Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.544
Filter
Add more filters

Publication year range
1.
Cell ; 186(1): 178-193.e15, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608653

ABSTRACT

The hypothalamus regulates innate social behaviors, including mating and aggression. These behaviors can be evoked by optogenetic stimulation of specific neuronal subpopulations within MPOA and VMHvl, respectively. Here, we perform dynamical systems modeling of population neuronal activity in these nuclei during social behaviors. In VMHvl, unsupervised analysis identified a dominant dimension of neural activity with a large time constant (>50 s), generating an approximate line attractor in neural state space. Progression of the neural trajectory along this attractor was correlated with an escalation of agonistic behavior, suggesting that it may encode a scalable state of aggressiveness. Consistent with this, individual differences in the magnitude of the integration dimension time constant were strongly correlated with differences in aggressiveness. In contrast, approximate line attractors were not observed in MPOA during mating; instead, neurons with fast dynamics were tuned to specific actions. Thus, different hypothalamic nuclei employ distinct neural population codes to represent similar social behaviors.


Subject(s)
Sexual Behavior, Animal , Ventromedial Hypothalamic Nucleus , Animals , Sexual Behavior, Animal/physiology , Ventromedial Hypothalamic Nucleus/physiology , Hypothalamus/physiology , Aggression/physiology , Social Behavior
2.
Cell ; 186(18): 3983-4002.e26, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37657419

ABSTRACT

Prime editing enables a wide variety of precise genome edits in living cells. Here we use protein evolution and engineering to generate prime editors with reduced size and improved efficiency. Using phage-assisted evolution, we improved editing efficiencies of compact reverse transcriptases by up to 22-fold and generated prime editors that are 516-810 base pairs smaller than the current-generation editor PEmax. We discovered that different reverse transcriptases specialize in different types of edits and used this insight to generate reverse transcriptases that outperform PEmax and PEmaxΔRNaseH, the truncated editor used in dual-AAV delivery systems. Finally, we generated Cas9 domains that improve prime editing. These resulting editors (PE6a-g) enhance therapeutically relevant editing in patient-derived fibroblasts and primary human T-cells. PE6 variants also enable longer insertions to be installed in vivo following dual-AAV delivery, achieving 40% loxP insertion in the cortex of the murine brain, a 24-fold improvement compared to previous state-of-the-art prime editors.


Subject(s)
Bacteriophages , Protein Engineering , Humans , Animals , Mice , Bacteriophages/genetics , Brain , Cerebral Cortex , DNA-Directed RNA Polymerases
3.
Cell ; 185(1): 9-41, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34995519

ABSTRACT

Recent progress in fluorescence imaging allows neuroscientists to observe the dynamics of thousands of individual neurons, identified genetically or by their connectivity, across multiple brain areas and for extended durations in awake behaving mammals. We discuss advances in fluorescent indicators of neural activity, viral and genetic methods to express these indicators, chronic animal preparations for long-term imaging studies, and microscopes to monitor and manipulate the activity of large neural ensembles. Ca2+ imaging studies of neural activity can track brain area interactions and distributed information processing at cellular resolution. Across smaller spatial scales, high-speed voltage imaging reveals the distinctive spiking patterns and coding properties of targeted neuron types. Collectively, these innovations will propel studies of brain function and dovetail with ongoing neuroscience initiatives to identify new neuron types and develop widely applicable, non-human primate models. The optical toolkit's growing sophistication also suggests that "brain observatory" facilities would be useful open resources for future brain-imaging studies.


Subject(s)
Brain Mapping/methods , Microscopy, Fluorescence, Multiphoton/methods , Neocortex/diagnostic imaging , Neocortex/metabolism , Neurons/metabolism , Optical Imaging/methods , Animals , Calcium/metabolism , Mice , Models, Animal , Neurosciences/methods
4.
Cell ; 185(18): 3356-3374.e22, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055199

ABSTRACT

Drug-tolerant persister cells (persisters) evade apoptosis upon targeted and conventional cancer therapies and represent a major non-genetic barrier to effective cancer treatment. Here, we show that cells that survive treatment with pro-apoptotic BH3 mimetics display a persister phenotype that includes colonization and metastasis in vivo and increased sensitivity toward ferroptosis by GPX4 inhibition. We found that sublethal mitochondrial outer membrane permeabilization (MOMP) and holocytochrome c release are key requirements for the generation of the persister phenotype. The generation of persisters is independent of apoptosome formation and caspase activation, but instead, cytosolic cytochrome c induces the activation of heme-regulated inhibitor (HRI) kinase and engagement of the integrated stress response (ISR) with the consequent synthesis of ATF4, all of which are required for the persister phenotype. Our results reveal that sublethal cytochrome c release couples sublethal MOMP to caspase-independent initiation of an ATF4-dependent, drug-tolerant persister phenotype.


Subject(s)
Cytochromes c , Neoplasms/drug therapy , Animals , Apoptosis , Carrier Proteins , Caspases/metabolism , Cytochromes c/metabolism , Drug Resistance, Neoplasm , Humans , Mice , Mitochondria/metabolism
5.
Cell ; 185(2): 250-265.e16, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35021064

ABSTRACT

Methods to deliver gene editing agents in vivo as ribonucleoproteins could offer safety advantages over nucleic acid delivery approaches. We report the development and application of engineered DNA-free virus-like particles (eVLPs) that efficiently package and deliver base editor or Cas9 ribonucleoproteins. By engineering VLPs to overcome cargo packaging, release, and localization bottlenecks, we developed fourth-generation eVLPs that mediate efficient base editing in several primary mouse and human cell types. Using different glycoproteins in eVLPs alters their cellular tropism. Single injections of eVLPs into mice support therapeutic levels of base editing in multiple tissues, reducing serum Pcsk9 levels 78% following 63% liver editing, and partially restoring visual function in a mouse model of genetic blindness. In vitro and in vivo off-target editing from eVLPs was virtually undetected, an improvement over AAV or plasmid delivery. These results establish eVLPs as promising vehicles for therapeutic macromolecule delivery that combine key advantages of both viral and nonviral delivery.


Subject(s)
Drug Delivery Systems , Genetic Engineering , Proteins/therapeutic use , Virion/genetics , Animals , Base Sequence , Blindness/genetics , Blindness/therapy , Brain/metabolism , DNA/metabolism , Disease Models, Animal , Fibroblasts/metabolism , Gene Editing , HEK293 Cells , Humans , Liver/pathology , Mice , Mice, Inbred C57BL , Proprotein Convertase 9/metabolism , Retinal Pigment Epithelium/pathology , Retroviridae , Virion/ultrastructure , Vision, Ocular
6.
Nat Immunol ; 25(7): 1283-1295, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38862796

ABSTRACT

While some infections elicit germinal centers, others produce only extrafollicular responses. The mechanisms controlling these dichotomous fates are poorly understood. We identify IL-12 as a cytokine switch, acting directly on B cells to promote extrafollicular and suppress germinal center responses. IL-12 initiates a B cell-intrinsic feed-forward loop between IL-12 and IFNγ, amplifying IFNγ production, which promotes proliferation and plasmablast differentiation from mouse and human B cells, in synergy with IL-12. IL-12 sustains the expression of a portion of IFNγ-inducible genes. Together, they also induce unique gene changes, reflecting both IFNγ amplification and cooperative effects between both cytokines. In vivo, cells lacking both IL-12 and IFNγ receptors are more impaired in plasmablast production than those lacking either receptor alone. Further, B cell-derived IL-12 enhances both plasmablast responses and T helper 1 cell commitment. Thus, B cell-derived IL-12, acting on T and B cells, determines the immune response mode, with implications for vaccines, pathogen protection and autoimmunity.


Subject(s)
B-Lymphocytes , Cell Differentiation , Germinal Center , Interferon-gamma , Interleukin-12 , Animals , Interleukin-12/immunology , Interleukin-12/metabolism , Mice , Interferon-gamma/metabolism , Interferon-gamma/immunology , Germinal Center/immunology , Humans , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Differentiation/immunology , Mice, Knockout , Mice, Inbred C57BL , Plasma Cells/immunology , Plasma Cells/metabolism , Lymphocyte Activation/immunology , Receptors, Interferon/metabolism , Receptors, Interferon/genetics , Cells, Cultured , Cell Proliferation
7.
Cell ; 184(14): 3731-3747.e21, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34214470

ABSTRACT

In motor neuroscience, state changes are hypothesized to time-lock neural assemblies coordinating complex movements, but evidence for this remains slender. We tested whether a discrete change from more autonomous to coherent spiking underlies skilled movement by imaging cerebellar Purkinje neuron complex spikes in mice making targeted forelimb-reaches. As mice learned the task, millimeter-scale spatiotemporally coherent spiking emerged ipsilateral to the reaching forelimb, and consistent neural synchronization became predictive of kinematic stereotypy. Before reach onset, spiking switched from more disordered to internally time-locked concerted spiking and silence. Optogenetic manipulations of cerebellar feedback to the inferior olive bi-directionally modulated neural synchronization and reaching direction. A simple model explained the reorganization of spiking during reaching as reflecting a discrete bifurcation in olivary network dynamics. These findings argue that to prepare learned movements, olivo-cerebellar circuits enter a self-regulated, synchronized state promoting motor coordination. State changes facilitating behavioral transitions may generalize across neural systems.


Subject(s)
Movement/physiology , Nerve Net/physiology , Action Potentials/physiology , Animals , Calcium/metabolism , Cerebellum/physiology , Cortical Synchronization , Forelimb/physiology , Interneurons/physiology , Learning , Mice, Inbred C57BL , Mice, Transgenic , Models, Neurological , Motor Activity/physiology , Olivary Nucleus/physiology , Optogenetics , Purkinje Cells/physiology , Stereotyped Behavior , Task Performance and Analysis
8.
Cell ; 184(20): 5107-5121.e14, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34551316

ABSTRACT

Neural circuit assembly features simultaneous targeting of numerous neuronal processes from constituent neuron types, yet the dynamics is poorly understood. Here, we use the Drosophila olfactory circuit to investigate dynamic cellular processes by which olfactory receptor neurons (ORNs) target axons precisely to specific glomeruli in the ipsi- and contralateral antennal lobes. Time-lapse imaging of individual axons from 30 ORN types revealed a rich diversity in extension speed, innervation timing, and ipsilateral branch locations and identified that ipsilateral targeting occurs via stabilization of transient interstitial branches. Fast imaging using adaptive optics-corrected lattice light-sheet microscopy showed that upon approaching target, many ORN types exhibiting "exploring branches" consisted of parallel microtubule-based terminal branches emanating from an F-actin-rich hub. Antennal nerve ablations uncovered essential roles for bilateral axons in contralateral target selection and for ORN axons to facilitate dendritic refinement of postsynaptic partner neurons. Altogether, these observations provide cellular bases for wiring specificity establishment.


Subject(s)
Olfactory Pathways/cytology , Olfactory Pathways/diagnostic imaging , Time-Lapse Imaging , Animals , Axons/physiology , Cells, Cultured , Dendrites/physiology , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Microtubules/metabolism , Olfactory Receptor Neurons/physiology , Time Factors
9.
Cell ; 184(22): 5635-5652.e29, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34653350

ABSTRACT

While prime editing enables precise sequence changes in DNA, cellular determinants of prime editing remain poorly understood. Using pooled CRISPRi screens, we discovered that DNA mismatch repair (MMR) impedes prime editing and promotes undesired indel byproducts. We developed PE4 and PE5 prime editing systems in which transient expression of an engineered MMR-inhibiting protein enhances the efficiency of substitution, small insertion, and small deletion prime edits by an average 7.7-fold and 2.0-fold compared to PE2 and PE3 systems, respectively, while improving edit/indel ratios by 3.4-fold in MMR-proficient cell types. Strategic installation of silent mutations near the intended edit can enhance prime editing outcomes by evading MMR. Prime editor protein optimization resulted in a PEmax architecture that enhances editing efficacy by 2.8-fold on average in HeLa cells. These findings enrich our understanding of prime editing and establish prime editing systems that show substantial improvement across 191 edits in seven mammalian cell types.


Subject(s)
Gene Editing , CRISPR-Cas Systems/genetics , Cell Line , DNA/metabolism , DNA Mismatch Repair/genetics , Female , Genes, Dominant , Genome, Human , Humans , Male , Models, Biological , MutL Protein Homolog 1/genetics , Mutation/genetics , RNA/metabolism , Reproducibility of Results
10.
Cell ; 184(2): 489-506.e26, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33338423

ABSTRACT

Single-cell transcriptomics has been widely applied to classify neurons in the mammalian brain, while systems neuroscience has historically analyzed the encoding properties of cortical neurons without considering cell types. Here we examine how specific transcriptomic types of mouse prefrontal cortex (PFC) projection neurons relate to axonal projections and encoding properties across multiple cognitive tasks. We found that most types projected to multiple targets, and most targets received projections from multiple types, except PFC→PAG (periaqueductal gray). By comparing Ca2+ activity of the molecularly homogeneous PFC→PAG type against two heterogeneous classes in several two-alternative choice tasks in freely moving mice, we found that all task-related signals assayed were qualitatively present in all examined classes. However, PAG-projecting neurons most potently encoded choice in cued tasks, whereas contralateral PFC-projecting neurons most potently encoded reward context in an uncued task. Thus, task signals are organized redundantly, but with clear quantitative biases across cells of specific molecular-anatomical characteristics.


Subject(s)
Cognition/physiology , Neurons/physiology , Prefrontal Cortex/physiology , Task Performance and Analysis , Animals , Calcium/metabolism , Choice Behavior , Cues , Imaging, Three-Dimensional , Integrases/metabolism , Mice, Inbred C57BL , Odorants , Optogenetics , Periaqueductal Gray/physiology , Reward , Single-Cell Analysis , Transcriptome/genetics
11.
Cell ; 184(2): 422-440.e17, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33450207

ABSTRACT

Itch is an evolutionarily conserved sensation that facilitates expulsion of pathogens and noxious stimuli from the skin. However, in organ failure, cancer, and chronic inflammatory disorders such as atopic dermatitis (AD), itch becomes chronic, intractable, and debilitating. In addition to chronic itch, patients often experience intense acute itch exacerbations. Recent discoveries have unearthed the neuroimmune circuitry of itch, leading to the development of anti-itch treatments. However, mechanisms underlying acute itch exacerbations remain overlooked. Herein, we identify that a large proportion of patients with AD harbor allergen-specific immunoglobulin E (IgE) and exhibit a propensity for acute itch flares. In mice, while allergen-provoked acute itch is mediated by the mast cell-histamine axis in steady state, AD-associated inflammation renders this pathway dispensable. Instead, a previously unrecognized basophil-leukotriene (LT) axis emerges as critical for acute itch flares. By probing fundamental itch mechanisms, our study highlights a basophil-neuronal circuit that may underlie a variety of neuroimmune processes.


Subject(s)
Basophils/pathology , Neurons/pathology , Pruritus/pathology , Acute Disease , Allergens/immunology , Animals , Chronic Disease , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Disease Models, Animal , Histamine/metabolism , Humans , Immunoglobulin E/immunology , Inflammation/pathology , Leukotrienes/metabolism , Mast Cells/immunology , Mice, Inbred C57BL , Phenotype , Pruritus/immunology , TRPA1 Cation Channel/metabolism , TRPV Cation Channels/metabolism
12.
Cell ; 184(8): 2167-2182.e22, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33811809

ABSTRACT

Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1ß, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.


Subject(s)
COVID-19/complications , Cardiotonic Agents/therapeutic use , Cell Cycle Proteins/antagonists & inhibitors , Heart Diseases/drug therapy , Quinazolinones/therapeutic use , Transcription Factors/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Line , Cytokines/metabolism , Female , Heart Diseases/etiology , Human Embryonic Stem Cells , Humans , Inflammation/complications , Inflammation/drug therapy , Mice , Mice, Inbred C57BL , Transcription Factors/metabolism , COVID-19 Drug Treatment
13.
Nat Immunol ; 24(10): 1725-1734, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37735591

ABSTRACT

The immune response to SARS-CoV-2 antigen after infection or vaccination is defined by the durable production of antibodies and T cells. Population-based monitoring typically focuses on antibody titer, but there is a need for improved characterization and quantification of T cell responses. Here, we used multimodal sequencing technologies to perform a longitudinal analysis of circulating human leukocytes collected before and after immunization with the mRNA vaccine BNT162b2. Our data indicated distinct subpopulations of CD8+ T cells, which reliably appeared 28 days after prime vaccination. Using a suite of cross-modality integration tools, we defined their transcriptome, accessible chromatin landscape and immunophenotype, and we identified unique biomarkers within each modality. We further showed that this vaccine-induced population was SARS-CoV-2 antigen-specific and capable of rapid clonal expansion. Moreover, we identified these CD8+ T cell populations in scRNA-seq datasets from COVID-19 patients and found that their relative frequency and differentiation outcomes were predictive of subsequent clinical outcomes.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , COVID-19 Vaccines , SARS-CoV-2 , BNT162 Vaccine , COVID-19/prevention & control , Vaccination , Antibodies, Viral
14.
Cell ; 180(3): 568-584.e23, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31981491

ABSTRACT

We present the largest exome sequencing study of autism spectrum disorder (ASD) to date (n = 35,584 total samples, 11,986 with ASD). Using an enhanced analytical framework to integrate de novo and case-control rare variation, we identify 102 risk genes at a false discovery rate of 0.1 or less. Of these genes, 49 show higher frequencies of disruptive de novo variants in individuals ascertained to have severe neurodevelopmental delay, whereas 53 show higher frequencies in individuals ascertained to have ASD; comparing ASD cases with mutations in these groups reveals phenotypic differences. Expressed early in brain development, most risk genes have roles in regulation of gene expression or neuronal communication (i.e., mutations effect neurodevelopmental and neurophysiological changes), and 13 fall within loci recurrently hit by copy number variants. In cells from the human cortex, expression of risk genes is enriched in excitatory and inhibitory neuronal lineages, consistent with multiple paths to an excitatory-inhibitory imbalance underlying ASD.


Subject(s)
Autistic Disorder/genetics , Cerebral Cortex/growth & development , Exome Sequencing/methods , Gene Expression Regulation, Developmental , Neurobiology/methods , Case-Control Studies , Cell Lineage , Cohort Studies , Exome , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Male , Mutation, Missense , Neurons/metabolism , Phenotype , Sex Factors , Single-Cell Analysis/methods
15.
Nat Immunol ; 23(1): 135-145, 2022 01.
Article in English | MEDLINE | ID: mdl-34937918

ABSTRACT

Memory B cells (MBCs) protect the body from recurring infections. MBCs differ from their naive counterparts (NBCs) in many ways, but functional and surface marker differences are poorly characterized. In addition, although mice are the prevalent model for human immunology, information is limited concerning the nature of homology in B cell compartments. To address this, we undertook an unbiased, large-scale screening of both human and mouse MBCs for their differential expression of surface markers. By correlating the expression of such markers with extensive panels of known markers in high-dimensional flow cytometry, we comprehensively identified numerous surface proteins that are differentially expressed between MBCs and NBCs. The combination of these markers allows for the identification of MBCs in humans and mice and provides insight into their functional differences. These results will greatly enhance understanding of humoral immunity and can be used to improve immune monitoring.


Subject(s)
B-Lymphocytes/immunology , Immunologic Memory/immunology , Memory B Cells/immunology , Animals , B-Lymphocytes/metabolism , Biomarkers/metabolism , Female , Flow Cytometry/methods , Humans , Immunity, Humoral/immunology , Male , Memory B Cells/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Phenotype
16.
Nat Immunol ; 23(12): 1703-1713, 2022 12.
Article in English | MEDLINE | ID: mdl-36411381

ABSTRACT

Lung group 2 innate lymphoid cells (ILC2s) control the nature of immune responses to airway allergens. Some microbial products, including those that stimulate interferons, block ILC2 activation, but whether this occurs after natural infections or causes durable ILC2 inhibition is unclear. In the present study, we cohoused laboratory and pet store mice as a model of physiological microbial exposure. Laboratory mice cohoused for 2 weeks had impaired ILC2 responses and reduced lung eosinophilia to intranasal allergens, whereas these responses were restored in mice cohoused for ≥2 months. ILC2 inhibition at 2 weeks correlated with increased interferon receptor signaling, which waned by 2 months of cohousing. Reinduction of interferons in 2-month cohoused mice blocked ILC2 activation. These findings suggest that ILC2s respond dynamically to environmental cues and that microbial exposures do not control long-term desensitization of innate type 2 responses to allergens.


Subject(s)
Allergens , Immunity, Innate , Mice , Animals , Lymphocytes , Cytokines , Lung , Interferons , Interleukin-33
17.
Nat Immunol ; 23(7): 1063-1075, 2022 07.
Article in English | MEDLINE | ID: mdl-35668320

ABSTRACT

Extracellular acidification occurs in inflamed tissue and the tumor microenvironment; however, a systematic study on how pH sensing contributes to tissue homeostasis is lacking. In the present study, we examine cell type-specific roles of the pH sensor G protein-coupled receptor 65 (GPR65) and its inflammatory disease-associated Ile231Leu-coding variant in inflammation control. GPR65 Ile231Leu knock-in mice are highly susceptible to both bacterial infection-induced and T cell-driven colitis. Mechanistically, GPR65 Ile231Leu elicits a cytokine imbalance through impaired helper type 17 T cell (TH17 cell) and TH22 cell differentiation and interleukin (IL)-22 production in association with altered cellular metabolism controlled through the cAMP-CREB-DGAT1 axis. In dendritic cells, GPR65 Ile231Leu elevates IL-12 and IL-23 release at acidic pH and alters endo-lysosomal fusion and degradation capacity, resulting in enhanced antigen presentation. The present study highlights GPR65 Ile231Leu as a multistep risk factor in intestinal inflammation and illuminates a mechanism by which pH sensing controls inflammatory circuits and tissue homeostasis.


Subject(s)
Colitis , Receptors, G-Protein-Coupled , Animals , Colitis/metabolism , Hydrogen-Ion Concentration , Inflammation/metabolism , Lysosomes/metabolism , Mice , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Th17 Cells/metabolism
18.
Nat Immunol ; 23(10): 1457-1469, 2022 10.
Article in English | MEDLINE | ID: mdl-36151396

ABSTRACT

In lupus, Toll-like receptor 7 (TLR7) and TLR9 mediate loss of tolerance to RNA and DNA, respectively. Yet, TLR7 promotes disease, while TLR9 protects from disease, implying differences in signaling. To dissect this 'TLR paradox', we generated two TLR9 point mutants (lacking either ligand (TLR9K51E) or MyD88 (TLR9P915H) binding) in lupus-prone MRL/lpr mice. Ameliorated disease of Tlr9K51E mice compared to Tlr9-/- controls revealed a TLR9 'scaffold' protective function that is ligand and MyD88 independent. Unexpectedly, Tlr9P915H mice were more protected than both Tlr9K51E and Tlr9WT mice, suggesting that TLR9 also possesses ligand-dependent, but MyD88-independent, regulatory signaling and MyD88-mediated proinflammatory signaling. Triple-mixed bone marrow chimeras showed that TLR9-MyD88-independent regulatory roles were B cell intrinsic and restrained differentiation into pathogenic age-associated B cells and plasmablasts. These studies reveal MyD88-independent regulatory roles of TLR9, shedding light on the biology of endosomal TLRs.


Subject(s)
Toll-Like Receptor 7 , Toll-Like Receptor 9 , Animals , DNA , Ligands , Mice , Mice, Inbred C57BL , Mice, Inbred MRL lpr , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , RNA , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism
19.
Nat Immunol ; 23(4): 532-542, 2022 04.
Article in English | MEDLINE | ID: mdl-35332327

ABSTRACT

The use of lipid-formulated RNA vaccines for cancer or COVID-19 is associated with dose-limiting systemic inflammatory responses in humans that were not predicted from preclinical studies. Here, we show that the 'interleukin 1 (IL-1)-interleukin 1 receptor antagonist (IL-1ra)' axis regulates vaccine-mediated systemic inflammation in a host-specific manner. In human immune cells, RNA vaccines induce production of IL-1 cytokines, predominantly IL-1ß, which is dependent on both the RNA and lipid formulation. IL-1 in turn triggers the induction of the broad spectrum of pro-inflammatory cytokines (including IL-6). Unlike humans, murine leukocytes respond to RNA vaccines by upregulating anti-inflammatory IL-1ra relative to IL-1 (predominantly IL-1α), protecting mice from cytokine-mediated toxicities at >1,000-fold higher vaccine doses. Thus, the IL-1 pathway plays a key role in triggering RNA vaccine-associated innate signaling, an effect that was unexpectedly amplified by certain lipids used in vaccine formulations incorporating N1-methyl-pseudouridine-modified RNA to reduce activation of Toll-like receptor signaling.


Subject(s)
Inflammation , Interleukin 1 Receptor Antagonist Protein , Interleukin-1 , Animals , COVID-19 , Inflammation/immunology , Inflammation/metabolism , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin-1/genetics , Interleukin-1/immunology , Lipids , Mice , RNA , Vaccines, Synthetic , mRNA Vaccines/adverse effects , mRNA Vaccines/metabolism
20.
Cell ; 177(3): 669-682.e24, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30929904

ABSTRACT

Throughout mammalian neocortex, layer 5 pyramidal (L5) cells project via the pons to a vast number of cerebellar granule cells (GrCs), forming a fundamental pathway. Yet, it is unknown how neuronal dynamics are transformed through the L5→GrC pathway. Here, by directly comparing premotor L5 and GrC activity during a forelimb movement task using dual-site two-photon Ca2+ imaging, we found that in expert mice, L5 and GrC dynamics were highly similar. L5 cells and GrCs shared a common set of task-encoding activity patterns, possessed similar diversity of responses, and exhibited high correlations comparable to local correlations among L5 cells. Chronic imaging revealed that these dynamics co-emerged in cortex and cerebellum over learning: as behavioral performance improved, initially dissimilar L5 cells and GrCs converged onto a shared, low-dimensional, task-encoding set of neural activity patterns. Thus, a key function of cortico-cerebellar communication is the propagation of shared dynamics that emerge during learning.


Subject(s)
Cerebellum/metabolism , Neocortex/metabolism , Animals , Behavior, Animal , Calcium/metabolism , Forelimb/physiology , Mice , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton , Neocortex/pathology , Opsins/genetics , Opsins/metabolism , Pyramidal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL