Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Proc Natl Acad Sci U S A ; 119(21): e2119483119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35588454

ABSTRACT

Chemokine receptor nanoscale organization at the cell membrane is orchestrated by the actin cytoskeleton and influences cell responses. Using single-particle tracking analysis we show that CXCR4R334X, a truncated mutant chemokine receptor linked to WHIM syndrome (warts, hypogammaglobulinemia, infections, myelokathexis), fails to nanoclusterize after CXCL12 stimulation, and alters the lateral mobility and spatial organization of CXCR4 when coexpressed. These findings correlate with multiple phalloidin-positive protrusions in cells expressing CXCR4R334X, and their inability to correctly sense chemokine gradients. The underlying mechanisms involve inappropriate actin cytoskeleton remodeling due to the inadequate ß-arrestin1 activation by CXCR4R334X, which disrupts the equilibrium between activated and deactivated cofilin. Overall, we provide insights into the molecular mechanisms governing CXCR4 nanoclustering, signaling and cell function, and highlight the essential scaffold role of ß-arrestin1 to support CXCL12-mediated actin reorganization and receptor clustering. These defects associated with CXCR4R334X expression might contribute to the severe immunological symptoms associated with WHIM syndrome.


Subject(s)
Primary Immunodeficiency Diseases , Receptors, CXCR4 , Warts , Actin Depolymerizing Factors/metabolism , Cell Membrane/metabolism , Cell Movement , Humans , Mutation , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/metabolism , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Single Molecule Imaging , Warts/genetics , Warts/metabolism
2.
Trends Immunol ; 42(8): 649-653, 2021 08.
Article in English | MEDLINE | ID: mdl-34226146

ABSTRACT

T cell asymmetry upon specific cell-cell interactions during mammalian immunological synapse (IS) contacts requires mammalian target of rapamycin complex (mTORC) activation and chaperones, such as the eukaryotic chaperonin containing TCP1 (CCT) for protein synthesis and folding. This mechanism can control cytoskeleton dynamics, and regulate mitochondrial fate, respiration, and metabolic rates, ultimately underlying cell reprogramming events that are relevant for CD4+ T cell functional outcomes.


Subject(s)
Immunological Synapses , T-Lymphocytes , Chaperonin Containing TCP-1/metabolism , Cytoskeleton/metabolism , Immunological Synapses/metabolism , Protein Folding , T-Lymphocytes/metabolism
3.
Biochem Soc Trans ; 49(4): 1735-1748, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34436545

ABSTRACT

Tubulin post-translational modifications (PTMs) constitute a source of diversity for microtubule (MT) functions, in addition to the different isotypes of α and ß-tubulin acting as building blocks of MTs. Also, MT-associated proteins (MAPs) confer different characteristics to MTs. The combination of all these factors regulates the stability of these structures that act as rails to transport organelles within the cell, facilitating the association of motor complexes. All these functions are involved in crucial cellular processes in most cell types, ranging from spindle formation in mitosis to the defense against incoming cellular threats during phagocytosis mediated by immune cells. The regulation of MT dynamics through tubulin PTMs has evolved to depend on many different factors that act in a complex orchestrated manner. These tightly regulated processes are particularly relevant during the induction of effective immune responses against pathogens. Viruses have proved not only to hijack MTs and MAPs in order to favor an efficient infection, but also to induce certain PTMs that improve their cellular spread and lead to secondary consequences of viral processes. In this review, we offer a perspective on relevant MT-related elements exploited by viruses.


Subject(s)
Microtubules/metabolism , Protein Processing, Post-Translational , RNA Virus Infections/metabolism , RNA Viruses/physiology , Virus Physiological Phenomena , Animals , Biological Transport , Chlorocebus aethiops , Humans , Vero Cells
4.
PLoS Biol ; 15(4): e2000653, 2017 04.
Article in English | MEDLINE | ID: mdl-28394935

ABSTRACT

The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS); however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) controls the coalescence of protein kinase C-θ (PKC-θ) at the central supramolecular activation cluster (c-SMAC) of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of ß-actin and PKC-θ from the lamellipodium-like distal (d)-SMAC, promoting PKC-θ activation. Furthermore, eNOS-derived NO S-nitrosylated ß-actin on Cys374 and impaired actin binding to profilin-1 (PFN1), as confirmed with the transnitrosylating agent S-nitroso-L-cysteine (Cys-NO). The importance of NO and the formation of PFN1-actin complexes on the regulation of PKC-θ was corroborated by overexpression of PFN1- and actin-binding defective mutants of ß-actin (C374S) and PFN1 (H119E), respectively, which reduced the coalescence of PKC-θ at the c-SMAC. These findings unveil a novel NO-dependent mechanism by which the actin cytoskeleton controls the organization and activation of signaling microclusters at the IS.


Subject(s)
Actins/metabolism , Immunological Synapses/enzymology , Isoenzymes/metabolism , Nitric Oxide Synthase Type III/metabolism , Profilins/metabolism , Protein Kinase C/metabolism , Protein Processing, Post-Translational , T-Lymphocytes/metabolism , Amino Acid Substitution , Cell Line , Cells, Cultured , Cysteine/metabolism , Enzyme Activation , Golgi Apparatus/enzymology , Golgi Apparatus/immunology , Golgi Apparatus/metabolism , Humans , Immunological Synapses/immunology , Immunological Synapses/metabolism , Isoenzymes/chemistry , Isoenzymes/genetics , Luminescent Proteins/antagonists & inhibitors , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mutation , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitric Oxide Synthase Type III/genetics , Profilins/genetics , Protein Kinase C/chemistry , Protein Kinase C/genetics , Protein Kinase C-theta , Protein Transport , Pseudopodia , RNA Interference , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology
5.
Int J Mol Sci ; 21(8)2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32325900

ABSTRACT

The immune synapse (IS) is a well-known intercellular communication platform, organized at the interphase between the antigen presenting cell (APC) and the T cell. After T cell receptor (TCR) stimulation, signaling from plasma membrane proteins and lipids is amplified by molecules and downstream pathways for full synapse formation and maintenance. This secondary signaling event relies on intracellular reorganization at the IS, involving the cytoskeleton and components of the secretory/recycling machinery, such as the Golgi apparatus and the endolysosomal system (ELS). T cell activation triggers a metabolic reprogramming that involves the synthesis of lipids, which act as signaling mediators, and an increase of mitochondrial activity. Then, this mitochondrial activity results in elevated reactive oxygen species (ROS) production that may lead to cytotoxicity. The regulation of ROS levels requires the concerted action of mitochondria and peroxisomes. In this review, we analyze this reprogramming and the signaling implications of endolysosomal, mitochondrial, peroxisomal, and lipidic systems in T cell activation.


Subject(s)
Endosomes/metabolism , Lipid Metabolism , Lymphocyte Activation/immunology , Lysosomes/metabolism , Peroxisomes/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Cellular Reprogramming/immunology , Energy Metabolism , Humans , Immunological Synapses/immunology , Immunological Synapses/metabolism , Immunomodulation , Mitochondria/metabolism , Signal Transduction
6.
J Cell Sci ; 130(7): 1217-1223, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28209780

ABSTRACT

The immune synapse (IS) is a specialized structure formed at the contact area between T lymphocytes and antigen-presenting cells (APCs) that is essential for the adaptive immune response. Proper T cell activation requires its polarization towards the APC, which is highly dependent on the tubulin cytoskeleton. Microtubule-associated protein-4 (MAP4) is a microtubule (MT)-stabilizing protein that controls MTs in physiological processes, such as cell division, migration, vesicular transport or primary cilia formation. In this study, we assessed the role of MAP4 in T cell activation. MAP4 decorates the pericentrosomal area and MTs of the T cell, and it is involved in MT detyrosination and stable assembly in response to T cell activation. In addition, MAP4 prompts the timely translocation of the MT-organizing center (MTOC) towards the IS and the dynamics of signaling nanovesicles that sustains T cell activation. However, MAP4 acts as a negative regulator of other T cell activation-related signals, including diacylglycerol (DAG) production and IL2 secretion. Our data indicate that MAP4 acts as a checkpoint molecule that balances positive and negative hallmarks of T cell activation.


Subject(s)
Lymphocyte Activation/immunology , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Nanoparticles/chemistry , T-Lymphocytes/immunology , Transport Vesicles/metabolism , Biomarkers/metabolism , Diglycerides/metabolism , Humans , Immunological Synapses/metabolism , Jurkat Cells , Microtubule-Organizing Center/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction
7.
Bioessays ; 39(2)2017 02.
Article in English | MEDLINE | ID: mdl-27910998

ABSTRACT

Different protein kinases control signaling emanating from the T cell receptor (TCR) during antigen-specific T cell activation. Mitotic kinases, e.g. Aurora-A, have been widely studied in the context of mitosis due to their role during microtubule (MT) nucleation, becoming critical regulators of cell cycle progression. We have recently described a specific role for Aurora-A kinase in antigenic T cell activation. Blockade of Aurora-A in T cells severely disrupts the dynamics of MTs and CD3ζ-bearing signaling vesicles during T cell activation. Furthermore, Aurora-A deletion impairs the activation of signaling molecules downstream of the TCR. Targeting Aurora-A disturbs the activation of Lck, which is one of the first signals that drive T cell activation in an antigen-dependent manner. This work describes possible models of regulation of Lck by Aurora-A during T cell activation. We also discuss possible roles for Aurora-A in other systems similar to the IS, and its putative functions in cell polarization.


Subject(s)
Aurora Kinase A/metabolism , Lymphocyte Activation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Signal Transduction , T-Lymphocytes/metabolism , Animals , Aurora Kinase A/immunology , Humans , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/immunology , T-Lymphocytes/immunology
8.
J Cell Sci ; 129(7): 1305-1311, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26869226

ABSTRACT

HDAC6 is a tubulin deacetylase involved in many cellular functions related to cytoskeleton dynamics, including cell migration and autophagy. In addition, HDAC6 affects antigen-dependent CD4(+)T cell activation. In this study, we show that HDAC6 contributes to the cytotoxic function of CD8(+)T cells. Immunization studies revealed defective cytotoxic activity in vivo in the absence of HDAC6. Adoptive transfer of wild-type or Hdac6(-/-)CD8(+)T cells to Rag1(-/-)mice demonstrated specific impairment in CD8(+)T cell responses against vaccinia infection. Mechanistically, HDAC6-deficient cytotoxic T lymphocytes (CTLs) showed defective in vitro cytolytic activity related to altered dynamics of lytic granules, inhibited kinesin-1-dynactin-mediated terminal transport of lytic granules to the immune synapse and deficient exocytosis, but not to target cell recognition, T cell receptor (TCR) activation or interferon (IFN)γ production. Our results establish HDAC6 as an effector of the immune cytotoxic response that acts by affecting the dynamics, transport and secretion of lytic granules by CTLs.


Subject(s)
Cytoplasmic Granules/metabolism , Cytotoxicity, Immunologic/immunology , Histone Deacetylases/metabolism , T-Lymphocytes, Cytotoxic/immunology , Vaccinia/immunology , Animals , Biological Transport/physiology , Cells, Cultured , Cytotoxicity, Immunologic/genetics , Dynactin Complex/antagonists & inhibitors , Histone Deacetylase 6 , Histone Deacetylases/genetics , Interferon-gamma/metabolism , Kinesins/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Mice, Knockout
9.
J Immunol ; 194(11): 5509-19, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25917087

ABSTRACT

The adaptive immune response requires interaction between T cells and APC to form a specialized structure termed the immune synapse (IS). Although the TCR is essential for IS organization, other factors such as chemokines participate in this process. In this study, we show that the chemokine CXCL12-mediated signaling contributes to correct IS organization and therefore influences T cell activation. CXCR4 downregulation or blockade on T cells caused defective actin polymerization at the contact site with APC, altered microtubule-organizing center polarization and the IS structure, and reduced T cell/APC contact duration. T cell activation was thus inhibited, as shown by reduced expression of CD25 and CD69 markers and of IL-2 mRNA levels. The results indicate that, through Gi and JAK1 and 2 kinases activation, CXCL12 signaling cooperates to build the IS and to maintain adhesive contacts between APC and T cells, required for continuous TCR signaling.


Subject(s)
Chemokine CXCL12/immunology , Immunological Synapses/immunology , Janus Kinase 1/immunology , Janus Kinase 2/immunology , Receptors, Antigen, T-Cell/immunology , Actins/metabolism , Adaptive Immunity/immunology , Animals , Antigen-Presenting Cells/immunology , Antigens, CD/biosynthesis , Antigens, Differentiation, T-Lymphocyte/biosynthesis , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Cells, Cultured , Down-Regulation , Female , Interleukin-2/genetics , Interleukin-2 Receptor alpha Subunit/biosynthesis , Lectins, C-Type/biosynthesis , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , RNA Interference , RNA, Messenger/biosynthesis , RNA, Small Interfering , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/biosynthesis , Signal Transduction/immunology
10.
EMBO J ; 31(21): 4140-52, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-22922463

ABSTRACT

The role of microtubules (MTs) in the control and dynamics of the immune synapse (IS) remains unresolved. Here, we show that T cell activation requires the growth of MTs mediated by the plus-end specific protein end-binding 1 (EB1). A direct interaction of the T cell receptor (TCR) complex with EB1 provides the molecular basis for EB1 activity promoting TCR encounter with signalling vesicles at the IS. EB1 knockdown alters TCR dynamics at the IS and prevents propagation of the TCR activation signal to LAT, thus inhibiting activation of PLCγ1 and its localization to the IS. These results identify a role for EB1 interaction with the TCR in controlling TCR sorting and its connection with the LAT/PLCγ1 signalosome.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Phospholipase C gamma/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Amino Acid Sequence , Blotting, Western , Fluorescent Antibody Technique , Humans , Immunoprecipitation , Jurkat Cells , Lymphocyte Activation , Microtubule-Associated Proteins/genetics , Molecular Sequence Data , Phosphorylation , Protein Binding , Receptors, Antigen, T-Cell/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid , T-Lymphocytes/metabolism , Time-Lapse Imaging , Two-Hybrid System Techniques , Tyrosine/metabolism
11.
EMBO J ; 30(7): 1238-50, 2011 Apr 06.
Article in English | MEDLINE | ID: mdl-21326213

ABSTRACT

During antigen-specific T-cell activation, mitochondria mobilize towards the vicinity of the immune synapse. We show here that the mitochondrial fission factor dynamin-related protein 1 (Drp1) docks at mitochondria, regulating their positioning and activity near the actin-rich ring of the peripheral supramolecular activation cluster (pSMAC) of the immune synapse. Mitochondrial redistribution in response to T-cell receptor engagement was abolished by Drp1 silencing, expression of the phosphomimetic mutant Drp1S637D and the Drp1-specific inhibitor mdivi-1. Moreover, Drp1 knockdown enhanced mitochondrial depolarization and T-cell receptor signal strength, but decreased myosin phosphorylation, ATP production and T-cell receptor assembly at the central supramolecular activation cluster (cSMAC). Our results indicate that Drp1-dependent mitochondrial positioning and activity controls T-cell activation by fuelling central supramolecular activation cluster assembly at the immune synapse.


Subject(s)
GTP Phosphohydrolases/metabolism , Immunological Synapses/physiology , Immunological Synapses/ultrastructure , Lymphocytes/physiology , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Proteins/metabolism , Dynamins , GTP Phosphohydrolases/antagonists & inhibitors , GTP Phosphohydrolases/genetics , Gene Silencing , Humans , Microtubule-Associated Proteins/antagonists & inhibitors , Microtubule-Associated Proteins/genetics , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/genetics , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Receptors, Antigen, T-Cell/metabolism
12.
J Proteomics ; 304: 105229, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38880355

ABSTRACT

Mass-tolerant open search methods allow the high-throughput analysis of modified peptides by mass spectrometry. These techniques have paved the way to unbiased analysis of post-translational modifications in biological contexts, as well as of chemical modifications produced during the manipulation of protein samples. In this work, we have analyzed in-depth a wide variety of samples of different biological origin, including cells, extracellular vesicles, secretomes, centrosomes and tissue preparations, using Comet-ReCom, a recently improved version of the open search engine Comet-PTM. Our results demonstrate that glutamic acid residues undergo intensive methyl esterification when protein digestion is performed using in-gel techniques, but not using gel-free approaches. This effect was highly specific to Glu and was not found for other methylable residues such as Asp.


Subject(s)
Glutamic Acid , Methanol , Methanol/chemistry , Methylation , Humans , Glutamic Acid/metabolism , Protein Processing, Post-Translational , Proteomics/methods , Animals
13.
Commun Biol ; 7(1): 918, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080357

ABSTRACT

Actin dynamics control early T-cell receptor (TCR) signalling during T-cell activation. However, the precise regulation of initial actin rearrangements is not completely understood. Here, we have investigated the regulatory role of the phosphatase Slingshot-1 (SSH1) in this process. Our data show that SSH1 rapidly polarises to nascent cognate synaptic contacts and later relocalises to peripheral F-actin networks organised at the mature immunological synapse. Knockdown of SSH1 expression by CRISPR/Cas9-mediated genome editing or small interfering RNA reveal a regulatory role for SSH1 in CD3ε conformational change, allowing Nck binding and proper downstream signalling and immunological synapse organisation. TCR triggering induces SSH1-mediated activation of actin dynamics through a mechanism mediated by Limk-1 inactivation. These data suggest that during early TCR activation, SSH1 is required for rapid F-actin rearrangements that mediate initial conformational changes of the TCR, integrin organisation and proximal signalling events for proper synapse organisation. Therefore, the SSH1 and Limk-1 axis is a key regulatory element for full T cell activation.


Subject(s)
Lim Kinases , Phosphoprotein Phosphatases , Receptors, Antigen, T-Cell , Humans , Lim Kinases/metabolism , Lim Kinases/genetics , Receptors, Antigen, T-Cell/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Actins/metabolism , Actins/genetics , Lymphocyte Activation , Jurkat Cells , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Signal Transduction , Immunological Synapses/metabolism
14.
Nat Commun ; 15(1): 2100, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453949

ABSTRACT

Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.


Subject(s)
COVID-19 , Inflammasomes , Humans , Calcium-Binding Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , COVID-19/pathology , Inflammasomes/metabolism , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nucleoproteins/metabolism , SARS-CoV-2/metabolism
15.
Cell Death Dis ; 15(2): 144, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360867

ABSTRACT

The tumor microenvironment (TME) plays a central role in the pathogenesis of chronic lymphocytic leukemia (CLL), contributing to disease progression and chemoresistance. Leukemic cells shape the TME into a pro-survival and immunosuppressive niche through contact-dependent and contact-independent interactions with the cellular components of the TME. Immune synapse (IS) formation is defective in CLL. Here we asked whether soluble factors released by CLL cells contribute to their protection from cytotoxic T cell (CTL)-mediated killing by interfering with this process. We found that healthy CTLs cultured in media conditioned by leukemic cells from CLL patients or Eµ-TCL1 mice upregulate the exhaustion marker PD-1 and become unable to form functional ISs and kill target cells. These defects were more pronounced when media were conditioned by leukemic cells lacking p66Shc, a proapoptotic adapter whose deficiency has been implicated in disease aggressiveness both in CLL and in the Eµ-TCL1 mouse model. Multiplex ELISA assays showed that leukemic cells from Eµ-TCL1 mice secrete abnormally elevated amounts of CCL22, CCL24, IL-9 and IL-10, which are further upregulated in the absence of p66Shc. Among these, IL-9 and IL-10 were also overexpressed in leukemic cells from CLL patients, where they inversely correlated with residual p66Shc. Using neutralizing antibodies or the recombinant cytokines we show that IL-9, but not IL-10, mediates both the enhancement in PD-1 expression and the suppression of effector functions in healthy CTLs. Our results demonstrate that IL-9 secreted by leukemic cells negatively modulates the anti-tumor immune abilities of CTLs, highlighting a new suppressive mechanism and a novel potential therapeutical target in CLL.


Subject(s)
Interleukin-9 , Leukemia, Lymphocytic, Chronic, B-Cell , Animals , Humans , Mice , Immunologic Factors , Interleukin-10/metabolism , Interleukin-9/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Programmed Cell Death 1 Receptor/metabolism , Proto-Oncogene Proteins/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , T-Lymphocytes, Cytotoxic/metabolism , Tumor Microenvironment
16.
J Cell Sci ; 124(Pt 5): 820-30, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21321329

ABSTRACT

Antigen-specific cognate interaction of T lymphocytes with antigen-presenting cells (APCs) drives major morphological and functional changes in T cells, including actin rearrangements at the immune synapse (IS) formed at the cell-cell contact area. Here we show, using cell lines as well as primary cells, that clathrin, a protein involved in endocytic processes, drives actin accumulation at the IS. Clathrin is recruited towards the IS with parallel kinetics to that of actin. Knockdown of clathrin prevents accumulation of actin and proteins involved in actin polymerization, such as dynamin-2, the Arp2/3 complex and CD2AP at the IS. The clathrin pool involved in actin accumulation at the IS is linked to multivesicular bodies that polarize to the cell-cell contact zone, but not to plasma membrane or Golgi complex. These data underscore the role of clathrin as a platform for the recruitment of proteins that promote actin polymerization at the interface of T cells and APCs.


Subject(s)
Actins/metabolism , Clathrin/metabolism , Endosomes/metabolism , Immunological Synapses/metabolism , Animals , Antigen-Presenting Cells/cytology , Antigen-Presenting Cells/immunology , Cell Polarity , Cells, Cultured , Clathrin/genetics , Dynamin II/genetics , Dynamin II/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Gene Knockdown Techniques , Humans , Immunological Synapses/ultrastructure , Jurkat Cells , Phosphoproteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology
17.
Methods Cell Biol ; 178: 149-171, 2023.
Article in English | MEDLINE | ID: mdl-37516524

ABSTRACT

T cell activation through TCR stimulation leads to the formation of the immunological synapse (IS), a specialized adhesion organized between T lymphocytes and antigen presenting cells (APCs) in which a dynamic interaction among signaling molecules, the cytoskeleton and intracellular organelles achieves proper antigen-mediated stimulation and effector function. The kinetics of molecular reactions at the IS is essential to determine the quality of the response to the antigen stimulation. Herein, we describe methods based on biochemistry, flow cytometry and imaging in live and fixed cells to study the activation state and dynamics of regulatory molecules at the IS in the Jurkat T cell line CH7C17 and primary human and mouse CD4+ T lymphocytes stimulated by antigen presented by Raji and HOM2 B cell lines and human and mouse dendritic cells.


Subject(s)
Immunological Synapses , T-Lymphocytes , Humans , Animals , Mice , T-Lymphocytes/metabolism , Immunological Synapses/metabolism , Kinetics , Antigen-Presenting Cells/metabolism , Signal Transduction , Lymphocyte Activation , Receptors, Antigen, T-Cell/metabolism , Jurkat Cells
18.
J Proteomics ; 287: 104968, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37463622

ABSTRACT

Open-search methods allow unbiased, high-throughput identification of post-translational modifications in proteins at an unprecedented scale. The performance of current open-search algorithms is diminished by experimental errors in the determination of the precursor peptide mass. In this work we propose a semi-supervised open search approach, called ReCom, that minimizes this effect by taking advantage of a priori known information from a reference database, such as Unimod or a database provided by the user. We present a proof-of-concept study using Comet-ReCom, an improved version of Comet-PTM. Comet-ReCom increased identification performance of Comet-PTM by 68%. This increased performance of Comet-ReCom to score the MS/MS spectrum comes in parallel with a significantly better assignation of the monoisotopic peak of the precursor peptide in the MS spectrum, even in cases of peptide coelution. Our data demonstrate that open searches using ultra-tolerant mass windows can benefit from using a semi-supervised approach that takes advantage from previous knowledge on the nature of protein modifications. SIGNIFICANCE: The present study introduces a novel approach to ultra-tolerant database search, which employs prior knowledge of post-translational modifications (PTMs) to improve identification of modified peptides. This method addresses the limitations related to experimental errors and precursor mass assignation of previous open-search methods. Thus, it enables the study of the biological significance of a wider variety of PTMs, including unknown or unexpected modifications that may have gone unnoticed using non-supervised search methods.


Subject(s)
Peptides , Tandem Mass Spectrometry , Amino Acid Sequence , Tandem Mass Spectrometry/methods , Peptides/metabolism , Proteins/metabolism , Algorithms , Protein Processing, Post-Translational , Databases, Protein , Software
19.
Methods Cell Biol ; 178: 25-41, 2023.
Article in English | MEDLINE | ID: mdl-37516527

ABSTRACT

In order to understand T cell function, it is necessary to completely decipher the molecular dynamics underlying T cell activation and effector function. In vitro easy-to-handle cellular models are valuable tools to study intracellular molecular mechanisms in live cells. The CD4 T cell line Jurkat (JK) has been widely employed to investigate intracellular signaling leading to T cell activation in response to T cell receptor (TCR) triggering. Here, we describe diverse, complementary protocols to evaluate the TCR- and costimulation-mediated T cell activation, as well as the immunological synapse assembly and cytokine production occurring as a consequence of successful early activation events. This in vitro model is extremely useful to address molecular mechanisms operating during T cell activation and effector function acting in diverse pathophysiological scenarios.


Subject(s)
CD4-Positive T-Lymphocytes , Receptors, Antigen, T-Cell , Humans , CD4-Positive T-Lymphocytes/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Gene Expression , Lymphocyte Activation , Jurkat Cells
20.
Front Immunol ; 14: 1197289, 2023.
Article in English | MEDLINE | ID: mdl-37520527

ABSTRACT

The organization of the mitochondrial network is relevant for the metabolic fate of T cells and their ability to respond to TCR stimulation. This arrangement depends on cytoskeleton dynamics in response to TCR and CD28 activation, which allows the polarization of the mitochondria through their change in shape, and their movement along the microtubules towards the immune synapse. This work focus on the role of End-binding protein 1 (EB1), a protein that regulates tubulin polymerization and has been previously identified as a regulator of intracellular transport of CD3-enriched vesicles. EB1-interferred cells showed defective intracellular organization and metabolic strength in activated T cells, pointing to a relevant connection of the cytoskeleton and metabolism in response to TCR stimulation, which leads to increased AICD. By unifying the organization of the tubulin cytoskeleton and mitochondria during CD4+ T cell activation, this work highlights the importance of this connection for critical cell asymmetry together with metabolic functions such as glycolysis, mitochondria respiration, and cell viability.


Subject(s)
CD4-Positive T-Lymphocytes , Microtubule-Associated Proteins , Mitochondria , Jurkat Cells , Humans , Microtubule-Associated Proteins/metabolism , CD4-Positive T-Lymphocytes/metabolism , Mitochondria/metabolism , Tubulin/metabolism , Cytoskeleton/metabolism , Receptors, Antigen, T-Cell/metabolism , CD28 Antigens/metabolism , Membrane Potential, Mitochondrial , Immunological Synapses
SELECTION OF CITATIONS
SEARCH DETAIL