ABSTRACT
In this work, we revisit the dynamics of carbon monoxide molecular chemisorption on Cu(110) by using quasi-classical trajectory calculations. The molecule-surface interaction is described through an atomistic neural network approach based on Density Functional Theory calculations using a nonlocal exchange-correlation (XC) functional that includes the effect of long-range dispersion forces: vdW-DF2 [Lee et al. Phys. Rev. B, 82, 081101 (2010)]. With this approach, we significantly improve the agreement with experiments with respect to a similar previous study based on a semi-local XC functional. In particular, we obtain excellent agreement with molecular beam experimental data concerning the dependence of the initial sticking probability on surface temperature and impact energy at normal incidence. For off-normal incidence, our results also reproduce two trends observed experimentally: (i) the preferential sticking for molecules impinging parallel to the [1Ì10] direction compared to [001] and (ii) the change from positive to negative scaling as the impact energy increases. Nevertheless, understanding the origin of some remaining quantitative discrepancies with experiments requires further investigations.
ABSTRACT
Adiabatic and nonadiabatic quasi-classical molecular dynamics simulations are performed to investigate the role of electron-hole pair excitations in hot-atom and Eley-Rideal H2 recombination mechanisms on H-covered W(100). The influence of the surface structure is analyzed by comparing with previous results for W(110). In the two surfaces, hot-atom abstraction cross sections are drastically reduced due to the efficient energy exchange with electronic excitations at low incident energies and low coverage, while the effect on Eley-Rideal reactivity is negligible. As the coverage increases, the projectile energy is more efficiently dissipated into the other adsorbates. Consequently, the effect of electronic excitations is reduced. As a result, the reactivity and final energy distributions of the formed H2 molecules are similar for both abstraction mechanisms.
ABSTRACT
The dissociation of H(2) on Ti-covered Al surfaces is relevant to the rehydrogenation and dehydrogenation of the NaAlH(4) hydrogen storage material. The energetically most stable structure for a 1/2 monolayer of Ti deposited on the Al(100) surface has the Ti atoms in the second layer with a c(2 × 2) structure, as has been confirmed by both low-energy electron diffraction and low-energy ion scattering experiments and density functional theory studies. In this work, we investigate the dynamics of H(2) dissociation on a slab model of this Ti/Al(100) surface. Two six-dimensional potential energy surfaces (PESs) have been built for this H(2) + Ti/Al(100) system, based on the density functional theory PW91 and RPBE exchange-correlation functionals. In the PW91 (RPBE) PES, the lowest H(2) dissociation barrier is found to be 0.65 (0.84) eV, with the minimum energy path occurring for H(2) dissociating above the bridge to top sites. Using both PESs, H(2) dissociation probabilities are calculated using the classical trajectory (CT), the quasi-classical trajectory (QCT), and the time-dependent wave-packet methods. We find that the QCT H(2) dissociation probabilities are in good agreement with the quantum dynamics results in the collision energy range studied up to 1.0 eV. We have also performed molecular beam simulations and present predictions for molecular beam experiments. Our molecular beam simulations show that H(2) dissociation on the 1/2 ML Ti/Al(100) surface is an activated process, and the reaction probability is found to be 6.9% for the PW91 functional and 1.8% for the RPBE at a nozzle temperature of 1700 K. Finally, we have also calculated H(2) dissociation rate constants by applying transition state theory and the QCT method, which could be relevant to modeling Ti-catalyzed rehydrogenation and dehydrogenation of NaAlH(4).