ABSTRACT
NLRscape is a webserver that curates a collection of over 80 000 plant protein sequences identified in UniProtKB to contain NOD-like receptor signatures, and hosts in addition a number of tools aimed at the exploration of the complex sequence landscape of this class of plant proteins. Each entry gathers sequence information, domain and motif annotations from multiple third-party sources but also in-house advanced annotations aimed at addressing caveats of the existing broad-based annotations. NLRscape provides a top-down perspective of the NLR sequence landscape but also services for assisting a bottom-up approach starting from a given input sequence. Sequences are clustered by their domain organization layout, global homology and taxonomic spread-in order to allow analysis of how particular traits of an NLR family are scattered within the plant kingdom. Tools are provided for users to locate their own protein of interest in the overall NLR landscape, generate custom clusters centered around it and perform a large number of sequence and structural analyses using included interactive online instruments. Amongst these, we mention: taxonomy distribution plots, homology cluster graphs, identity matrices and interactive MSA synchronizing secondary structure and motif predictions. NLRscape can be found at: https://nlrscape.biochim.ro/.
Subject(s)
NLR Proteins , Plant Proteins , Amino Acid Sequence , Ascomycota , NLR Proteins/genetics , Plant Proteins/genetics , Plants/genetics , Atlases as Topic , Software , Web BrowserABSTRACT
A series of "molecular domestication" events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, RAG2L-A proteins contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g. the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.
Subject(s)
DNA Transposable Elements , Homeodomain Proteins , Animals , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Vertebrates/genetics , Vertebrates/metabolism , Adaptive Immunity/geneticsABSTRACT
NLR (nucleotide-binding [NB] leucine-rich repeat [LRR] receptor) proteins are critical for inducing immune responses in response to pathogen proteins, and must be tightly modulated to prevent spurious activation in the absence of a pathogen. The ZAR1 NLR recognizes diverse effector proteins from Pseudomonas syringae, including HopZ1a, and Xanthomonas species. Receptor-like cytoplasmic kinases (RLCKs) such as ZED1, interact with ZAR1 and provide specificity for different effector proteins, such as HopZ1a. We previously developed a transient expression system in Nicotiana benthamiana that allowed us to demonstrate that ZAR1 function is conserved from the Brassicaceae to the Solanaceae. Here, we combined structural modelling of ZAR1, with molecular and functional assays in our transient system, to show that multiple intramolecular and intermolecular interactions modulate ZAR1 activity. We identified determinants required for the formation of the ZARCC oligomer and its activity. Lastly, we characterized intramolecular interactions between ZAR1 subdomains that participate in keeping ZAR1 immune complexes inactive. This work identifies molecular constraints on immune receptor function and activation.
Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/metabolism , Nicotiana/immunology , Nicotiana/metabolism , Plant Immunity/physiology , Plant Proteins/metabolism , Arabidopsis Proteins , Bacterial Proteins/metabolism , Carrier Proteins/genetics , Models, Molecular , Phosphotransferases/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Pseudomonas syringae/metabolism , Nicotiana/genetics , Xanthomonas/metabolismABSTRACT
Pathogen pressure on hosts can lead to the evolution of genes regulating the innate immune response. By characterizing naturally occurring polymorphisms in immune receptors, we can better understand the molecular determinants of pathogen recognition. ZAR1 is an ancient Arabidopsis thaliana NLR (Nucleotide-binding [NB] Leucine-rich-repeat [LRR] Receptor) that recognizes multiple secreted effector proteins from the pathogenic bacteria Pseudomonas syringae and Xanthomonas campestris through its interaction with receptor-like cytoplasmic kinases (RLCKs). ZAR1 was first identified for its role in recognizing P. syringae effector HopZ1a, through its interaction with the RLCK ZED1. To identify additional determinants of HopZ1a recognition, we performed a computational screen for ecotypes from the 1001 Genomes project that were likely to lack HopZ1a recognition, and tested ~300 ecotypes. We identified ecotypes containing polymorphisms in ZAR1 and ZED1. Using our previously established Nicotiana benthamiana transient assay and Arabidopsis ecotypes, we tested for the effect of naturally occurring polymorphisms on ZAR1 interactions and the immune response. We identified key residues in the NB or LRR domain of ZAR1 that impact the interaction with ZED1. We demonstrate that natural diversity combined with functional assays can help define the molecular determinants and interactions necessary to regulate immune induction in response to pathogens.
Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Carrier Proteins/metabolism , Phosphotransferases/metabolism , Plant Diseases/immunology , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Biodiversity , Carrier Proteins/genetics , Phosphotransferases/genetics , Plant Diseases/microbiology , Plant Immunity , Protein Binding , Protein Domains , Pseudomonas syringae/physiologyABSTRACT
EDEM3 recognizes and directs misfolded proteins to the ER-associated protein degradation (ERAD) process. EDEM3 was predicted to act as lectin or as a mannosidase because of its homology with the GH47 catalytic domain of the Man1B1, but the contribution of the other regions remained unresolved. Here, we dissect the molecular determinants governing EDEM3 function and its cellular interactions. LC/MS analysis indicates very few stable ER interactors, suggesting EDEM3 availability for transient substrate interactions. Sequence analysis reveals that EDEM3 consists of four consecutive modules defined as GH47, intermediate (IMD), protease-associated (PA), and intrinsically disordered (IDD) domain. Using an EDEM3 knock-out cell line, we expressed EDEM3 and domain deletion mutants to address EDEM3 function. We find that the mannosidase domain provides substrate binding even in the absence of mannose trimming and requires the IMD domain for folding. The PA and IDD domains deletions do not impair the trimming, but specifically modulate the turnover of two misfolded proteins, NHK and the soluble tyrosinase mutant. Hence, we demonstrate that EDEM3 provides a unique ERAD timing to misfolded glycoproteins, not only by its mannose trimming activity, but also by the positive and negative feedback modulated by the protease-associated and intrinsically disordered domain, respectively.
Subject(s)
Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , alpha-Mannosidase/chemistry , alpha-Mannosidase/metabolism , Calcium-Binding Proteins/genetics , Catalytic Domain , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation , HEK293 Cells , HeLa Cells , Humans , Mannose/metabolism , Mannosidases/genetics , Mannosidases/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Mutation , Protein Domains , Protein Folding , Protein Interaction Maps , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism , alpha-Mannosidase/geneticsABSTRACT
Alzheimer's disease is a neurodegenerative disorder incompatible with normal daily activity, affecting one in nine people. One of its potential targets is the apelin receptor (APJR), a G-protein coupled receptor, which presents considerably high expression levels in the central nervous system. In silico studies of APJR drug-like molecule binding are in small numbers while high throughput screenings (HTS) are already sufficiently many to devise efficient drug design strategies. This presents itself as an opportunity to optimize different steps in future large scale virtual screening endeavours. Here, we ran a first stage docking simulation against a library of 95 known binders and 3829 generated decoys in an effort to improve the rescoring stage. We then analyzed receptor binding site structure and ligands binding poses to describe their interactions. As a result, we devised a simple and straightforward virtual screening Stage II filtering score based on search space extension followed by a geometric estimation of the ligand-binding site fitness. Having this score, we used an ensemble of receptors generated by Hamiltonian Monte Carlo simulation and reported the results. The improvements shown herein prove that our ensemble docking protocol is suited for APJR and can be easily extrapolated to other GPCRs.
Subject(s)
Apelin Receptors/chemistry , High-Throughput Screening Assays/methods , Molecular Docking Simulation/methods , Receptors, G-Protein-Coupled/metabolism , Apelin/analogs & derivatives , Apelin/chemistry , Binding Sites , Biomimetics , Drug Design , Humans , Ligands , Peptides/chemistry , Protein BindingABSTRACT
The intracellular immune receptor Rx1 of potato (Solanum tuberosum), which confers effector-triggered immunity to Potato virus X, consists of a central nucleotide-binding domain (NB-ARC) flanked by a carboxyl-terminal leucine-rich repeat (LRR) domain and an amino-terminal coiled-coil (CC) domain. Rx1 activity is strictly regulated by interdomain interactions between the NB-ARC and LRR, but the contribution of the CC domain in regulating Rx1 activity or immune signaling is not fully understood. Therefore, we used a structure-informed approach to investigate the role of the CC domain in Rx1 functionality. Targeted mutagenesis of CC surface residues revealed separate regions required for the intramolecular and intermolecular interaction of the CC with the NB-ARC-LRR and the cofactor Ran GTPase-activating protein2 (RanGAP2), respectively. None of the mutant Rx1 proteins was constitutively active, indicating that the CC does not contribute to the autoinhibition of Rx1 activity. Instead, the CC domain acted as a modulator of downstream responses involved in effector-triggered immunity. Systematic disruption of the hydrophobic interface between the four helices of the CC enabled the uncoupling of cell death and disease resistance responses. Moreover, a strong dominant negative effect on Rx1-mediated resistance and cell death was observed upon coexpression of the CC alone with full-length Rx1 protein, which depended on the RanGAP2-binding surface of the CC. Surprisingly, coexpression of the N-terminal half of the CC enhanced Rx1-mediated resistance, which further indicated that the CC functions as a scaffold for downstream components involved in the modulation of disease resistance or cell death signaling.
Subject(s)
Disease Resistance/immunology , Plant Diseases/immunology , Potexvirus/immunology , Receptors, Immunologic/metabolism , Signal Transduction , Solanum tuberosum/immunology , Plant Diseases/virology , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Protein Domains , Receptors, Immunologic/genetics , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Solanum tuberosum/virologyABSTRACT
Eyes absent (EYA) are non-thiol-based protein tyrosine phosphatases (PTPs) that also have transcriptional co-activator functions. Their PTP activity is involved in various pathologies. Recently, we demonstrated that Src tyrosine kinase phosphorylates human EYA3 by controlling its subcellular localization. We also found EYA3's ability to autodephosphorylate, while raising the question if the two opposing processes could be involved in maintaining a physiologically adequate level of phosphorylation. Using native and bottom-up mass spectrometry, we performed detailed mapping and characterization of human EYA3 Src-phosphorylation sites. Thirteen tyrosine residues with different phosphorylation and autodephosphorylation kinetics were detected. Among these, Y77, 96, 237, and 508 displayed an increased resistance to autodephosphorylation. Y77 and Y96 were found to have the highest impact on the overall EYA3 phosphorylation. Using cell cycle analysis, we showed that Y77, Y96, and Y237 are involved in HEK293T proliferation. Mutation of the three tyrosine residues abolished the pro-proliferative effect of EYA3 overexpression. We have also identified a Src-induced phosphorylation pattern of EYA3 in these cells. These findings suggest that EYA3's tyrosine phosphorylation sites are non-equivalent with their phosphorylation levels being under the control of Src-kinase activity and of EYA3's autodephosphorylation.
Subject(s)
Cell Cycle , DNA-Binding Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism , src-Family Kinases/metabolism , DNA-Binding Proteins/genetics , HEK293 Cells , Humans , Phosphorylation , Protein Tyrosine Phosphatases/genetics , Tyrosine/genetics , Tyrosine/metabolism , src-Family Kinases/geneticsABSTRACT
A series of "molecular domestication" events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events is not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, PflRAG2L-A and echinoderm RAG2L-A contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g., the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.
ABSTRACT
Examination of a collection of over 80,000 Plant Nod-like receptors (NLRs) revealed an overwhelming sequence diversity underlying functional specificity of pathogen detection, signaling and cooperativity. The NLR canonical building blocks-CC/TIR/RPW8, NBS and LRR-contain, however, a number of conserved sequence motifs showing a significant degree of invariance amongst different NLR groups. To identify these motifs we developed NLRexpress-a bundle of 17 machine learning (ML)-based predictors, able to swiftly and precisely detect CC, TIR, NBS, and LRR motifs while minimizing computing time without accuracy losses-aimed as an instrument scalable for screening overall proteomes, transcriptomes or genomes for identifying integral NLRs and discriminating them against incomplete sequences lacking key motifs. These predictors were further used to screen a subset of â¼34,000 regular plant NLR sequences. Motifs were analyzed using unsupervised ML techniques to assess the structural correlations hidden underneath pattern variabilities. Both the NB-ARC switch domain which admittedly is the most conserved region of NLRs and the highly diverse LRR domain with its vastly variable lengths and repeat irregularities-show well-defined relations between motif subclasses, highlighting the importance of structural invariance in shaping NLR sequence diversity. The online NLRexpress webserver can be accessed at https://nlrexpress.biochim.ro.
ABSTRACT
Plant disease immunity heavily depends on the recognition of plant pathogens and the subsequent activation of downstream immune pathways. Nod-like receptors are often crucial in this process. Tsw, a Nod-like resistance gene from Capsicum chinense conferring resistance against Tomato spotted wilt virus (TSWV), belongs to the small group of Nod-like receptors with unusually large LRR domains. While typical protein domain dimensions rarely exceed 500 amino acids due to stability constraints, the LRR of these unusual NLRs range from 1,000 to 3,400 amino acids and contain over 30 LRR repeats. The presence of such a multitude of repeats in one protein is also difficult to explain considering protein functionality. Interactions between the LRR and the other NLR domains (CC, TIR, NBS) take place within the first 10 LRR repeats, leaving the function of largest part of the LRR structure unexplained. Herein we discuss the structural modeling limits and various aspects of the structure-function relation conundrums of large LRRs focusing on Tsw, and raise questions regarding its recognition of its effector NSs and the possible inhibition on other domains as seen in other NLRs.
ABSTRACT
The current COVID-19 pandemic initiated an unprecedented response from clinicians and the scientific community in all relevant biomedical fields. It created an incredible multidimensional data-rich framework in which deep learning proved instrumental to make sense of the data and build models used in prediction-validation workflows that in a matter of months have already produced results in assessing the spread of the outbreak, its taxonomy, population susceptibility, diagnostics or drug discovery and repurposing. More is expected to come in the near future by using such advanced machine learning techniques to combat this pandemic. This review aims to unravel just a small fraction of the large global endeavors by focusing on the research performed on the main COVID-19 targets, on the computational weaponry used in identifying drugs to combat the disease, and on some of the most important directions found to contain COVID-19 or alleviating its symptoms in the absence of specific medication.
Subject(s)
COVID-19 , Deep Learning , Drug Repositioning , Humans , Pandemics , SARS-CoV-2ABSTRACT
BACKGROUND: V(D) J recombination is essential for adaptive immunity in jawed vertebrates and is initiated by the RAG1-RAG2 endonuclease. The RAG1 and RAG2 genes are thought to have evolved from a RAGL (RAG-like) transposon containing convergently-oriented RAG1-like (RAG1L) and RAG2-like (RAG2L) genes. Elements resembling this presumptive evolutionary precursor have thus far only been detected convincingly in deuterostomes, leading to the model that the RAGL transposon first appeared in an early deuterostome. RESULTS: We have identified numerous RAGL transposons in the genomes of protostomes, including oysters and mussels (phylum Mollusca) and a ribbon worm (phylum Nemertea), and in the genomes of several cnidarians. Phylogenetic analyses are consistent with vertical evolution of RAGL transposons within the Bilateria clade and with its presence in the bilaterian ancestor. Many of the RAGL transposons identified in protostomes are intact elements containing convergently oriented RAG1L and RAG2L genes flanked by terminal inverted repeats (TIRs) and target site duplications with striking similarities with the corresponding elements in deuterostomes. In addition, protostome genomes contain numerous intact RAG1L-RAG2L adjacent gene pairs that lack detectable flanking TIRs. Domains and critical active site and structural amino acids needed for endonuclease and transposase activity are present and conserved in many of the predicted RAG1L and RAG2L proteins encoded in protostome genomes. CONCLUSIONS: Active RAGL transposons were present in multiple protostome lineages and many were likely transmitted vertically during protostome evolution. It appears that RAGL transposons were broadly active during bilaterian evolution, undergoing multiple duplication and loss/fossilization events, with the RAGL genes that persist in present day protostomes perhaps constituting both active RAGL transposons and domesticated RAGL genes. Our findings raise the possibility that the RAGL transposon arose earlier in evolution than previously thought, either in an early bilaterian or prior to the divergence of bilaterians and non-bilaterians, and alter our understanding of the evolutionary history of this important group of transposons.
ABSTRACT
Leucine-rich-repeats (LRRs) belong to an archaic procaryal protein architecture that is widely involved in protein-protein interactions. In eukaryotes, LRR domains developed into key recognition modules in many innate immune receptor classes. Due to the high sequence variability imposed by recognition specificity, precise repeat delineation is often difficult especially in plant NOD-like Receptors (NLRs) notorious for showing far larger irregularities. To address this problem, we introduce here LRRpredictor, a method based on an ensemble of estimators designed to better identify LRR motifs in general but particularly adapted for handling more irregular LRR environments, thus allowing to compensate for the scarcity of structural data on NLR proteins. The extrapolation capacity tested on a set of annotated LRR domains from six immune receptor classes shows the ability of LRRpredictor to recover all previously defined specific motif consensuses and to extend the LRR motif coverage over annotated LRR domains. This analysis confirms the increased variability of LRR motifs in plant and vertebrate NLRs when compared to extracellular receptors, consistent with previous studies. Hence, LRRpredictor is able to provide novel insights into the diversification of LRR domains and a robust support for structure-informed analyses of LRRs in immune receptor functioning.