Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Biotechnol Bioeng ; 121(1): 266-280, 2024 01.
Article in English | MEDLINE | ID: mdl-37902646

ABSTRACT

An efficient biogas production out of organic (waste) materials is important to contribute to a carbon-neutral future. In this study, thermophilic press water (PW) coming from an organic fraction of the municipal solid waste digester was further digested in a thermo- and mesophilic posttreatment approach using two semicontinuous 14 L digesters. The results showed that the PW can still have considerable high biogas potential-at least during the touristic high season in central Europe. The change in temperature led to an increase in volatile fatty acid concentrations and a decrease in biogas production in the mesophilic approach in the first days. However, the losses in biogas production at the beginning could be compensated thus there were no considerable differences in biogas production between thermo- and mesophilic posttreatment at the end of incubation. This can most probably be contributed to a change in the microbial community, and potentially problematic intermediates like valerate could be better degraded in the mesophilic reactor. Especially the abundance of representatives of the phylum Bacteroidota, like Fermentimonas spp., increased during mesophilic anaerobic digestion.


Subject(s)
Microbiota , Solid Waste , Bioreactors , Biofuels , Anaerobiosis , Methane , Temperature
2.
Environ Res ; 214(Pt 1): 113809, 2022 11.
Article in English | MEDLINE | ID: mdl-35798267

ABSTRACT

Wastewater based epidemiology is recognized as one of the monitoring pillars, providing essential information for pandemic management. Central in the methodology are data modelling concepts for both communicating the monitoring results but also for analysis of the signal. It is due to the fast development of the field that a range of modelling concepts are used but without a coherent framework. This paper provides for such a framework, focusing on robust and simple concepts readily applicable, rather than applying latest findings from e.g., machine learning. It is demonstrated that data preprocessing, most important normalization by means of biomarkers and equal temporal spacing of the scattered data, is crucial. In terms of the latter, downsampling to a weekly spaced series is sufficient. Also, data smoothing turned out to be essential, not only for communication of the signal dynamics but likewise for regressions, nowcasting and forecasting. Correlation of the signal with epidemic indicators requires multivariate regression as the signal alone cannot explain the dynamics but - for this case study - multiple linear regression proofed to be a suitable tool when the focus is on understanding and interpretation. It was also demonstrated that short term prediction (7 days) is accurate with simple models (exponential smoothing or autoregressive models) but forecast accuracy deteriorates fast for longer periods.


Subject(s)
COVID-19 , SARS-CoV-2 , Forecasting , Humans , Pandemics , Wastewater , Wastewater-Based Epidemiological Monitoring
3.
Antonie Van Leeuwenhoek ; 114(1): 45-54, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33215328

ABSTRACT

We isolated a filamentous, thermophilic, and first anaerobic representative of the genus Thermoactinomyces, designated strain AMNI-1T, from a biogas plant in Tyrol, Austria and report the results of a phenotypic, genetic, and phylogenetic investigation. Strain AMNI-1T was observed to form a white branching mycelium that aggregates into pellets when grown in liquid medium. Cells could primarily utilize lactose, glucose, and mannose as carbon and energy sources, with acetate accelerating and yeast extract being mandatory for growth. The optimum growth temperature and pH turned out to be 55 °C and pH 7.0, respectively, with an optimum NaCl concentration of 0-2% (w/v). 16S rRNA gene sequence comparison indicated that the genetic relatedness between strain AMNI-1T and Thermoactinomyces intermedius, Thermoactinomyces khenchelensis, and Thermoactinomyces vulgaris was less than 97%. The G + C content of the genomic DNA was 44.7 mol%. The data obtained suggest that the isolate represents a novel and first anaerobic species of the genus Thermoactinomyces, for which the name Thermoactinomyces mirandus is proposed. The type strain is AMNI-1T (= DSM 110094T = LMG 31503T). The description of the genus Thermoactinomyces is emended accordingly.


Subject(s)
Thermoactinomyces , Anaerobiosis , Bacterial Typing Techniques , Base Composition , Biofuels , DNA, Bacterial/genetics , Fatty Acids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Thermoactinomyces/genetics
4.
Water Sci Technol ; 84(6): 1324-1339, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34559069

ABSTRACT

In the case of SARS-CoV-2 pandemic management, wastewater-based epidemiology aims to derive information on the infection dynamics by monitoring virus concentrations in the wastewater. However, due to the intrinsic random fluctuations of the viral signal in wastewater caused by several influencing factors that cannot be determined in detail (e.g. dilutions; number of people discharging; variations in virus excretion; water consumption per day; transport and fate processes in sewer system), the subsequent prevalence analysis may result in misleading conclusions. It is thus helpful to apply data filtering techniques to reduce the noise in the signal. In this paper we investigate 13 smoothing algorithms applied to the virus signals monitored in four wastewater treatment plants in Austria. The parameters of the algorithms have been defined by an optimization procedure aiming for performance metrics. The results are further investigated by means of a cluster analysis. While all algorithms are in principle applicable, SPLINE, Generalized Additive Model and Friedman's Super Smoother are recognized as superior methods in this context (with the latter two having a tendency to over-smoothing). A first analysis of the resulting datasets indicates the positive effect of filtering to the correlation of the viral signal to monitored incidence values.


Subject(s)
COVID-19 , SARS-CoV-2 , Austria , Humans , Wastewater
5.
Environ Microbiol Rep ; 16(4): e13281, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38940659

ABSTRACT

Understanding and optimising biological pre-treatment strategies for enhanced bio-methane production is a central aspect in second-generation biofuel research. In this regard, the application of fungi for pre-treatment seems highly promising; however, understanding the mode of action is crucial. Here, we show how aerobic pre-treatment of crystalline cellulose with the cellulolytic Trichoderma viride affects substrate degradability during mesophilic, anaerobic digestion. It could be demonstrated that fungal pre-treatment resulted in a slightly reduced substrate mass. Nevertheless, no significant impact on the overall methane yield was found during batch fermentation. Short chain organic acids accumulation, thus, overall degradation dynamics including methane production kinetics were affected by the pre-treatment as shown by Gompertz modelling. Finally, 16S rRNA amplicon sequencing followed by ANCOM-BC resulted in up to 53 operative taxonomic units including fermentative, syntrophic and methanogenic taxa, whereby their relative abundances were significantly affected by fungal pre-treatment depending on the duration of the pre-treatment. The results demonstrated the impact of soft rot fungal pre-treatment of cellulose on subsequent anaerobic cellulose hydrolysis as well as on methanogenic activity. To the best of our knowledge, this is the first study to investigate the direct causal effects of pre-treatment with T. viride on basic but crucial anaerobic digestion parameters in a highly standardised approach.


Subject(s)
Cellulose , Fermentation , Methane , Anaerobiosis , Cellulose/metabolism , Methane/metabolism , Biofuels/microbiology , RNA, Ribosomal, 16S/genetics , Hydrolysis , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Hypocreales
6.
Sci Rep ; 14(1): 6732, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509181

ABSTRACT

Eminent in pandemic management is accurate information on infection dynamics to plan for timely installation of control measures and vaccination campaigns. Despite huge efforts in diagnostic testing of individuals, the underestimation of the actual number of SARS-CoV-2 infections remains significant due to the large number of undocumented cases. In this paper we demonstrate and compare three methods to estimate the dynamics of true infections based on secondary data i.e., (a) test positivity, (b) infection fatality and (c) wastewater monitoring. The concept is tested with Austrian data on a national basis for the period of April 2020 to December 2022. Further, we use the results of prevalence studies from the same period to generate (upper and lower bounds of) credible intervals for true infections for four data points. Model parameters are subsequently estimated by applying Approximate Bayesian Computation-rejection sampling and Genetic Algorithms. The method is then validated for the case study Vienna. We find that all three methods yield fairly similar results for estimating the true number of infections, which supports the idea that all three datasets contain similar baseline information. None of them is considered superior, as their advantages and shortcomings depend on the specific case study at hand.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Bayes Theorem , Pandemics
7.
Front Microbiol ; 14: 1087043, 2023.
Article in English | MEDLINE | ID: mdl-37089573

ABSTRACT

Aromatic compounds like phenyl acids (PA) can accumulate during anaerobic digestion (AD) of organic wastes due to an increased entry of lignocellulose, secondary plant metabolites or proteins, and thermodynamic challenges in degrading the benzene ring. The effects of aromatic compounds can be various - from being highly toxic to be stimulating for methanogenesis - depending on many parameters like inoculum or molecular characteristics of the aromatic compound. To contribute to a better understanding of the consequences of PA exposure during AD, the aim was to evaluate the effects of 10 mM PA on microbial communities degrading different, degradation phase-specific substrates in thermophilic batch reactors within 28 days: Microcrystalline cellulose (MCC, promoting hydrolytic to methanogenic microorganisms), butyrate or propionate (promoting syntrophic volatile fatty acid (VFA) oxidisers to methanogens), or acetate (promoting syntrophic acetate oxidisers to methanogens). Methane production, VFA concentrations and pH were evaluated, and microbial communities and extracellular polymeric substances (EPS) were assessed. The toxicity of PA depended on the type of substrate which in turn determined the (i) microbial diversity and composition and (ii) EPS quantity and quality. Compared with the respective controls, methane production in MCC reactors was less impaired by PA than in butyrate, propionate and acetate reactors which showed reductions in methane production of up to 93%. In contrast to the controls, acetate concentrations were high in all PA reactors at the end of incubation thus acetate was a bottle-neck intermediate in those reactors. Considerable differences in EPS quantity and quality could be found among substrates but not among PA variants of each substrate. Methanosarcina spp. was the dominant methanogen in VFA reactors without PA exposure and was inhibited when PA were present. VFA oxidisers and Methanothermobacter spp. were abundant in VFA assays with PA exposure as well as in all MCC reactors. As MCC assays showed higher methane yields, a higher microbial diversity and a higher EPS quantity and quality than VFA reactors when exposed to PA, we conclude that EPS in MCC reactors might have been beneficial for absorbing/neutralising phenyl acids and keeping (more susceptible) microorganisms shielded in granules or biofilms.

8.
Sci Total Environ ; 873: 162149, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36773921

ABSTRACT

Wastewater-based epidemiology is widely applied in Austria since April 2020 to monitor the SARS-CoV-2 pandemic. With a steadily increasing number of monitored wastewater facilities, 123 plants covering roughly 70 % of the 9 million population were monitored as of August 2022. In this study, the SARS-CoV-2 viral concentrations in raw sewage were analysed to infer short-term hospitalisation occupancy. The temporal lead of wastewater-based epidemiological time series over hospitalisation occupancy levels facilitates the construction of forecast models. Data pre-processing techniques are presented, including the approach of comparing multiple decentralised wastewater signals with aggregated and centralised clinical data. Time­lead quantification was performed using cross-correlation analysis and coefficient of determination optimisation approaches. Multivariate regression models were successfully applied to infer hospitalisation bed occupancy. The results show a predictive potential of viral loads in sewage towards Covid-19 hospitalisation occupancy, with an average lead time towards ICU and non-ICU bed occupancy between 14.8-17.7 days and 8.6-11.6 days, respectively. The presented procedure provides access to the trend and tipping point behaviour of pandemic dynamics and allows the prediction of short-term demand for public health services. The results showed an increase in forecast accuracy with an increase in the number of monitored wastewater treatment plants. Trained models are sensitive to changing variant types and require recalibration of model parameters, likely caused by immunity by vaccination and/or infection. The utilised approach displays a practical and rapidly implementable application of wastewater-based epidemiology to infer hospitalisation occupancy.


Subject(s)
COVID-19 , SARS-CoV-2 , United States , Humans , COVID-19/epidemiology , Wastewater , Sewage , Wastewater-Based Epidemiological Monitoring , Hospitalization
9.
Viruses ; 15(2)2023 01 17.
Article in English | MEDLINE | ID: mdl-36851479

ABSTRACT

Since the start of the 2019 pandemic, wastewater-based epidemiology (WBE) has proven to be a valuable tool for monitoring the prevalence of SARS-CoV-2. With methods and infrastructure being settled, it is time to expand the potential of this tool to a wider range of pathogens. We used over 500 archived RNA extracts from a WBE program for SARS-CoV-2 surveillance to monitor wastewater from 11 treatment plants for the presence of influenza and norovirus twice a week during the winter season of 2021/2022. Extracts were analyzed via digital PCR for influenza A, influenza B, norovirus GI, and norovirus GII. Resulting viral loads were normalized on the basis of NH4-N. Our results show a good applicability of ammonia-normalization to compare different wastewater treatment plants. Extracts originally prepared for SARS-CoV-2 surveillance contained sufficient genomic material to monitor influenza A, norovirus GI, and GII. Viral loads of influenza A and norovirus GII in wastewater correlated with numbers from infected inpatients. Further, SARS-CoV-2 related non-pharmaceutical interventions affected subsequent changes in viral loads of both pathogens. In conclusion, the expansion of existing WBE surveillance programs to include additional pathogens besides SARS-CoV-2 offers a valuable and cost-efficient possibility to gain public health information.


Subject(s)
COVID-19 , Influenza, Human , Norovirus , Humans , Influenza, Human/epidemiology , Norovirus/genetics , Wastewater , COVID-19/epidemiology , SARS-CoV-2/genetics
10.
Sci Total Environ ; 809: 151112, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34688753

ABSTRACT

The cofactor F420 is synthesized by many different organisms and as a redox cofactor, it plays a crucial role in the redox reactions of catabolic and biosynthetic metabolic pathways. It consists of a deazaflavin structure, which is linked via lactate to an oligoglutamate chain, that can vary in length. In the present study, the methanogenic Archaea Methanosarcina thermophila and Methanoculleus thermophilus were cultivated on different carbon sources and their coenzyme F420 composition has been assayed by reversed-phase ion-pair high-performance liquid chromatography with fluorometric detection regarding both, overall cofactor F420 production and distribution of F420 glutamyl tail length. In Methanosarcina thermophila cultivated on methanol, acetate, and a mixture of acetate and methanol, the most abundant cofactors were F420-5 and F420-4, whereby the last digit refers to the number of expressed glutamyl rests. By contrast, in the obligate CO2 reducing Methanoculleus thermophilus the most abundant cofactors were F420-3 and F420-4. In Methanosarcina thermophila, the relative proportions of the expressed F420 tail length changed during batch growth on all three carbon sources. Over time F420-3 and F420-4 decreased while F420-5 and F420-6 increased in their relative proportion in comparison to total F420 content. In contrast, in Methanoculleus thermophilus the relative abundance of the different F420 cofactors remained stable. It was also possible to differentiate the two methanogenic Archaea based on the glutamyl tail length of the cofactor F420. The cofactor F420-5 in concentrations >2% could only be assigned to Methanosarcina thermophila. In all four variants a trend for a positive correlation between the DNA concentration and the total concentration of the cofactor could be shown. Except for the variant Methanosarcinathermophila with acetate as sole carbon source the same could be shown between the concentration of the mcrA gene copy number and the total concentration of the cofactor.


Subject(s)
Methanomicrobiaceae , Methanosarcina/enzymology , Methane , Methanomicrobiaceae/enzymology , Riboflavin/analogs & derivatives
11.
Nat Biotechnol ; 40(12): 1814-1822, 2022 12.
Article in English | MEDLINE | ID: mdl-35851376

ABSTRACT

SARS-CoV-2 surveillance by wastewater-based epidemiology is poised to provide a complementary approach to sequencing individual cases. However, robust quantification of variants and de novo detection of emerging variants remains challenging for existing strategies. We deep sequenced 3,413 wastewater samples representing 94 municipal catchments, covering >59% of the population of Austria, from December 2020 to February 2022. Our system of variant quantification in sewage pipeline designed for robustness (termed VaQuERo) enabled us to deduce the spatiotemporal abundance of predefined variants from complex wastewater samples. These results were validated against epidemiological records of >311,000 individual cases. Furthermore, we describe elevated viral genetic diversity during the Delta variant period, provide a framework to predict emerging variants and measure the reproductive advantage of variants of concern by calculating variant-specific reproduction numbers from wastewater. Together, this study demonstrates the power of national-scale WBE to support public health and promises particular value for countries without extensive individual monitoring.


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Humans , Wastewater , SARS-CoV-2/genetics , COVID-19/epidemiology , RNA, Viral
12.
Article in English | MEDLINE | ID: mdl-34682523

ABSTRACT

Wastewater-based epidemiology is a recognised source of information for pandemic management. In this study, we investigated the correlation between a SARS-CoV-2 signal derived from wastewater sampling and COVID-19 incidence values monitored by means of individual testing programs. The dataset used in the study is composed of timelines (duration approx. five months) of both signals at four wastewater treatment plants across Austria, two of which drain large communities and the other two drain smaller communities. Eight regression models were investigated to predict the viral incidence under varying data inputs and pre-processing methods. It was found that population-based normalisation and smoothing as a pre-processing of the viral load data significantly influence the fitness of the regression models. Moreover, the time latency lag between the wastewater data and the incidence derived from the testing program was found to vary between 2 and 7 days depending on the time period and site. It was found to be necessary to take such a time lag into account by means of multivariate modelling to boost the performance of the regression. Comparing the models, no outstanding one could be identified as all investigated models are revealing a sufficient correlation for the task. The pre-processing of data and a multivariate model formulation is more important than the model structure.


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Humans , Pandemics , RNA, Viral , SARS-CoV-2 , Wastewater
13.
J Vis Exp ; (176)2021 10 14.
Article in English | MEDLINE | ID: mdl-34723940

ABSTRACT

The cofactor F420 plays a central role as a hydride carrier in the primary and secondary metabolism of many bacterial and archaeal taxa. The cofactor is best known for its role in methanogenesis, where it facilitates thermodynamically difficult reactions. As the polyglutamate tail varies in length between different organisms, length profile analyses might be a powerful tool for distinguishing and characterizing different groups and pathways in various habitats. Here, the protocol describes the extraction and optimization of cofactor F420 detection by applying solid-phase extraction combined with high-performance liquid chromatography analysis independent of cultural or molecular biological approaches. The method was applied to gain additional information on the expression of cofactor F420 from microbial communities in soils, anaerobic sludge, and pure cultures and was evaluated by spiking experiments. Thereby, the study succeeded in generating different F420 tail-length profiles for hydrogenotrophic and acetoclastic methanogens in controlled methanogenic pure cultures as well as from environmental samples such as anaerobic digester sludge and soils.


Subject(s)
Microbiota , Polyglutamic Acid , Anaerobiosis , Archaea , Bacteria/metabolism , Methane/metabolism , Polyglutamic Acid/metabolism , Sewage
14.
Pathogens ; 10(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34578246

ABSTRACT

SARS-CoV-2 wastewater epidemiology suffers from uncertainties concerning sample storage. We show the effect of the storage of wastewater on the detectable SARS-CoV-2 load. Storage at 4 °C for up to 9 days had no significant effect, while storage at -20 °C led to a significant reduction in gene copy numbers.

15.
Microorganisms ; 8(2)2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32093251

ABSTRACT

pH is a central environmental factor influencing CH4 production from organic substrates, as every member of the complex microbial community has specific pH requirements. Here, we show how varying pH conditions (5.0-8.5, phosphate buffered) and the application of a phosphate buffer per se induce shifts in the microbial community composition and the carbon flow during nine weeks of thermophilic batch digestion. Beside monitoring the methane production as well as volatile fatty acid concentrations, amplicon sequencing of the 16S rRNA gene was conducted. The presence of 100 mM phosphate resulted in reduced CH4 production during the initial phase of the incubation, which was characterized by a shift in the dominant methanogenic genera from a mixed Methanosarcina and Methanoculleus to a pure Methanoculleus system. In buffered samples, acetate strongly accumulated in the beginning of the batch digestion and subsequently served as a substrate for methanogens. Methanogenesis was permanently inhibited at pH values ≤5.5, with the maximum CH4 production occurring at pH 7.5. Adaptations of the microbial community to the pH variations included shifts in the archaeal and bacterial composition, as less competitive organisms with a broad pH range were able to occupy metabolic niches at unfavorable pH conditions.

16.
Microorganisms ; 7(12)2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31817383

ABSTRACT

Aromatic compounds like phenyl acids derived from lignocellulose degradation have been suspected to negatively influence biogas production processes. However, results on this topic are still inconclusive. To study phenyl acid formation in batch reactors during the start-up phase of anaerobic degradation, different amounts of straw from grain were mixed with mesophilic and thermophilic sludge, respectively. Molecular biological parameters were assessed using next-generation sequencing and qPCR analyses. Metagenomic predictions were done via the program, piphillin. Methane production, concentrations of phenylacetate, phenylpropionate, phenylbutyrate, and volatile fatty acids were monitored chromatographically. Methanosarcina spp. was the dominant methanogen when high straw loads were effectively degraded, and thus confirmed its robustness towards overload conditions. Several microorganisms correlated negatively with phenyl acids; however, a negative effect, specifically on methanogens, could not be proven. A cascade-like increase/decrease from phenylacetate to phenylpropionate, and then to phenylbutyrate could be observed when methanogenesis was highly active. Due to these results, phenylacetate was shown to be an early sign for overload conditions, whereas an increase in phenylbutyrate possibly indicated a switch from degradation of easily available to more complex substrates. These dynamics during the start-up phase might be relevant for biogas plant operators using complex organic wastes for energy exploitation.

17.
Biotechnol Biofuels ; 12: 26, 2019.
Article in English | MEDLINE | ID: mdl-30787959

ABSTRACT

BACKGROUND: Substrate spectra for anaerobic digestion have been broadened in the past decade, inter alia, due to the application of different pretreatment strategies and now include materials rich in lignocellulose, protein, and/or fat. The application of these substrates, however, also entails risks regarding the formation of undesired by-products, among which phenolic compounds are known to accumulate under unfavorable digestion conditions. METHODS: Different states of overload were simulated in batch experiments while reviewing the generation of phenyl acids out of different lab-use substrates in order to evaluate the impact on biogas and methane production as well as some additional process performance parameters under defined laboratory conditions. Investigations were conducted under both mesophilic and thermophilic conditions. RESULTS: It could be shown that the tested input materials led to the formation of phenyl acids in a substrate-dependent manner with the formation itself being less temperature driven. Once formed, the formation of phenyl acids turned out to be a reversible process. CONCLUSIONS: Although a mandatory negative impact of phenyl acids per se on the anaerobic digestion process in general and the methanogenesis process in particular could not be proven, phenyl acids, however, seem to play an important role in the microbial response to overloaded biogas systems.

18.
J Vis Exp ; (150)2019 08 15.
Article in English | MEDLINE | ID: mdl-31475968

ABSTRACT

In contrast to aerobic organisms, strictly anaerobic microorganisms require the absence of oxygen and usually a low redox potential to initiate growth. As oxygen is ubiquitous in air, retaining O2-free conditions during all steps of cultivation is challenging but a prerequisite for anaerobic culturing. The protocol presented here demonstrates the successful cultivation of an anaerobic mixed culture derived from a biogas plant using a simple and inexpensive method. A precise description of the entire anoxic culturing process is given including media preparation, filling of cultivation flasks, supplementation with redox indicator and reducing agents to provide low redox potentials as well as exchanging the headspace to keep media free from oxygen. Furthermore, a detailed overview of aseptically inoculating gas tight serum flasks (by using sterile syringes and needles) and suitable incubation conditions is provided. The present protocol further deals with gas and liquid sampling for subsequent analyses regarding gas composition and volatile fatty acid concentrations using gas chromatography (GC) and high performance liquid chromatography (HPLC), respectively, and the calculation of biogas and methane yield considering the ideal gas law.


Subject(s)
Bacteria, Anaerobic/growth & development , Bacteriological Techniques/methods , Anaerobiosis , Bacteria, Anaerobic/metabolism , Bacteriological Techniques/instrumentation , Biofuels/microbiology , Culture Media/chemistry , Fatty Acids, Volatile/metabolism , Methane/metabolism
19.
Energies (Basel) ; 11(7): 1797, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30881604

ABSTRACT

With regard to social and environmental sustainability, second-generation biofuel and biogas production from lignocellulosic material provides considerable potential, since lignocellulose represents an inexhaustible, ubiquitous natural resource, and is therefore one important step towards independence from fossil fuel combustion. However, the highly heterogeneous structure and recalcitrant nature of lignocellulose restricts its commercial utilization in biogas plants. Improvements therefore rely on effective pretreatment methods to overcome structural impediments, thus facilitating the accessibility and digestibility of (ligno)cellulosic substrates during anaerobic digestion. While chemical and physical pretreatment strategies exhibit inherent drawbacks including the formation of inhibitory products, biological pretreatment is increasingly being advocated as an environmentally friendly process with low energy input, low disposal costs, and milder operating conditions. Nevertheless, the promising potential of biological pretreatment techniques is not yet fully exploited. Hence, we intended to provide a detailed insight into currently applied pretreatment techniques, with a special focus on biological ones for downstream processing of lignocellulosic biomass in anaerobic digestion.

20.
Eng Life Sci ; 17(2): 132-139, 2017 Feb.
Article in English | MEDLINE | ID: mdl-32624760

ABSTRACT

Volatile fatty acids (VFA) represent short-chain fatty acids consisting of six or fewer carbon atoms that can be distilled at atmospheric pressure. In anaerobic digestion processes VFAs are of central importance for maintaining stable reactor performance and biogas production, are used as indicators for arising problems and are important process monitoring parameters. In the present study, sludge derived form a full-scale anaerobic digester of a wastewater treatment plant was spiked with formate, acetate, propionate, and butyrate in order to evaluate various commonly used techniques for VFA extraction, preservation, and storage. It was shown that VFA extraction after centrifugation warranted the highest recovery rates for spiked VFAs. Moreover, experiments clearly indicated the importance of a fast sample handling, including the necessity of immediate cooling of the samples. Chemical sample preservation within a narrow time frame or deep freezing emerged as an alternative to instant VFA extraction. Short-time storage of extracted VFA samples at + 4°C is an option for up to 7 days, for longer periods storage at -20°C was found to be applicable.

SELECTION OF CITATIONS
SEARCH DETAIL