Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Proteomics ; 23(11): e2200444, 2023 06.
Article in English | MEDLINE | ID: mdl-36943111

ABSTRACT

Hypertension is one of the most important and complex risk factors for cardiovascular diseases (CVDs). By using urinary peptidomics analyses, we aimed to identify peptides associated with hypertension, building a framework for future research towards improved prediction and prevention of premature development of CVD. We included 78 hypertensive and 79 normotensive participants from the African-PREDICT study (aged 20-30 years), matched for sex (51% male) and ethnicity (49% black and 51% white). Urinary peptidomics data were acquired using capillary-electrophoresis-time-of-flight-mass-spectrometry. Hypertension-associated peptides were identified and combined into a support vector machine-based multidimensional classifier. When comparing the peptide data between the normotensive and hypertensive groups, 129 peptides were nominally differentially abundant (Wilcoxon p < 0.05). Nonetheless, only three peptides, all derived from collagen alpha-1(III), remained significantly different after rigorous adjustments for multiple comparisons. The 37 most significant peptides (all p ≤ 0.001) served as basis for the development of a classifier, with 20 peptides being combined into a unifying score, resulting in an AUC of 0.85 in the ROC analysis (p < 0.001), with 83% sensitivity at 80% specificity. Our study suggests potential value of urinary peptides in the classification of hypertension, which could enable earlier diagnosis and better understanding of the pathophysiology of hypertension and premature cardiovascular disease development.


Subject(s)
Hypertension , Proteomics , Humans , Male , Young Adult , Female , Biomarkers , Proteomics/methods , Peptides/chemistry , Mass Spectrometry/methods
2.
J Proteome Res ; 22(10): 3282-3289, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37688558

ABSTRACT

Increased arterial stiffness is related to early vascular aging and is an independent predictor for cardiovascular disease and mortality. Molecular mechanisms underlying increased arterial stiffness are largely unexplored, especially at the proteome level. We aimed to explore the relationship between pulse wave velocity and urinary proteomics. We included 919 apparently healthy (no chronic illnesses) Black and White men and women (equally distributed) between 20 and 30 years from the African-PREDICT study. Capillary electrophoresis time-of-flight mass spectrometry was used to analyze the urinary proteome. We measured the carotid-femoral pulse wave velocity to estimate arterial stiffness. In the total group, pulse wave velocity correlated positively with collagen-derived peptides including collagen types I, II, III, IV, V, and IX and inversely with collagen type XI (adjusted for mean arterial pressure). Regarding noncollagen-derived peptides, pulse wave velocity positively correlated with polymeric immunoglobulin receptor peptides (n = 2) (all q-value ≤0.05). In multivariable adjusted analyses, pulse wave velocity associated positively and independently with seven urinary peptides (collagen type I, n = 5) (all p-value ≤0.05). We found significant positive and independent associations between pulse wave velocity and the collagen type I-derived peptides, suggesting that dysregulation of collagen type I in the extracellular matrix scaffold could lead to early onset of increased arterial stiffness.


Subject(s)
Pulse Wave Analysis , Vascular Stiffness , Male , Humans , Female , Collagen Type I , Proteome , Vascular Stiffness/physiology , Collagen , Peptides , Blood Pressure
3.
Clin Sci (Lond) ; 137(3): 239-250, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36648486

ABSTRACT

Increasing evidence suggests excess skin Na+ accumulation in hypertension; however, the role of skin-specific mechanisms of local Na+/water regulation remains unclear. We investigated the association between measures of sweat and trans-epidermal water loss (TEWL) with Na+ content in the skin ([Na+]skin) and clinical characteristics in consecutive hypertensive patients. We obtained an iontophoretic pilocarpine-induced sweat sample, a skin punch biopsy for chemical analysis, and measures of TEWL from the upper limbs. Serum vascular endothelial growth factor-c (VEGF-c) and a reflectance measure of haemoglobin skin content served as surrogates of skin microvasculature. In our cohort (n = 90; age 21-86 years; females = 49%), sweat composition was independent of sex and BMI. Sweat Na+ concentration ([Na+]sweat) inversely correlated with [K+]sweat and was higher in patients on ACEIs/ARBs (P < 0.05). A positive association was found between [Na+]sweat and [Na+]skin, independent of sex, BMI, estimated Na+ intake and use of ACEi/ARBs (Padjusted = 0.025); both closely correlated with age (P < 0.01). Office DBP, but not SBP, inversely correlated with [Na+]sweat independent of other confounders (Padjusted = 0.03). Total sweat volume and Na+ loss were lower in patients with uncontrolled office BP (Padjusted < 0.005 for both); sweat volume also positively correlated with serum VEGF-c and TEWL. Lower TEWL was paralleled by lower skin haemoglobin content, which increased less after vasodilatory pilocarpine stimulation when BMI was higher (P = 0.010). In conclusion, measures of Na+ and water handling/regulation in the skin were associated with relevant clinical characteristics, systemic Na+ status and blood pressure values, suggesting a potential role of the skin in body-fluid homeostasis and therapeutic targeting of hypertension.


Subject(s)
Body Fluids , Hypertension , Female , Humans , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Vascular Endothelial Growth Factor C , Angiotensin Receptor Antagonists , Pilocarpine , Angiotensin-Converting Enzyme Inhibitors , Sodium , Body Fluids/chemistry , Water
4.
Physiol Genomics ; 53(6): 259-268, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33969702

ABSTRACT

Preexisting or new onset of hypertension affects pregnancy and is one of the leading causes of maternal and fetal morbidity and mortality. In certain cases, it also leads to long-term maternal cardiovascular complications. The placenta is a key player in the pathogenesis of complicated hypertensive pregnancies, however the pathomechanisms leading to an abnormal placenta are poorly understood. In this study, we compared the placental proteome of two pregnant hypertensive models with their corresponding normotensive controls: a preexisting hypertension pregnancy model (stroke-prone spontaneously hypertensive rats; SHRSP) versus Wistar-Kyoto and the transgenic RAS activated gestational hypertension model (transgenic for human angiotensinogen Sprague-Dawley rats; SD-PE) versus Sprague-Dawley rats, respectively. Label-free proteomics using nano LC-MS/MS was performed for identification and quantification of proteins. Between the two models, we found widespread differences in the expression of placental proteins including those related to hypertension, inflammation, and trophoblast invasion, whereas pathways such as regulation of serine endopeptidase activity, tissue injury response, coagulation, and complement activation were enriched in both models. We present for the first time the placental proteome of SHRSP and SD-PE and provide insight into the molecular make-up of models of hypertensive pregnancy. Our study informs future research into specific preeclampsia and chronic hypertension pregnancy mechanisms and translation of rodent data to the clinic.


Subject(s)
Hypertension, Pregnancy-Induced/metabolism , Hypertension/metabolism , Placenta/metabolism , Proteome/metabolism , Proteomics/methods , Animals , Chromatography, Liquid/methods , Female , Male , Pregnancy , Protein Interaction Maps , Rats, Inbred SHR , Rats, Inbred WKY , Rats, Sprague-Dawley , Rats, Transgenic , Species Specificity , Tandem Mass Spectrometry/methods
5.
Clin Sci (Lond) ; 135(24): 2749-2761, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34870708

ABSTRACT

Uromodulin (UMOD) is the most abundant renal protein secreted into urine by the thick ascending limb (TAL) epithelial cells of the loop of Henle. Genetic studies have demonstrated an association between UMOD risk variants and hypertension. We aimed to dissect the role of dietary salt in renal UMOD excretion in normotension and chronic hypertension. Normotensive Wistar-Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP) (n=8/sex/strain) were maintained on 1% NaCl for 3 weeks. A subset of salt-loaded SHRSP was treated with nifedipine. Salt-loading in SHRSP increased blood pressure (ΔSBP 35 ± 5 mmHg, P<0.0001) and kidney injury markers such as kidney injury marker-1 (KIM-1; fold change, FC 3.4; P=0.003), neutrophil gelatinase-associated lipocalin (NGAL; FC, 2.0; P=0.012) and proteinuria. After salt-loading there was a reduction in urinary UMOD excretion in WKY and SHRSP by 26 and 55% respectively, compared with baseline. Nifedipine treatment reduced blood pressure (BP) in SHRSP, however, did not prevent salt-induced reduction in urinary UMOD excretion. In all experiments, changes in urinary UMOD excretion were dissociated from kidney UMOD protein and mRNA levels. Colocalization and ex-vivo studies showed that salt-loading increased intracellular UMOD retention in both WKY and SHRSP. Our study provides novel insights into the interplay among salt, UMOD, and BP. The role of UMOD as a cardiovascular risk marker deserves mechanistic reappraisal and further investigations based on our findings.


Subject(s)
Kidney/physiopathology , Sodium Chloride, Dietary/adverse effects , Uromodulin/metabolism , Animals , Blood Pressure/drug effects , Calcium Channel Blockers/pharmacology , Female , Male , Nifedipine/pharmacology , Rats, Inbred SHR , Rats, Inbred WKY , Uromodulin/urine
6.
Cardiovasc Diabetol ; 17(1): 50, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29625564

ABSTRACT

BACKGROUND: The urinary proteomic classifier CKD273 has shown promise for prediction of progressive diabetic nephropathy (DN). Whether it is also a determinant of mortality and cardiovascular disease in patients with microalbuminuria (MA) is unknown. METHODS: Urine samples were obtained from 155 patients with type 2 diabetes and confirmed microalbuminuria. Proteomic analysis was undertaken using capillary electrophoresis coupled to mass spectrometry to determine the CKD273 classifier score. A previously defined CKD273 threshold of 0.343 for identification of DN was used to categorise the cohort in Kaplan-Meier and Cox regression models with all-cause mortality as the primary endpoint. Outcomes were traced through national health registers after 6 years. RESULTS: CKD273 correlated with urine albumin excretion rate (UAER) (r = 0.481, p = <0.001), age (r = 0.238, p = 0.003), coronary artery calcium (CAC) score (r = 0.236, p = 0.003), N-terminal pro-brain natriuretic peptide (NT-proBNP) (r = 0.190, p = 0.018) and estimated glomerular filtration rate (eGFR) (r = 0.265, p = 0.001). On multivariate analysis only UAER (ß = 0.402, p < 0.001) and eGFR (ß = - 0.184, p = 0.039) were statistically significant determinants of CKD273. Twenty participants died during follow-up. CKD273 was a determinant of mortality (log rank [Mantel-Cox] p = 0.004), and retained significance (p = 0.048) after adjustment for age, sex, blood pressure, NT-proBNP and CAC score in a Cox regression model. CONCLUSION: A multidimensional biomarker can provide information on outcomes associated with its primary diagnostic purpose. Here we demonstrate that the urinary proteomic classifier CKD273 is associated with mortality in individuals with type 2 diabetes and MA even when adjusted for other established cardiovascular and renal biomarkers.


Subject(s)
Albuminuria/mortality , Albuminuria/urine , Diabetes Mellitus, Type 2/mortality , Diabetes Mellitus, Type 2/urine , Diabetic Nephropathies/mortality , Diabetic Nephropathies/urine , Proteomics/methods , Adult , Aged , Albuminuria/diagnosis , Biomarkers/urine , Cross-Sectional Studies , Diabetes Mellitus, Type 2/diagnosis , Diabetic Nephropathies/diagnosis , Electrophoresis, Capillary , Female , Humans , Longitudinal Studies , Male , Mass Spectrometry , Middle Aged , Predictive Value of Tests , Prognosis , Risk Factors , Time Factors , Urinalysis
7.
J Proteome Res ; 16(2): 1050-1060, 2017 02 03.
Article in English | MEDLINE | ID: mdl-28030762

ABSTRACT

Pre-eclampsia is a hypertensive disorder characterized by the new onset of hypertension >140/90 mmHg and proteinuria after the 20th week of gestation. The disorder is multifactorial and originates with abnormal placentation. Comparison of the placental proteome of normotensive (n = 25) and pre-eclamptic (n = 25) patients by gel-free proteomic techniques identified a total of 2145 proteins in the placenta of which 180 were differentially expressed (>1.3 fold, p < 0.05). Gene ontology enrichment analysis of biological process suggested that the differentially expressed proteins belonged to various physiological processes such as angiogenesis, apoptosis, oxidative stress, hypoxia, and placental development, which are implicated in the pathophysiology of pre-eclampsia. Some of the differentially expressed proteins were monitored in the plasma by multiple reaction monitoring analysis, which showed an increase in apolipoproteins A-I and A-II in gestational weeks 26-30 (2-fold, p < 0.01), while haptoglobin and hemopexin decreased in gestational weeks 26-30 and week 40/at delivery (1.8 fold, p < 0.01) in pre-eclamptic patients. This study provides a proteomic insight into the pathophysiology of pre-eclampsia. Identified candidate proteins can be evaluated further for the development of potential biomarkers associated with pre-eclampsia pathogenesis.


Subject(s)
Hypoxia/blood , Neovascularization, Pathologic/blood , Placenta/metabolism , Pre-Eclampsia/blood , Proteome/genetics , Proteomics/methods , Adult , Apolipoprotein A-I/blood , Apolipoprotein A-I/genetics , Apolipoprotein A-II/blood , Apolipoprotein A-II/genetics , Apoptosis/genetics , Biomarkers/blood , Case-Control Studies , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Gestational Age , Haptoglobins/genetics , Haptoglobins/metabolism , Hemopexin/genetics , Hemopexin/metabolism , Humans , Hypoxia/diagnosis , Hypoxia/genetics , Hypoxia/pathology , Molecular Sequence Annotation , Neovascularization, Pathologic/diagnosis , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Oxidative Stress , Placenta/blood supply , Placenta/pathology , Pre-Eclampsia/diagnosis , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Pregnancy , Protein Interaction Mapping , Proteome/metabolism
8.
Clin Proteomics ; 14: 8, 2017.
Article in English | MEDLINE | ID: mdl-28344540

ABSTRACT

BACKGROUND: Tubulointerstitial nephritis antigen-like 1 protein (TINAGL1), is a matricellular protein, known to play role in cell adhesion and cell receptor interaction. Research related to TINAGL1 is limited to cell culture and animal models. Demonstration of TINAGL1 as a positive regulator of angiogenesis and its expression in the decidua of postimplantation mouse uterus, prompted us to validate its expression in human placenta during impaired angiogenesis in pre-eclamptic condition. METHODS: Placental tissue from normotensive (n = 25) and pre-eclamptic (n = 25) pregnancies were used to study the differentially expressed proteins by two-dimensional gel electrophoresis and TINAGL1 protein was validated with Western blotting. RESULTS: A total of 55 protein spots were differentially expressed (fold change >1.5, p < 0.05), of which 27 were upregulated and 28 were downregulated in the pre-eclamptic placenta. TINAGL1 was found to be downregulated in pre-eclamptic compared to normotensive pregnant women. CONCLUSION: This is the first study reporting TINAGL1 to be present in human placenta and differentially expressed in pre-eclamptic condition. The functional role of TINAGL1 in association to human pregnancy needs to be explored further.

9.
Nephrol Dial Transplant ; 35(7): 1133-1135, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32777079
10.
J Nephrol ; 37(3): 597-610, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38236469

ABSTRACT

BACKGROUND: Pregnancy involves major adaptations in renal haemodynamics, tubular, and endocrine functions. Hypertensive disorders of pregnancy are a leading cause of maternal mortality and morbidity. Uromodulin is a nephron-derived protein that is associated with hypertension and kidney diseases. Here we study the role of urinary uromodulin excretion in hypertensive pregnancy. METHODS: Urinary uromodulin was measured by ELISA in 146 pregnant women with treated chronic hypertension (n = 118) and controls (n = 28). We studied non-pregnant and pregnant Wistar Kyoto and Stroke Prone Spontaneously Hypertensive rats (n = 8/strain), among which a group of pregnant Stroke-Prone Spontaneously Hypertensive rats was treated with either nifedipine (n = 7) or propranolol (n = 8). RESULTS: In pregnant women, diagnosis of chronic hypertension, increased maternal body mass index, Black maternal ethnicity and elevated systolic blood pressure at the first antenatal visit were significantly associated with a lower urinary uromodulin-to-creatinine ratio. In rodents, pre-pregnancy urinary uromodulin excretion was twofold lower in Stroke-Prone Spontaneously Hypertensive rats than in Wistar Kyoto rats. During pregnancy, the urinary uromodulin excretion rate gradually decreased in Wistar Kyoto rats (a twofold decrease), whereas a 1.5-fold increase was observed in Stroke-Prone Spontaneously Hypertensive rats compared to pre-pregnancy levels. Changes in uromodulin were attributed by kidney injury in pregnant rats. Neither antihypertensive changed urinary uromodulin excretion rate in pregnant Stroke-Prone Spontaneously Hypertensive rats. CONCLUSIONS: In summary, we demonstrate pregnancy-associated differences in urinary uromodulin: creatinine ratio and uromodulin excretion rate between chronic hypertensive and normotensive pregnancies. Further research is needed to fully understand uromodulin physiology in human pregnancy and establish uromodulin's potential as a biomarker for renal adaptation and renal function in pregnancy.


Subject(s)
Hypertension , Rats, Inbred SHR , Rats, Inbred WKY , Uromodulin , Uromodulin/urine , Animals , Pregnancy , Female , Hypertension/urine , Hypertension/physiopathology , Hypertension/drug therapy , Humans , Adult , Biomarkers/urine , Disease Models, Animal , Rats , Chronic Disease , Antihypertensive Agents/therapeutic use , Antihypertensive Agents/pharmacology , Case-Control Studies , Hypertension, Pregnancy-Induced/urine , Hypertension, Pregnancy-Induced/physiopathology , Blood Pressure , Creatinine/urine
11.
Hypertens Res ; 46(2): 485-494, 2023 02.
Article in English | MEDLINE | ID: mdl-36396816

ABSTRACT

Cardiovascular disease (CVD) affects individuals across the lifespan, with multiple cardiovascular (CV) risk factors increasingly present in young populations. The underlying mechanisms in early cardiovascular disease development are complex and still poorly understood. We therefore employed urinary proteomics as a novel approach to gain better insight into early CVD-related molecular pathways based on a CVD risk stratification approach. This study included 964 apparently healthy (no self-reported chronic illnesses, free from clinical symptoms of CVD) black and white men and women (aged 20-30 years old) from the African Prospective study on the Early Detection and Identification of Cardiovascular disease and Hypertension (African-PREDICT) study. Cardiovascular risk factors used for stratification included obesity, physical inactivity, tobacco use, high alcohol intake, hyperglycemia, dyslipidemia and hypertension. Participants were divided into low (0 risk factors), medium (1-2 risk factors) and high (≥3 risk factors) CV risk groups. We analyzed urinary peptidomics by capillary electrophoresis time-of-flight mass spectrometry. After adjusting for ethnicity, sex and age, 65 sequenced urinary peptides were differentially expressed between the CV risk groups (all q-values ≤ 0.01). These peptides included a lower abundance of collagen type I- and III-derived peptides in the high compared to the low CV risk group. With regard to noncollagen peptides, we found a lower abundance of alpha-1-antitrypsin fragments in the high compared to the low CV risk group (all q-values ≤ 0.01). Our findings indicate lower abundances of collagen types I and III in the high compared to the low CV risk group, suggesting potential early alterations in the CV extracellular matrix.


Subject(s)
Cardiovascular Diseases , Hypertension , Male , Humans , Female , Aged , Young Adult , Adult , Cardiovascular Diseases/metabolism , Prospective Studies , Risk Factors , Peptides , Collagen Type I
12.
Sci Rep ; 13(1): 14086, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37640791

ABSTRACT

COVID-19, caused by SARS-CoV-2, is a respiratory disease associated with inflammation and endotheliitis. Mechanisms underling inflammatory processes are unclear, but angiotensin converting enzyme 2 (ACE2), the receptor which binds the spike protein of SARS-CoV-2 may be important. Here we investigated whether spike protein binding to ACE2 induces inflammation in endothelial cells and determined the role of ACE2 in this process. Human endothelial cells were exposed to SARS-CoV-2 spike protein, S1 subunit (rS1p) and pro-inflammatory signaling and inflammatory mediators assessed. ACE2 was modulated pharmacologically and by siRNA. Endothelial cells were also exposed to SARS-CoV-2. rSP1 increased production of IL-6, MCP-1, ICAM-1 and PAI-1, and induced NFkB activation via ACE2 in endothelial cells. rS1p increased microparticle formation, a functional marker of endothelial injury. ACE2 interacting proteins involved in inflammation and RNA biology were identified in rS1p-treated cells. Neither ACE2 expression nor ACE2 enzymatic function were affected by rSP1. Endothelial cells exposed to SARS-CoV-2 virus did not exhibit viral replication. We demonstrate that rSP1 induces endothelial inflammation via ACE2 through processes that are independent of ACE2 enzymatic activity and viral replication. We define a novel role for ACE2 in COVID-19- associated endotheliitis.


Subject(s)
COVID-19 , Endothelial Cells , Humans , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Inflammation , Virus Replication , RNA, Double-Stranded
13.
Hypertension ; 79(11): 2419-2429, 2022 11.
Article in English | MEDLINE | ID: mdl-36378920

ABSTRACT

The exclusive expression of uromodulin in the kidneys has made it an intriguing protein in kidney and cardiovascular research. Genome-wide association studies discovered variants of uromodulin that are associated with chronic kidney diseases and hypertension. Urinary and circulating uromodulin levels reflect kidney and cardiovascular health as well as overall mortality. More recently, Mendelian randomization studies have shown that genetically driven levels of uromodulin have a causal and adverse effect on kidney function. On a mechanistic level, salt sensitivity is an important factor in the pathophysiology of hypertension, and uromodulin is involved in salt reabsorption via the NKCC2 (Na+-K+-2Cl- cotransporter) on epithelial cells of the ascending limb of loop of Henle. In this review, we provide an overview of the multifaceted physiology and pathophysiology of uromodulin including recent advances in its genetics; cellular trafficking; and mechanistic and clinical studies undertaken to understand the complex relationship between uromodulin, blood pressure, and kidney function. We focus on tubular sodium reabsorption as one of the best understood and pathophysiologically and clinically most important roles of uromodulin, which can lead to therapeutic interventions.


Subject(s)
Genome-Wide Association Study , Hypertension , Humans , Uromodulin/genetics , Uromodulin/metabolism , Hypertension/genetics , Hypertension/metabolism , Blood Pressure/physiology , Kidney/metabolism , Sodium Chloride, Dietary/adverse effects , Sodium Chloride, Dietary/metabolism , Sodium Chloride/metabolism , Solute Carrier Family 12, Member 1/genetics
14.
Cell Calcium ; 106: 102639, 2022 09.
Article in English | MEDLINE | ID: mdl-36027648

ABSTRACT

The bifunctional cation channel/kinase TrpM7 is ubiquitously expressed and regulates embryonic development and pathogenesis of several common diseases. The TrpM7 integral membrane ion channel domain regulates transmembrane movement of divalent cations, and its kinase domain controls gene expression via histone phosphorylation. Mechanisms regulating TrpM7 are elusive. It exists in two populations in the cell: at the cell surface where it controls divalent cation fluxes, and in intracellular vesicles where it controls zinc uptake and release. Here we report that TrpM7 is palmitoylated at a cluster of cysteines at the C terminal end of its Trp domain. Palmitoylation controls the exit of TrpM7 from the endoplasmic reticulum and the distribution of TrpM7 between cell surface and intracellular pools. Using the Retention Using Selective Hooks (RUSH) system, we demonstrate that palmitoylated TrpM7 traffics from the Golgi to the surface membrane whereas non-palmitoylated TrpM7 is sequestered in intracellular vesicles. We identify the Golgi-resident enzyme zDHHC17 and surface membrane-resident enzyme zDHHC5 as responsible for palmitoylating TrpM7 and find that TrpM7-mediated transmembrane calcium uptake is significantly reduced when TrpM7 is not palmitoylated. The closely related channel/kinase TrpM6 is also palmitoylated on the C terminal side of its Trp domain. Our findings demonstrate that palmitoylation controls ion channel activity of TrpM7 and that TrpM7 trafficking is dependant on its palmitoylation. We define a new mechanism for post translational modification and regulation of TrpM7 and other Trps.


Subject(s)
Lipoylation , TRPM Cation Channels , Calcium/metabolism , Cations/metabolism , Phosphorylation , Signal Transduction , TRPM Cation Channels/metabolism
15.
J Hypertens ; 39(8): 1490-1504, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34187999

ABSTRACT

Hypertension is a significant risk factor for cardiovascular disease and mortality worldwide. The kidney is a major regulator of blood pressure and electrolyte homeostasis, with monogenic disorders indicating a link between abnormal ion transport and salt-sensitive hypertension. However, the association between salt and hypertension remains controversial. Thus, there is continued interest in deciphering the molecular mechanisms behind these processes. Uromodulin (UMOD) is the most abundant protein in the normal urine and is primarily synthesized by the thick ascending limb epithelial cells of the kidney. Genome-wide association studies have linked common UMOD variants with kidney function, susceptibility to chronic kidney disease and hypertension independent of renal excretory function. This review will discuss and provide predictions on the role of the UMOD protein in renal ion transport and hypertension based on current observational, biochemical, genetic, pharmacological and clinical evidence.


Subject(s)
Hypertension , Renal Insufficiency, Chronic , Blood Pressure , Genome-Wide Association Study , Humans , Uromodulin/genetics
16.
Cardiovasc Res ; 117(5): 1372-1381, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33053160

ABSTRACT

AIMS: A blood pressure (BP)-independent metabolic shift towards a catabolic state upon high sodium (Na+) diet, ultimately favouring body fluid preservation, has recently been described in pre-clinical controlled settings. We sought to investigate the real-life impact of high Na+ intake on measures of renal Na+/water handling and metabolic signatures, as surrogates for cardiovascular risk, in hypertensive patients. METHODS AND RESULTS: We analysed clinical and biochemical data from 766 consecutive patients with essential hypertension, collected at the time of screening for secondary causes. The systematic screening protocol included 24 h urine (24 h-u-) collection on usual diet and avoidance of renin-angiotensin-aldosterone system-confounding medications. Urinary 24 h-Na+ excretion, used to define classes of Na+ intake (low ≤2.3 g/day; medium 2.3-5 g/day; high >5 g/day), was an independent predictor of glomerular filtration rate after correction for age, sex, BP, BMI, aldosterone, and potassium excretion [P = 0.001; low: 94.1 (69.9-118.8) vs. high: 127.5 (108.3-147.8) mL/min/1.73 m2]. Renal Na+ and water handling diverged, with higher fractional excretion of Na+ and lower fractional excretion of water in those with evidence of high Na+ intake [FENa: low 0.39% (0.30-0.47) vs. high 0.81% (0.73-0.98), P < 0.001; FEwater: low 1.13% (0.73-1.72) vs. high 0.89% (0.69-1.12), P = 0.015]. Despite higher FENa, these patients showed higher absolute 24 h Na+ reabsorption and higher associated tubular energy expenditure, estimated by tubular Na+/ATP stoichiometry, accordingly [Δhigh-low = 18 (12-24) kcal/day, P < 0.001]. At non-targeted liquid chromatography/mass spectrometry plasma metabolomics in an unselected subcohort (n = 67), metabolites which were more abundant in high versus low Na+ intake (P < 0.05) mostly entailed intermediates or end products of protein catabolism/urea cycle. CONCLUSION: When exposed to high Na+ intake, kidneys dissociate Na+ and water handling. In hypertensive patients, this comes at the cost of higher glomerular filtration rate, increased tubular energy expenditure, and protein catabolism from endogenous (muscle) or excess exogenous (dietary) sources. Glomerular hyperfiltration and the metabolic shift may have broad implications on global cardiovascular risk independent of BP.


Subject(s)
Blood Pressure , Dietary Proteins/metabolism , Essential Hypertension/metabolism , Glomerular Filtration Rate , Kidney/metabolism , Metabolome , Muscle Proteins/metabolism , Sodium, Dietary/metabolism , Adult , Biomarkers/blood , Biomarkers/urine , Essential Hypertension/physiopathology , Female , Fluid Shifts , Humans , Kidney/physiopathology , Male , Metabolomics , Middle Aged , Natriuresis , Water-Electrolyte Balance
17.
Nat Commun ; 11(1): 4222, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32839436

ABSTRACT

Our understanding of Na+ homeostasis has recently been reshaped by the notion of skin as a depot for Na+ accumulation in multiple cardiovascular diseases and risk factors. The proposed water-independent nature of tissue Na+ could induce local pathogenic changes, but lacks firm demonstration. Here, we show that tissue Na+ excess upon high Na+ intake is a systemic, rather than skin-specific, phenomenon reflecting architectural changes, i.e. a shift in the extracellular-to-intracellular compartments, due to a reduction of the intracellular or accumulation of water-paralleled Na+ in the extracellular space. We also demonstrate that this accumulation is unlikely to justify the observed development of experimental hypertension if it were water-independent. Finally, we show that this isotonic skin Na+ excess, reflecting subclinical oedema, occurs in hypertensive patients and in association with aging. The implications of our findings, questioning previous assumptions but also reinforcing the importance of tissue Na+ excess, are both mechanistic and clinical.


Subject(s)
Edema/metabolism , Homeostasis/physiology , Sodium/metabolism , Water-Electrolyte Balance/physiology , Aging/metabolism , Animals , Edema/diagnosis , Female , Humans , Hypertension/diagnosis , Hypertension/metabolism , Hypertension/physiopathology , Liver/metabolism , Lung/metabolism , Male , Myocardium/metabolism , Organ Specificity , Osmolar Concentration , Potassium/metabolism , Rats, Inbred WKY , Skin/metabolism , Transcription Factors/metabolism
18.
J Am Coll Cardiol ; 76(24): 2817-2829, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33303070

ABSTRACT

BACKGROUND: Microvascular dysfunction plays an important role in the pathogenesis of heart failure with preserved ejection fraction (HFpEF). However, no mechanistic link between systemic microvasculature and congestion, a central feature of the syndrome, has yet been investigated. OBJECTIVES: This study aimed to investigate capillary-interstitium fluid exchange in HFpEF, including lymphatic drainage and the potential osmotic forces exerted by any hypertonic tissue Na+ excess. METHODS: Patients with HFpEF and healthy control subjects of similar age and sex distributions (n = 16 per group) underwent: 1) a skin biopsy for vascular immunohistochemistry, gene expression, and chemical (water, Na+, and K+) analyses; and 2) venous occlusion plethysmography to assess peripheral microvascular filtration coefficient (measuring capillary fluid extravasation) and isovolumetric pressure (above which lymphatic drainage cannot compensate for fluid extravasation). RESULTS: Skin biopsies in patients with HFpEF showed rarefaction of small blood and lymphatic vessels (p = 0.003 and p = 0.012, respectively); residual skin lymphatics showed a larger diameter (p = 0.007) and lower expression of lymphatic differentiation and function markers (LYVE-1 [lymphatic vessel endothelial hyaluronan receptor 1]: p < 0.05; PROX-1 [prospero homeobox protein 1]: p < 0.001) compared with control subjects. In patients with HFpEF, microvascular filtration coefficient was lower (calf: 3.30 [interquartile range (IQR): 2.33 to 3.88] l × 100 ml of tissue-1 × min-1 × mm Hg-1 vs. 4.66 [IQR: 3.70 to 6.15] µl × 100 ml of tissue-1 × min-1 × mm Hg-1; p < 0.01; forearm: 5.16 [IQR: 3.86 to 5.43] l × 100 ml of tissue-1 × min-1 × mm Hg-1 vs. 5.66 [IQR: 4.69 to 8.38] µl × 100 ml of tissue-1 × min-1 × mm Hg-1; p > 0.05), in keeping with blood vascular rarefaction and the lack of any observed hypertonic skin Na+ excess, but the lymphatic drainage was impaired (isovolumetric pressure in patients with HFpEF vs. control subjects: calf 16 ± 4 mm Hg vs. 22 ± 4 mm Hg; p < 0.005; forearm 17 ± 4 mm Hg vs. 25 ± 5 mm Hg; p < 0.001). CONCLUSIONS: Peripheral lymphatic vessels in patients with HFpEF exhibit structural and molecular alterations and cannot effectively compensate for fluid extravasation and interstitial accumulation by commensurate drainage. Reduced lymphatic reserve may represent a novel therapeutic target.


Subject(s)
Heart Failure/physiopathology , Lymphatic Vessels/physiopathology , Microvessels/physiopathology , Aged , Case-Control Studies , Female , Heart Failure/metabolism , Humans , Male , Middle Aged , Skin/blood supply , Skin/metabolism , Sodium/metabolism , Stroke Volume
19.
Sci Rep ; 9(1): 6897, 2019 05 03.
Article in English | MEDLINE | ID: mdl-31053755

ABSTRACT

Premenopausal women are relatively protected from developing hypertension compared to men. Perivascular adipose tissue (PVAT) has been shown to mediate vasoactive effects; however, a sex-dependent difference in PVAT function in the setting of hypertension has not yet been explored. We investigated the effect of PVAT on resistance vessel biology in male and female 16 week old stroke prone spontaneously hypertensive rats (SHRSP). This preclinical model of hypertension exhibits a sex-dependent difference in the development of hypertension similar to humans. Wire myography was used to assess vascular function in third-order mesenteric arteries. KATP channel-mediated vasorelaxation by cromakalim was significantly impaired in vessels from SHRSP males + PVAT relative to females (maximum relaxation: male + PVAT 46.9 ± 3.9% vs. female + PVAT 97.3 ± 2.7%). A cross-over study assessing the function of male PVAT on female vessels confirmed the reduced vasorelaxation response to cromakalim associated with male PVAT (maximum relaxation: female + PVATfemale 90.6 ± 1.4% vs. female + PVATmale 65.8 ± 3.5%). In order to explore the sex-dependent differences in PVAT at a molecular level, an adipokine array and subsequent western blot validation identified resistin expression to be increased approximately 2-fold in PVAT from male SHRSP vessels. Further wire myography experiments showed that pre-incubation with resistin (40 ng/ml) significantly impaired the ability of female + PVAT vessels to relax in response to cromakalim (maximum relaxation: female + PVAT 97.3 ± 0.9% vs. female + PVAT + resistin[40ng/ml] 36.8 ± 2.3%). These findings indicate a novel role for resistin in mediating sex-dependent vascular function in hypertension through a KATP channel-mediated mechanism.


Subject(s)
Adipose Tissue/pathology , Hypertension/pathology , Hypertension/physiopathology , Mesenteric Arteries/physiopathology , Resistin/metabolism , Sex Characteristics , Adipose Tissue/metabolism , Animals , Cromakalim/metabolism , Female , Gene Expression Regulation , Hypertension/metabolism , Male , Rats , Rats, Inbred SHR
20.
Cytoskeleton (Hoboken) ; 74(11): 420-425, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28752964

ABSTRACT

Preeclampsia is a pregnancy complication that is the result of abnormal placentation because of inadequate trophoblast invasion into spiral arteries that prevent normal blood flow to the placenta. We report the alteration in vimentin protein proteolysis in placenta of normotensive and preeclamptic women, which is known to have a role in many physiological functions other than its major function in the structural integrity of the cell. Placental proteome from normotensive (n = 25) and preeclamptic pregnancies (n = 25) showed eight differentially accumulated protein spots of vimentin (proteolytic fragments) by two-dimensional electrophoresis. Immunoblots of normotensive and preeclamptic placenta revealed a difference in proteolytic processing of vimentin. In particular, lower molecular weight vimentin fragments of 32 and 20 kDa were 3.3 and 2.6-fold (p < 0.0001) higher, respectively, in preeclampsia compared with normotensive placenta.


Subject(s)
Placenta/physiopathology , Pre-Eclampsia/etiology , Vimentin/adverse effects , Female , Humans , Pregnancy , Vimentin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL