Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Int J Biometeorol ; 67(10): 1607-1617, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37526762

ABSTRACT

Plants have always been able to adapt to climate change by reacting through various responses, mainly at the phenological level. The aim of this work is to investigate the behavior of specific tree species located in two phenological gardens in central Italy in relation to the temperature increases recorded in recent years. Specifically, four main phenological phases, BBCH_11, BBCH_19, BBCH_91, and BBCH_65, were monitored during a 14-year time period. The data of the weeks corresponding to the first appearance of each phenological phase and the respective heat accumulations for each species were cross-referenced with the meteorological data recorded by the stations in the two considered areas. Based on average temperature, calculated over reference periods, the species were divided by creating "warm" year groups and "cold" year groups so as to better highlight any differences in the behavior of the same species. In addition, a strong correlation was shown between the maximum temperatures in February and the advances of phenological phases BBCH_11 and BBCH_65. Most of the tree species have shown strong adaptation to climate warming, changing the period of occurrence of the phases themselves.


Subject(s)
Gardens , Trees , Temperature , Seasons , Italy , Climate Change
2.
Environ Monit Assess ; 195(1): 118, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36396879

ABSTRACT

The objective of this work was to investigate the potential ecosystem services of 16 fruit trees to plan and manage more efficiently "Urban Forest," increasing also the resilience of cities to climate change. We evaluated the potential capacity of PM10 absorption, the storage of CO2 from the atmosphere, and the cooling of the environment through shading by the crown and through evapotranspiration. We observed that some species, such as Morus nigra, Juglans regia, Pyrus communis, and Cydonia oblonga, are able to store a higher quantity of CO2 than others over a period of 50 years, respectively, of 2.40 tons, 2.33 tons, 1.51 tons, and 0.96 tons. Ficus carica, Juglans regia, and Morus nigra were relevant for PM10 absorption, since they were able to absorb, referring to the year 2019, 146.4 gr/tree, 195.6 gr/tree, and 143.1 gr/tree, respectively. Results showed that these ecosystem functions depend principally on the morphological characteristics of the individuals: their height, DBH, expansion of their crowns, and characteristics of the foliage system.


Subject(s)
Ecosystem , Fruit , Carbon Dioxide , Environmental Monitoring , Trees
SELECTION OF CITATIONS
SEARCH DETAIL