Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chembiochem ; 16(5): 844-53, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25737329

ABSTRACT

Site-specific incorporation of non-standard amino acids (NSAAs) into proteins opens the way to novel biological insights and applications in biotechnology. Here, we describe the development of a high yielding cell-free protein synthesis (CFPS) platform for NSAA incorporation from crude extracts of genomically recoded Escherichia coli lacking release factor 1. We used genome engineering to construct synthetic organisms that, upon cell lysis, lead to improved extract performance. We targeted five potential negative effectors to be disabled: the nuclease genes rna, rnb, csdA, mazF, and endA. Using our most productive extract from strain MCJ.559 (csdA(-) endA(-)), we synthesized 550±40 µg mL(-1) of modified superfolder green fluorescent protein containing p-acetyl-L-phenylalanine. This yield was increased to ∼1300 µg mL(-1) when using a semicontinuous method. Our work has implications for using whole genome editing for CFPS strain development, expanding the chemistry of biological systems, and cell-free synthetic biology.


Subject(s)
Biotechnology , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Engineering , Peptide Termination Factors/deficiency , Protein Biosynthesis , Amino Acids/chemistry , Amino Acids/metabolism , Cell-Free System , Escherichia coli Proteins/genetics , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/chemistry , Peptide Termination Factors/genetics
2.
Nat Commun ; 9(1): 1203, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29572528

ABSTRACT

Cell-free protein synthesis has emerged as a powerful approach for expanding the range of genetically encoded chemistry into proteins. Unfortunately, efforts to site-specifically incorporate multiple non-canonical amino acids into proteins using crude extract-based cell-free systems have been limited by release factor 1 competition. Here we address this limitation by establishing a bacterial cell-free protein synthesis platform based on genomically recoded Escherichia coli lacking release factor 1. This platform was developed by exploiting multiplex genome engineering to enhance extract performance by functionally inactivating negative effectors. Our most productive cell extracts enabled synthesis of 1,780 ± 30 mg/L superfolder green fluorescent protein. Using an optimized platform, we demonstrated the ability to introduce 40 identical p-acetyl-L-phenylalanine residues site specifically into an elastin-like polypeptide with high accuracy of incorporation ( ≥ 98%) and yield (96 ± 3 mg/L). We expect this cell-free platform to facilitate fundamental understanding and enable manufacturing paradigms for proteins with new and diverse chemistries.


Subject(s)
Amino Acids/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Peptide Termination Factors/chemistry , Cell-Free System , Codon , Escherichia coli Proteins/genetics , Genetic Engineering , Genome, Bacterial , Green Fluorescent Proteins/metabolism , Mass Spectrometry , Mutation , Peptide Termination Factors/genetics , Peptides/metabolism , Phenylalanine/metabolism , Plasmids/metabolism , Protein Biosynthesis
3.
ACS Synth Biol ; 6(7): 1370-1379, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28350472

ABSTRACT

Chinese Hamster Ovary (CHO) cells are routinely optimized to stably express monoclonal antibodies (mAbs) at high titers. At the early stages of lead isolation and optimization, hundreds of sequences for the target protein of interest are screened. Typically, cell-based transient expression technology platforms are used for expression screening, but these can be time- and resource-intensive. Here, we have developed a cell-free protein synthesis (CFPS) platform utilizing a commercially available CHO extract for the rapid in vitro synthesis of active, aglycosylated mAbs. Specifically, we optimized reaction conditions to maximize protein yields, established an oxidizing environment to enable disulfide bond formation, and demonstrated the importance of temporal addition of heavy chain and light chain plasmids for intact mAb production. Using our optimized platform, we demonstrate for the first time to our knowledge the cell-free synthesis of biologically active, intact mAb at >100 mg/L using a eukaryotic-based extract. We then explored the utility of our system as a tool for ranking yields of candidate antibodies. Unlike stable or transient transfection-based screening, which requires a minimum of 7 days for setup and execution, results using our CHO-based CFPS platform are attained within 2 days and it is well-suited for automation. Further development would provide a tool for rapid, high-throughput prediction of mAb expression ranking to accelerate design-build-test cycles required for antibody expression and engineering. Looking forward, the CHO-based CFPS platform could facilitate the synthesis of toxic proteins as well.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/metabolism , Animals , Biotechnology/methods , CHO Cells , Cell-Free System , Cricetulus , Protein Biosynthesis
4.
Biotechnol J ; 11(2): 238-48, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26427345

ABSTRACT

Cell-free protein synthesis has emerged as a powerful technology for rapid and efficient protein production. Cell-free methods are also amenable to automation and such systems have been extensively used for high-throughput protein production and screening; however, current fluidic systems are not adequate for manufacturing protein biopharmaceuticals. In this work, we report on the initial development of a fluidic process for rapid end-to-end production of recombinant protein biologics. This process incorporates a bioreactor module that can be used with eukaryotic or prokaryotic lysates that are programmed for combined transcription/translation of an engineered DNA template encoding for specific protein targets. Purification of the cell-free expressed product occurs through a series of protein separation modules that are configurable for process-specific isolation of different proteins. Using this approach, we demonstrate production of two bioactive human protein therapeutics, erythropoietin and granulocyte-macrophage colony-stimulating factor, in yeast and bacterial extracts, respectively, each within 24 hours. This process is flexible, scalable and amenable to automation for rapid production at the point-of-need of proteins with significant pharmaceutical, medical, or biotechnological value.


Subject(s)
Biological Products/metabolism , Recombinant Proteins/biosynthesis , Technology, Pharmaceutical/methods , Biological Products/isolation & purification , Bioreactors , Cell-Free System , Erythropoietin/biosynthesis , Erythropoietin/genetics , Erythropoietin/isolation & purification , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/isolation & purification , Humans , Metabolic Engineering/methods , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL