enzymology , Male , Mice , Mice, Inbred BALB C , Models, Animal , Neuraminidase/genetics , Orthomyxoviridae Infections/physiopathology , Point Mutation , Serial Passage , Virulence Factors/genetics , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL