Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.505
Filter
Add more filters

Publication year range
1.
Cell ; 187(18): 4946-4963.e17, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39089253

ABSTRACT

The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use longitudinal two-photon imaging in awake mice and single-cell transcriptomics to elucidate the mechanisms of ChP regulation of brain inflammation. We used intracerebroventricular injections of lipopolysaccharides (LPS) to model meningitis in mice and observed that neutrophils and monocytes accumulated in the ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process and revealed that ChP epithelial cells transiently specialize to nurture immune cells, coordinating their recruitment, survival, and differentiation as well as regulation of the tight junctions that control the permeability of the ChP brain barrier. Collectively, we provide a mechanistic understanding and a comprehensive roadmap of neuroinflammation at the ChP brain barrier.


Subject(s)
Blood-Brain Barrier , Choroid Plexus , Lipopolysaccharides , Macrophages , Neuroinflammatory Diseases , Neutrophils , Choroid Plexus/metabolism , Animals , Mice , Neuroinflammatory Diseases/metabolism , Blood-Brain Barrier/metabolism , Macrophages/metabolism , Macrophages/immunology , Neutrophils/metabolism , Neutrophils/immunology , Mice, Inbred C57BL , Monocytes/metabolism , Male , Tight Junctions/metabolism , Epithelial Cells/metabolism , Female
2.
Cell ; 181(4): 848-864.e18, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32298651

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a progressive condition of chronic bronchitis, small airway obstruction, and emphysema that represents a leading cause of death worldwide. While inflammation, fibrosis, mucus hypersecretion, and metaplastic epithelial lesions are hallmarks of this disease, their origins and dependent relationships remain unclear. Here we apply single-cell cloning technologies to lung tissue of patients with and without COPD. Unlike control lungs, which were dominated by normal distal airway progenitor cells, COPD lungs were inundated by three variant progenitors epigenetically committed to distinct metaplastic lesions. When transplanted to immunodeficient mice, these variant clones induced pathology akin to the mucous and squamous metaplasia, neutrophilic inflammation, and fibrosis seen in COPD. Remarkably, similar variants pre-exist as minor constituents of control and fetal lung and conceivably act in normal processes of immune surveillance. However, these same variants likely catalyze the pathologic and progressive features of COPD when expanded to high numbers.


Subject(s)
Lung/pathology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Adult , Aged , Animals , Female , Fibrosis/physiopathology , Humans , Inflammation/pathology , Lung/metabolism , Male , Metaplasia/physiopathology , Mice , Middle Aged , Neutrophils/immunology , Pneumonia/pathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Single-Cell Analysis/methods , Stem Cells/metabolism
3.
Cell ; 173(6): 1343-1355.e24, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29856953

ABSTRACT

Numerous well-defined classes of retinal ganglion cells innervate the thalamus to guide image-forming vision, yet the rules governing their convergence and divergence remain unknown. Using two-photon calcium imaging in awake mouse thalamus, we observed a functional arrangement of retinal ganglion cell axonal boutons in which coarse-scale retinotopic ordering gives way to fine-scale organization based on shared preferences for other visual features. Specifically, at the ∼6 µm scale, clusters of boutons from different axons often showed similar preferences for either one or multiple features, including axis and direction of motion, spatial frequency, and changes in luminance. Conversely, individual axons could "de-multiplex" information channels by participating in multiple, functionally distinct bouton clusters. Finally, ultrastructural analyses demonstrated that retinal axonal boutons in a local cluster often target the same dendritic domain. These data suggest that functionally specific convergence and divergence of retinal axons may impart diverse, robust, and often novel feature selectivity to visual thalamus.


Subject(s)
Axons/physiology , Retina/physiology , Retinal Ganglion Cells/physiology , Thalamus/physiology , Animals , Cluster Analysis , Dendrites/physiology , Fuzzy Logic , Geniculate Bodies/physiology , Male , Mice , Mice, Inbred C57BL , Motion , Neurons/physiology , Presynaptic Terminals/physiology , Vision, Ocular , Visual Pathways
4.
Cell ; 172(4): 825-840.e18, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29336888

ABSTRACT

Therapeutic harnessing of adaptive immunity via checkpoint inhibition has transformed the treatment of many cancers. Despite unprecedented long-term responses, most patients do not respond to these therapies. Immunotherapy non-responders often harbor high levels of circulating myeloid-derived suppressor cells (MDSCs)-an immunosuppressive innate cell population. Through genetic and pharmacological approaches, we uncovered a pathway governing MDSC abundance in multiple cancer types. Therapeutic liver-X nuclear receptor (LXR) agonism reduced MDSC abundance in murine models and in patients treated in a first-in-human dose escalation phase 1 trial. MDSC depletion was associated with activation of cytotoxic T lymphocyte (CTL) responses in mice and patients. The LXR transcriptional target ApoE mediated these effects in mice, where LXR/ApoE activation therapy elicited robust anti-tumor responses and also enhanced T cell activation during various immune-based therapies. We implicate the LXR/ApoE axis in the regulation of innate immune suppression and as a target for enhancing the efficacy of cancer immunotherapy in patients.


Subject(s)
Apolipoproteins E/immunology , Immunity, Innate , Liver X Receptors/immunology , Myeloid-Derived Suppressor Cells/immunology , Neoplasms, Experimental/immunology , Animals , Apolipoproteins E/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Female , Liver X Receptors/genetics , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Myeloid-Derived Suppressor Cells/pathology , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , Xenograft Model Antitumor Assays
5.
Nature ; 625(7993): 110-118, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38093002

ABSTRACT

Many theories of offline memory consolidation posit that the pattern of neurons activated during a salient sensory experience will be faithfully reactivated, thereby stabilizing the pattern1,2. However, sensory-evoked patterns are not stable but, instead, drift across repeated experiences3-6. Here, to investigate the relationship between reactivations and the drift of sensory representations, we imaged the calcium activity of thousands of excitatory neurons in the mouse lateral visual cortex. During the minute after a visual stimulus, we observed transient, stimulus-specific reactivations, often coupled with hippocampal sharp-wave ripples. Stimulus-specific reactivations were abolished by local cortical silencing during the preceding stimulus. Reactivations early in a session systematically differed from the pattern evoked by the previous stimulus-they were more similar to future stimulus response patterns, thereby predicting both within-day and across-day representational drift. In particular, neurons that participated proportionally more or less in early stimulus reactivations than in stimulus response patterns gradually increased or decreased their future stimulus responses, respectively. Indeed, we could accurately predict future changes in stimulus responses and the separation of responses to distinct stimuli using only the rate and content of reactivations. Thus, reactivations may contribute to a gradual drift and separation in sensory cortical response patterns, thereby enhancing sensory discrimination7.


Subject(s)
Hippocampus , Memory Consolidation , Neurons , Visual Cortex , Animals , Mice , Hippocampus/physiology , Neurons/physiology , Calcium/metabolism , Visual Cortex/cytology , Visual Cortex/physiology
6.
Nature ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39385029

ABSTRACT

Caloric restriction extends healthy lifespan in multiple species1. Intermittent fasting, an alternative form of dietary restriction, is potentially more sustainable in humans, but its effectiveness remains largely unexplored2-8. Identifying the most efficacious forms of dietary restriction is key for developing interventions to improve human health and longevity9. Here we performed an extensive assessment of graded levels of caloric restriction (20% and 40%) and intermittent fasting (1 and 2 days fasting per week) on the health and survival of 960 genetically diverse female mice. We show that caloric restriction and intermittent fasting both resulted in lifespan extension in proportion to the degree of restriction. Lifespan was heritable and genetics had a larger influence on lifespan than dietary restriction. The strongest trait associations with lifespan included retention of body weight through periods of handling-an indicator of stress resilience, high lymphocyte proportion, low red blood cell distribution width and high adiposity in late life. Health effects differed between interventions and exhibited inconsistent relationships with lifespan extension. 40% caloric restriction had the strongest lifespan extension effect but led to a loss of lean mass and changes in the immune repertoire that could confer susceptibility to infections. Intermittent fasting did not extend the lifespan of mice with high pre-intervention body weight, and two-day intermittent fasting was associated with disruption of erythroid cell populations. Metabolic responses to dietary restriction, including reduced adiposity and lower fasting glucose, were not associated with increased lifespan, suggesting that dietary restriction does more than just counteract the negative effects of obesity. Our findings indicate that improving health and extending lifespan are not synonymous and raise questions about which end points are the most relevant for evaluating aging interventions in preclinical models and clinical trials.

7.
Nature ; 621(7977): 146-153, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37648853

ABSTRACT

Learning and memory are thought to require hippocampal long-term potentiation (LTP), and one of the few central dogmas of molecular neuroscience that has stood undisputed for more than three decades is that LTP induction requires enzymatic activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII)1-3. However, as we delineate here, the experimental evidence is surprisingly far from conclusive. All previous interventions inhibiting enzymatic CaMKII activity and LTP4-8 also interfere with structural CaMKII roles, in particular binding to the NMDA-type glutamate receptor subunit GluN2B9-14. Thus, we here characterized and utilized complementary sets of new opto-/pharmaco-genetic tools to distinguish between enzymatic and structural CaMKII functions. Several independent lines of evidence demonstrated LTP induction by a structural function of CaMKII rather than by its enzymatic activity. The sole contribution of kinase activity was autoregulation of this structural role via T286 autophosphorylation, which explains why this distinction has been elusive for decades. Directly initiating the structural function in a manner that circumvented this T286 role was sufficient to elicit robust LTP, even when enzymatic CaMKII activity was blocked.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Long-Term Potentiation , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/chemistry , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Glutamic Acid/metabolism , Hippocampus/physiology , Learning/physiology , Long-Term Potentiation/physiology , Optogenetics , Phosphorylation , Protein Binding
8.
Trends Biochem Sci ; 48(2): 100-102, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36435675

ABSTRACT

Training to enhance the effectiveness of oral presentations is often neglected in science, technology, engineering, and mathematics (STEM) fields. In this article, we summarize our experience of teaching a semester-long class in speaking skills to STEM graduate students and advocate for the critical importance of these skills to professional success.


Subject(s)
Students , Technology , Humans , Technology/education , Mathematics , Education, Graduate
9.
Am J Hum Genet ; 111(7): 1370-1382, 2024 07 11.
Article in English | MEDLINE | ID: mdl-38917801

ABSTRACT

Extra-axial cavernous hemangiomas (ECHs) are complex vascular lesions mainly found in the spine and cavernous sinus. Their removal poses significant risk due to their vascularity and diffuse nature, and their genetic underpinnings remain incompletely understood. Our approach involved genetic analyses on 31 tissue samples of ECHs employing whole-exome sequencing and targeted deep sequencing. We explored downstream signaling pathways, gene expression changes, and resultant phenotypic shifts induced by these mutations, both in vitro and in vivo. In our cohort, 77.4% of samples had somatic missense variants in GNA14, GNAQ, or GJA4. Transcriptomic analysis highlighted significant pathway upregulation, with the GNAQ c.626A>G (p.Gln209Arg) mutation elevating PI3K-AKT-mTOR and angiogenesis-related pathways, while GNA14 c.614A>T (p.Gln205Leu) mutation led to MAPK and angiogenesis-related pathway upregulation. Using a mouse xenograft model, we observed enlarged vessels from these mutations. Additionally, we initiated rapamycin treatment in a 14-year-old individual harboring the GNAQ c.626A>G (p.Gln209Arg) variant, resulting in gradual regression of cutaneous cavernous hemangiomas and improved motor strength, with minimal side effects. Understanding these mutations and their pathways provides a foundation for developing therapies for ECHs resistant to current therapies. Indeed, the administration of rapamycin in an individual within this study highlights the promise of targeted treatments in treating these complex lesions.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11 , GTP-Binding Protein alpha Subunits , Humans , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Animals , Mice , Female , Male , GTP-Binding Protein alpha Subunits/genetics , Mutation , Adult , Middle Aged , Signal Transduction , Hemangioma, Cavernous/genetics , Hemangioma, Cavernous/pathology , Adolescent , Exome Sequencing , Sirolimus/pharmacology , Sirolimus/therapeutic use , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics
10.
N Engl J Med ; 391(4): 299-310, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38856224

ABSTRACT

BACKGROUND: Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease associated with liver-related complications and death. The efficacy and safety of tirzepatide, an agonist of the glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptors, in patients with MASH and moderate or severe fibrosis is unclear. METHODS: We conducted a phase 2, dose-finding, multicenter, double-blind, randomized, placebo-controlled trial involving participants with biopsy-confirmed MASH and stage F2 or F3 (moderate or severe) fibrosis. Participants were randomly assigned to receive once-weekly subcutaneous tirzepatide (5 mg, 10 mg, or 15 mg) or placebo for 52 weeks. The primary end point was resolution of MASH without worsening of fibrosis at 52 weeks. A key secondary end point was an improvement (decrease) of at least one fibrosis stage without worsening of MASH. RESULTS: Among 190 participants who had undergone randomization, 157 had liver-biopsy results at week 52 that could be evaluated, with missing values imputed under the assumption that they would follow the pattern of results in the placebo group. The percentage of participants who met the criteria for resolution of MASH without worsening of fibrosis was 10% in the placebo group, 44% in the 5-mg tirzepatide group (difference vs. placebo, 34 percentage points; 95% confidence interval [CI], 17 to 50), 56% in the 10-mg tirzepatide group (difference, 46 percentage points; 95% CI, 29 to 62), and 62% in the 15-mg tirzepatide group (difference, 53 percentage points; 95% CI, 37 to 69) (P<0.001 for all three comparisons). The percentage of participants who had an improvement of at least one fibrosis stage without worsening of MASH was 30% in the placebo group, 55% in the 5-mg tirzepatide group (difference vs. placebo, 25 percentage points; 95% CI, 5 to 46), 51% in the 10-mg tirzepatide group (difference, 22 percentage points; 95% CI, 1 to 42), and 51% in the 15-mg tirzepatide group (difference, 21 percentage points; 95% CI, 1 to 42). The most common adverse events in the tirzepatide groups were gastrointestinal events, and most were mild or moderate in severity. CONCLUSIONS: In this phase 2 trial involving participants with MASH and moderate or severe fibrosis, treatment with tirzepatide for 52 weeks was more effective than placebo with respect to resolution of MASH without worsening of fibrosis. Larger and longer trials are needed to further assess the efficacy and safety of tirzepatide for the treatment of MASH. (Funded by Eli Lilly; SYNERGY-NASH ClinicalTrials.gov number, NCT04166773.).


Subject(s)
Fatty Liver , Glucagon-Like Peptide-2 Receptor , Liver Cirrhosis , Adult , Aged , Female , Humans , Male , Middle Aged , Dose-Response Relationship, Drug , Double-Blind Method , Fatty Liver/drug therapy , Gastric Inhibitory Polypeptide/agonists , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-2 Receptor/agonists , Injections, Subcutaneous , Liver/pathology , Liver/drug effects , Liver Cirrhosis/drug therapy
11.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38682276

ABSTRACT

The GPR124/RECK/WNT7 pathway is an essential regulator of CNS angiogenesis and blood-brain barrier (BBB) function. GPR124, a brain endothelial adhesion seven-pass transmembrane protein, associates with RECK, which binds and stabilizes newly synthesized WNT7 that is transferred to frizzled (FZD) to initiate canonical ß-catenin signaling. GPR124 remains enigmatic: although its extracellular domain (ECD) is essential, the poorly conserved intracellular domain (ICD) appears to be variably required in mammals versus zebrafish, potentially via adaptor protein bridging of GPR124 and FZD ICDs. GPR124 ICD deletion impairs zebrafish angiogenesis, but paradoxically retains WNT7 signaling upon mammalian transfection. We thus investigated GPR124 ICD function using the mouse deletion mutant Gpr124ΔC. Despite inefficiently expressed GPR124ΔC protein, Gpr124ΔC/ΔC mice could be born with normal cerebral cortex angiogenesis, in comparison with Gpr124-/- embryonic lethality, forebrain avascularity and hemorrhage. Gpr124ΔC/ΔC vascular phenotypes were restricted to sporadic ganglionic eminence angiogenic defects, attributable to impaired GPR124ΔC protein expression. Furthermore, Gpr124ΔC and the recombinant GPR124 ECD rescued WNT7 signaling in culture upon brain endothelial Gpr124 knockdown. Thus, in mice, GPR124-regulated CNS forebrain angiogenesis and BBB function are exerted by ICD-independent functionality, extending the signaling mechanisms used by adhesion seven-pass transmembrane receptors.


Subject(s)
Blood-Brain Barrier , Brain , Neovascularization, Physiologic , Receptors, G-Protein-Coupled , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/embryology , Neovascularization, Physiologic/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Mice , Brain/metabolism , Brain/embryology , Protein Domains , Mice, Knockout , Signal Transduction , Wnt Proteins/metabolism , Wnt Proteins/genetics , Humans , Endothelial Cells/metabolism , Angiogenesis , GPI-Linked Proteins
12.
PLoS Biol ; 22(7): e3002698, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38950062

ABSTRACT

The fitness effects of new mutations determine key properties of evolutionary processes. Beneficial mutations drive evolution, yet selection is also shaped by the frequency of small-effect deleterious mutations, whose combined effect can burden otherwise adaptive lineages and alter evolutionary trajectories and outcomes in clonally evolving organisms such as viruses, microbes, and tumors. The small effect sizes of these important mutations have made accurate measurements of their rates difficult. In microbes, assessing the effect of mutations on growth can be especially instructive, as this complex phenotype is closely linked to fitness in clonally evolving organisms. Here, we perform high-throughput time-lapse microscopy on cells from mutation-accumulation strains to precisely infer the distribution of mutational effects on growth rate in the budding yeast, Saccharomyces cerevisiae. We show that mutational effects on growth rate are overwhelmingly negative, highly skewed towards very small effect sizes, and frequent enough to suggest that deleterious hitchhikers may impose a significant burden on evolving lineages. By using lines that accumulated mutations in either wild-type or slippage repair-defective backgrounds, we further disentangle the effects of 2 common types of mutations, single-nucleotide substitutions and simple sequence repeat indels, and show that they have distinct effects on yeast growth rate. Although the average effect of a simple sequence repeat mutation is very small (approximately 0.3%), many do alter growth rate, implying that this class of frequent mutations has an important evolutionary impact.


Subject(s)
Genetic Fitness , Microsatellite Repeats , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Microsatellite Repeats/genetics , Mutation/genetics , Mutation Accumulation
13.
Cell ; 149(3): 525-37, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22521361

ABSTRACT

Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We sequenced BCAs in patients with autism or related NDDs, revealing disruption of 33 loci in four general categories: (1) genes previously associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, and CDKL5), (2) single-gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, and SNURF-SNRPN), (3) novel risk loci (e.g., CHD8, KIRREL3, and ZNF507), and (4) genes associated with later-onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, and ANK3). We also discovered among neurodevelopmental cases a profoundly increased burden of copy-number variants from these 33 loci and a significant enrichment of polygenic risk alleles from genome-wide association studies of autism and schizophrenia. Our findings suggest a polygenic risk model of autism and reveal that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages.


Subject(s)
Child Development Disorders, Pervasive/genetics , Chromosome Aberrations , Autistic Disorder/diagnosis , Autistic Disorder/genetics , Child , Child Development Disorders, Pervasive/diagnosis , Chromosome Breakage , Chromosome Deletion , DNA Copy Number Variations , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Nervous System/growth & development , Schizophrenia/genetics , Sequence Analysis, DNA , Signal Transduction
14.
Nature ; 597(7875): 245-249, 2021 09.
Article in English | MEDLINE | ID: mdl-34433964

ABSTRACT

Transient neuromodulation can have long-lasting effects on neural circuits and motivational states1-4. Here we examine the dopaminergic mechanisms that underlie mating drive and its persistence in male mice. Brief investigation of females primes a male's interest to mate for tens of minutes, whereas a single successful mating triggers satiety that gradually recovers over days5. We found that both processes are controlled by specialized anteroventral and preoptic periventricular (AVPV/PVpo) dopamine neurons in the hypothalamus. During the investigation of females, dopamine is transiently released in the medial preoptic area (MPOA)-an area that is critical for mating behaviours. Optogenetic stimulation of AVPV/PVpo dopamine axons in the MPOA recapitulates the priming effect of exposure to a female. Using optical and molecular methods for tracking and manipulating intracellular signalling, we show that this priming effect emerges from the accumulation of mating-related dopamine signals in the MPOA through the accrual of cyclic adenosine monophosphate levels and protein kinase A activity. Dopamine transients in the MPOA are abolished after a successful mating, which is likely to ensure abstinence. Consistent with this idea, the inhibition of AVPV/PVpo dopamine neurons selectively demotivates mating, whereas stimulating these neurons restores the motivation to mate after sexual satiety. We therefore conclude that the accumulation or suppression of signals from specialized dopamine neurons regulates mating behaviours across minutes and days.


Subject(s)
Cyclic AMP/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Hypothalamus/cytology , Hypothalamus/metabolism , Sexual Behavior, Animal , Signal Transduction , Animals , Copulation , Cyclic AMP-Dependent Protein Kinases/metabolism , Drive , Female , Male , Mice , Optogenetics , Preoptic Area/cytology , Preoptic Area/metabolism , Satiety Response , Time Factors
15.
Nature ; 594(7862): 271-276, 2021 06.
Article in English | MEDLINE | ID: mdl-33910229

ABSTRACT

Vascular malformations are thought to be monogenic disorders that result in dysregulated growth of blood vessels. In the brain, cerebral cavernous malformations (CCMs) arise owing to inactivation of the endothelial CCM protein complex, which is required to dampen the activity of the kinase MEKK31-4. Environmental factors can explain differences in the natural history of CCMs between individuals5, but why single CCMs often exhibit sudden, rapid growth, culminating in strokes or seizures, is unknown. Here we show that growth of CCMs requires increased signalling through the phosphatidylinositol-3-kinase (PI3K)-mTOR pathway as well as loss of function of the CCM complex. We identify somatic gain-of-function mutations in PIK3CA and loss-of-function mutations in the CCM complex in the same cells in a majority of human CCMs. Using mouse models, we show that growth of CCMs requires both PI3K gain of function and CCM loss of function in endothelial cells, and that both CCM loss of function and increased expression of the transcription factor KLF4 (a downstream effector of MEKK3) augment mTOR signalling in endothelial cells. Consistent with these findings, the mTORC1 inhibitor rapamycin effectively blocks the formation of CCMs in mouse models. We establish a three-hit mechanism analogous to cancer, in which aggressive vascular malformations arise through the loss of vascular 'suppressor genes' that constrain vessel growth and gain of a vascular 'oncogene' that stimulates excess vessel growth. These findings suggest that aggressive CCMs could be treated using clinically approved mTORC1 inhibitors.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/genetics , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/pathology , Mutation , Neoplasms/genetics , Animals , Animals, Newborn , Class I Phosphatidylinositol 3-Kinases/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gain of Function Mutation , Hemangioma, Cavernous, Central Nervous System/blood supply , Hemangioma, Cavernous, Central Nervous System/metabolism , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Loss of Function Mutation , MAP Kinase Kinase Kinase 3/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Neoplasms/blood supply , Neoplasms/pathology , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
16.
Proc Natl Acad Sci U S A ; 121(35): e2407324121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39178228

ABSTRACT

Learning and memory require coordinated structural and functional plasticity at neuronal glutamatergic synapses located on dendritic spines. Here, we investigated how the endoplasmic reticulum (ER) controls postsynaptic Ca2+ signaling and long-term potentiation of dendritic spine size, i.e., sLTP that accompanies functional strengthening of glutamatergic synaptic transmission. In most ER-containing (ER+) spines, high-frequency optical glutamate uncaging (HFGU) induced long-lasting sLTP that was accompanied by a persistent increase in spine ER content downstream of a signaling cascade engaged by N-methyl-D-aspartate receptors (NMDARs), L-type Ca2+ channels (LTCCs), and Orai1 channels, the latter being activated by stromal interaction molecule 1 (STIM1) in response to ER Ca2+ release. In contrast, HFGU stimulation of ER-lacking (ER-) spines expressed only transient sLTP and exhibited weaker Ca2+ signals noticeably lacking Orai1 and ER contributions. Consistent with spine ER regulating structural metaplasticity, delivery of a second stimulus to ER- spines induced ER recruitment along with persistent sLTP, whereas ER+ spines showed no additional increases in size or ER content in response to sequential stimulation. Surprisingly, the physical interaction between STIM1 and Orai1 induced by ER Ca2+ release, but not the resulting Ca2+ entry through Orai1 channels, proved necessary for the persistent increases in both spine size and ER content required for expression of long-lasting late sLTP.


Subject(s)
Calcium Channels, L-Type , Dendritic Spines , Endoplasmic Reticulum , Neuronal Plasticity , ORAI1 Protein , Stromal Interaction Molecule 1 , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 1/genetics , Endoplasmic Reticulum/metabolism , Dendritic Spines/metabolism , Animals , ORAI1 Protein/metabolism , ORAI1 Protein/genetics , Neuronal Plasticity/physiology , Calcium Channels, L-Type/metabolism , Long-Term Potentiation/physiology , Calcium Signaling/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Calcium/metabolism , Mice , Signal Transduction/physiology , Rats
17.
Proc Natl Acad Sci U S A ; 121(13): e2315584121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38507453

ABSTRACT

The extractant-assisted transport of metal ions from aqueous to organic environments by liquid-liquid extraction has been widely used to separate and recover critical elements on an industrial scale. While current efforts focus on designing better extractants and optimizing process conditions, the mechanism that underlies ionic transport remains poorly understood. Here, we report a nonequilibrium process in the bulk aqueous phase that influences interfacial ion transport: the formation of metastable ion-extractant precipitates away from the liquid-liquid interface, separated from it by a depletion region without precipitates. Although the precipitate is soluble in the organic phase, the depletion region separates the two and ions are sequestered in a long-lived metastable state. Since precipitation removes extractants from the aqueous phase, even extractants that are sparingly soluble in water will continue to be withdrawn from the organic phase to feed the aqueous precipitation process. Solute concentrations in both phases and the aqueous pH influence the temporal evolution of the process and ionic partitioning between the precipitate and organic phase. Aqueous ion-extractant precipitation during liquid-liquid extraction provides a reaction path that can influence the extraction kinetics, which plays an important role in designing advanced processes to separate rare earths and other minerals.

18.
N Engl J Med ; 389(6): 514-526, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37366315

ABSTRACT

BACKGROUND: Retatrutide (LY3437943) is an agonist of the glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1, and glucagon receptors. Its dose-response relationships with respect to side effects, safety, and efficacy for the treatment of obesity are not known. METHODS: We conducted a phase 2, double-blind, randomized, placebo-controlled trial involving adults who had a body-mass index (BMI, the weight in kilograms divided by the square of the height in meters) of 30 or higher or who had a BMI of 27 to less than 30 plus at least one weight-related condition. Participants were randomly assigned in a 2:1:1:1:1:2:2 ratio to receive subcutaneous retatrutide (1 mg, 4 mg [initial dose, 2 mg], 4 mg [initial dose, 4 mg], 8 mg [initial dose, 2 mg], 8 mg [initial dose, 4 mg], or 12 mg [initial dose, 2 mg]) or placebo once weekly for 48 weeks. The primary end point was the percentage change in body weight from baseline to 24 weeks. Secondary end points included the percentage change in body weight from baseline to 48 weeks and a weight reduction of 5% or more, 10% or more, or 15% or more. Safety was also assessed. RESULTS: We enrolled 338 adults, 51.8% of whom were men. The least-squares mean percentage change in body weight at 24 weeks in the retatrutide groups was -7.2% in the 1-mg group, -12.9% in the combined 4-mg group, -17.3% in the combined 8-mg group, and -17.5% in the 12-mg group, as compared with -1.6% in the placebo group. At 48 weeks, the least-squares mean percentage change in the retatrutide groups was -8.7% in the 1-mg group, -17.1% in the combined 4-mg group, -22.8% in the combined 8-mg group, and -24.2% in the 12-mg group, as compared with -2.1% in the placebo group. At 48 weeks, a weight reduction of 5% or more, 10% or more, and 15% or more had occurred in 92%, 75%, and 60%, respectively, of the participants who received 4 mg of retatrutide; 100%, 91%, and 75% of those who received 8 mg; 100%, 93%, and 83% of those who received 12 mg; and 27%, 9%, and 2% of those who received placebo. The most common adverse events in the retatrutide groups were gastrointestinal; these events were dose-related, were mostly mild to moderate in severity, and were partially mitigated with a lower starting dose (2 mg vs. 4 mg). Dose-dependent increases in heart rate peaked at 24 weeks and declined thereafter. CONCLUSIONS: In adults with obesity, retatrutide treatment for 48 weeks resulted in substantial reductions in body weight. (Funded by Eli Lilly; ClinicalTrials.gov number, NCT04881760.).


Subject(s)
Anti-Obesity Agents , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 1 , Obesity , Receptors, Glucagon , Adult , Female , Humans , Male , Body Mass Index , Double-Blind Method , Glucagon-Like Peptide 1/agonists , Obesity/complications , Obesity/drug therapy , Treatment Outcome , Weight Loss/drug effects , Gastric Inhibitory Polypeptide/agonists , Receptors, Glucagon/agonists , Injections, Subcutaneous , Anti-Obesity Agents/administration & dosage , Anti-Obesity Agents/adverse effects , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use
19.
PLoS Biol ; 21(2): e3001989, 2023 02.
Article in English | MEDLINE | ID: mdl-36745682

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is the cell-surface receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). While its central role in Coronavirus Disease 2019 (COVID-19) pathogenesis is indisputable, there remains significant debate regarding the role of this transmembrane carboxypeptidase in the disease course. These include the role of soluble versus membrane-bound ACE2, as well as ACE2-independent mechanisms that may contribute to viral spread. Testing these roles requires in vivo models. Here, we report humanized ACE2-floxed mice in which hACE2 is expressed from the mouse Ace2 locus in a manner that confers lethal disease and permits cell-specific, Cre-mediated loss of function, and LSL-hACE2 mice in which hACE2 is expressed from the Rosa26 locus enabling cell-specific, Cre-mediated gain of function. Following exposure to SARS-CoV-2, hACE2-floxed mice experienced lethal cachexia, pulmonary infiltrates, intravascular thrombosis and hypoxemia-hallmarks of severe COVID-19. Cre-mediated loss and gain of hACE2 demonstrate that neuronal infection confers lethal cachexia, hypoxemia, and respiratory failure in the absence of lung epithelial infection. In this series of genetic experiments, we demonstrate that ACE2 is absolutely and cell-autonomously required for SARS-CoV-2 infection in the olfactory epithelium, brain, and lung across diverse cell types. Therapies inhibiting or blocking ACE2 at these different sites are likely to be an effective strategy towards preventing severe COVID-19.


Subject(s)
COVID-19 , Mice , Animals , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/metabolism , Cachexia , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Hypoxia
20.
EMBO Rep ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294503

ABSTRACT

Activity-dependent protein synthesis is crucial for long-lasting forms of synaptic plasticity. However, our understanding of translational mechanisms controlling GABAergic synapses is limited. One distinct form of inhibitory long-term potentiation (iLTP) enhances postsynaptic clusters of GABAARs and the primary inhibitory scaffold, gephyrin, to promote sustained synaptic strengthening. While we previously found that persistent iLTP requires mRNA translation, the mechanisms controlling plasticity-induced gephyrin translation remain unknown. We identify miR153 as a novel regulator of Gphn mRNA translation which controls gephyrin protein levels and synaptic clustering, ultimately impacting inhibitory synaptic structure and function. iLTP induction downregulates miR153, reversing its translational suppression of Gphn mRNA and promoting de novo gephyrin protein synthesis and synaptic clustering during iLTP. Finally, we find that reduced miR153 expression during iLTP is driven by an excitation-transcription coupling pathway involving calcineurin, NFAT and HDACs, which also controls the miRNA-dependent upregulation of GABAARs. Together, we delineate a miRNA-dependent post-transcriptional mechanism that controls the expression of the key synaptic scaffold, gephyrin, and may converge with parallel miRNA pathways to coordinate gene upregulation to maintain inhibitory synaptic plasticity.

SELECTION OF CITATIONS
SEARCH DETAIL