Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
Add more filters

Publication year range
1.
PLoS Genet ; 18(3): e1009776, 2022 03.
Article in English | MEDLINE | ID: mdl-35286304

ABSTRACT

Shotgun metagenomics is a powerful tool to identify antimicrobial resistance (AMR) genes in microbiomes but has the limitation that extrachromosomal DNA, such as plasmids, cannot be linked with the host bacterial chromosome. Here we present a comprehensive laboratory and bioinformatics pipeline HAM-ART (Hi-C Assisted Metagenomics for Antimicrobial Resistance Tracking) optimised for the generation of metagenome-assembled genomes including both chromosomal and extrachromosomal AMR genes. We demonstrate the performance of the pipeline in a study comparing 100 pig faecal microbiomes from low- and high-antimicrobial use pig farms (organic and conventional farms). We found significant differences in the distribution of AMR genes between low- and high-antimicrobial use farms including a plasmid-borne lincosamide resistance gene exclusive to high-antimicrobial use farms in three species of Lactobacilli. The bioinformatics pipeline code is available at https://github.com/lkalmar/HAM-ART.


Subject(s)
Anti-Infective Agents , Microbiota , Animals , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Drug Resistance, Bacterial/genetics , Metagenomics , Swine
2.
BMC Biol ; 19(1): 191, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34493269

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) is among the gravest threats to human health and food security worldwide. The use of antimicrobials in livestock production can lead to emergence of AMR, which can have direct effects on humans through spread of zoonotic disease. Pigs pose a particular risk as they are a source of zoonotic diseases and receive more antimicrobials than most other livestock. Here we use a large-scale genomic approach to characterise AMR in Streptococcus suis, a commensal found in most pigs, but which can also cause serious disease in both pigs and humans. RESULTS: We obtained replicated measures of Minimum Inhibitory Concentration (MIC) for 16 antibiotics, across a panel of 678 isolates, from the major pig-producing regions of the world. For several drugs, there was no natural separation into 'resistant' and 'susceptible', highlighting the need to treat MIC as a quantitative trait. We found differences in MICs between countries, consistent with their patterns of antimicrobial usage. AMR levels were high even for drugs not used to treat S. suis, with many multidrug-resistant isolates. Similar levels of resistance were found in pigs and humans from regions associated with zoonotic transmission. We next used whole genome sequences for each isolate to identify 43 candidate resistance determinants, 22 of which were novel in S. suis. The presence of these determinants explained most of the variation in MIC. But there were also interesting complications, including epistatic interactions, where known resistance alleles had no effect in some genetic backgrounds. Beta-lactam resistance involved many core genome variants of small effect, appearing in a characteristic order. CONCLUSIONS: We present a large dataset allowing the analysis of the multiple contributing factors to AMR in S. suis. The high levels of AMR in S. suis that we observe are reflected by antibiotic usage patterns but our results confirm the potential for genomic data to aid in the fight against AMR.


Subject(s)
Streptococcus suis , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents , Drug Resistance, Bacterial/genetics , Genomics , Microbial Sensitivity Tests , Pharmaceutical Preparations , Streptococcus suis/drug effects , Streptococcus suis/genetics , Swine
3.
Infect Immun ; 88(5)2020 04 20.
Article in English | MEDLINE | ID: mdl-32094250

ABSTRACT

Glaesserella (Haemophilus) parasuis is a commensal bacterium of the upper respiratory tract in pigs and also the causative agent of Glässer's disease, which causes significant morbidity and mortality in pigs worldwide. Isolates are characterized into 15 serovars by their capsular polysaccharide, which has shown a correlation with isolate pathogenicity. To investigate the role the capsule plays in G. parasuis virulence and host interaction, a capsule mutant of the serovar 5 strain HS069 was generated (HS069Δcap) through allelic exchange following natural transformation. HS069Δcap was unable to cause signs of systemic disease during a pig challenge study and had increased sensitivity to complement killing and phagocytosis by alveolar macrophages. Compared with the parent strain, HS069Δcap produced more robust biofilm and adhered equivalently to 3D4/31 cells; however, it was unable to persistently colonize the nasal cavity of inoculated pigs, with all pigs clearing HS069Δcap by 5 days postchallenge. Our results indicate the importance of the capsular polysaccharide to G. parasuis virulence as well as nasal colonization in pigs.


Subject(s)
Haemophilus parasuis/genetics , Animals , Biofilms , Haemophilus Infections/microbiology , Macrophages, Alveolar/microbiology , Phagocytosis/physiology , Swine , Swine Diseases/microbiology , Virulence/genetics
4.
BMC Vet Res ; 16(1): 167, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32460764

ABSTRACT

BACKGROUND: Glaesserella parasuis, the causative agent of Glӓsser's disease, is widespread in swine globally resulting in significant economic losses to the swine industry. Prevention of Glӓsser's disease in pigs has been plagued with an inability to design broadly protective vaccines, as many bacterin based platforms generate serovar or strain specific immunity. Subunit vaccines are of interest to provide protective immunity to multiple strains of G. parasuis. Selected proteins for subunit vaccination should be widespread, highly conserved, and surface exposed. RESULTS: Two candidate proteins for subunit vaccination (RlpB and VacJ) against G. parasuis were identified using random mutagenesis and an in vitro organ culture system. Pigs were vaccinated with recombinant RlpB and VacJ, outer membrane proteins with important contributions to cellular function and viability. Though high antibody titers to the recombinant proteins and increased interferon-γ producing cells were found in subunit vaccinated animals, the pigs were not protected from developing systemic disease. CONCLUSIONS: It appears there may be insufficient RlpB and VacJ exposed on the bacterial surface for antibody to bind, preventing high RlpB and VacJ specific antibody titers from protecting animals from G. parasuis. Additionally, this work confirms the importance of utilizing the natural host species when assessing the efficacy of vaccine candidates.


Subject(s)
Haemophilus Infections/veterinary , Haemophilus parasuis/immunology , Recombinant Proteins/immunology , Swine Diseases/prevention & control , Animals , Antibodies, Bacterial/blood , Bacterial Proteins/immunology , Bacterial Vaccines/immunology , Haemophilus Infections/immunology , Haemophilus Infections/prevention & control , Haemophilus Vaccines/immunology , Haemophilus parasuis/genetics , Serogroup , Sus scrofa , Swine , Swine Diseases/immunology , Swine Diseases/microbiology , Tissue Culture Techniques/veterinary , Vaccination/veterinary , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
5.
Nucleic Acids Res ; 46(21): 11466-11476, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30304532

ABSTRACT

Streptococcus suis is a major pathogen of swine, responsible for a number of chronic and acute infections, and is also emerging as a major zoonotic pathogen, particularly in South-East Asia. Our study of a diverse population of S. suis shows that this organism contains both Type I and Type III phase-variable methyltransferases. In all previous examples, phase-variation of methyltransferases results in genome wide methylation differences, and results in differential regulation of multiple genes, a system known as the phasevarion (phase-variable regulon). We hypothesized that each variant in the Type I and Type III systems encoded a methyltransferase with a unique specificity, and could therefore control a distinct phasevarion, either by recombination-driven shuffling between different specificities (Type I) or by biphasic on-off switching via simple sequence repeats (Type III). Here, we present the identification of the target specificities for each Type III allelic variant from S. suis using single-molecule, real-time methylome analysis. We demonstrate phase-variation is occurring in both Type I and Type III methyltransferases, and show a distinct association between methyltransferase type and presence, and population clades. In addition, we show that the phase-variable Type I methyltransferase was likely acquired at the origin of a highly virulent zoonotic sub-population.


Subject(s)
Gene Expression Regulation, Bacterial , Methyltransferases/genetics , Regulon , Streptococcus suis/enzymology , Alleles , Animals , DNA Methylation , DNA Modification Methylases/metabolism , DNA, Bacterial/metabolism , Epigenesis, Genetic , Escherichia coli , Genetic Variation , Genome, Bacterial , Microsatellite Repeats , Oligonucleotides/genetics , Phenotype , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Streptococcus suis/genetics , Swine
6.
J Clin Microbiol ; 57(7)2019 07.
Article in English | MEDLINE | ID: mdl-30944194

ABSTRACT

Streptococcus suis is one of the most important zoonotic bacterial pathogens of pigs, causing significant economic losses to the global swine industry. S. suis is also a very successful colonizer of mucosal surfaces, and commensal strains can be found in almost all pig populations worldwide, making detection of the S. suis species in asymptomatic carrier herds of little practical value in predicting the likelihood of future clinical relevance. The value of future molecular tools for surveillance and preventative health management lies in the detection of strains that genetically have increased potential to cause disease in presently healthy animals. Here we describe the use of genome-wide association studies to identify genetic markers associated with the observed clinical phenotypes (i) invasive disease and (ii) asymptomatic carriage on the palatine tonsils of pigs on UK farms. Subsequently, we designed a multiplex PCR to target three genetic markers that differentiated 115 S. suis isolates into disease-associated and non-disease-associated groups, that performed with a sensitivity of 0.91, a specificity of 0.79, a negative predictive value of 0.91, and a positive predictive value of 0.79 in comparison to observed clinical phenotypes. We describe evaluation of our pathotyping tool, using an out-of-sample collection of 50 previously uncharacterized S. suis isolates, in comparison to existing methods used to characterize and subtype S. suis isolates. In doing so, we show our pathotyping approach to be a competitive method to characterize S. suis isolates recovered from pigs on UK farms and one that can easily be updated to incorporate global strain collections.


Subject(s)
Carrier State/veterinary , Streptococcal Infections/veterinary , Streptococcus suis/isolation & purification , Streptococcus suis/pathogenicity , Swine Diseases/microbiology , Animals , Carrier State/microbiology , England , Genetic Markers/genetics , Genome, Bacterial/genetics , Molecular Diagnostic Techniques , Multiplex Polymerase Chain Reaction , Palatine Tonsil/microbiology , Streptococcal Infections/microbiology , Streptococcus suis/genetics , Swine , Virulence/genetics , Wales
7.
Infect Immun ; 86(3)2018 03.
Article in English | MEDLINE | ID: mdl-29203546

ABSTRACT

Streptococcus suis is a bacterium that is commonly carried in the respiratory tract and that is also one of the most important invasive pathogens of swine, commonly causing meningitis, arthritis, and septicemia. Due to the existence of many serotypes and a wide range of immune evasion capabilities, efficacious vaccines are not readily available. The selection of S. suis protein candidates for inclusion in a vaccine was accomplished by identifying fitness genes through a functional genomics screen and selecting conserved predicted surface-associated proteins. Five candidate proteins were selected for evaluation in a vaccine trial and administered both intranasally and intramuscularly with one of two different adjuvant formulations. Clinical protection was evaluated by subsequent intranasal challenge with virulent S. suis While subunit vaccination with the S. suis proteins induced IgG antibodies to each individual protein and a cellular immune response to the pool of proteins and provided substantial protection from challenge with virulent S. suis, the immune response elicited and the degree of protection were dependent on the parenteral adjuvant given. Subunit vaccination induced IgG reactive against different S. suis serotypes, indicating a potential for cross protection.


Subject(s)
Bacterial Proteins/immunology , Streptococcal Infections/veterinary , Streptococcal Vaccines/administration & dosage , Streptococcus suis/immunology , Swine Diseases/prevention & control , Animals , Antibodies, Bacterial/immunology , Bacterial Proteins/administration & dosage , Bacterial Proteins/genetics , Cross Protection , Female , Genomics , Male , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcal Infections/prevention & control , Streptococcal Vaccines/genetics , Streptococcal Vaccines/immunology , Streptococcus suis/chemistry , Streptococcus suis/genetics , Streptococcus suis/pathogenicity , Swine , Swine Diseases/immunology , Swine Diseases/microbiology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Virulence
8.
Appl Environ Microbiol ; 84(8)2018 04 15.
Article in English | MEDLINE | ID: mdl-29427423

ABSTRACT

Streptococcus suis, a global zoonosis of pigs, shows regional differences in the prevalence of human-associated disease for Asian and non-Asian countries. The isolation rates and diversities of S. suis on tonsils of healthy slaughter pigs in China and the United Kingdom were studied for effects of geography, temperature, pig age, and farm type. Isolates underwent analysis of molecular serotype and multilocus sequence type and virulence-associated genotyping. Although we found no significant difference in positive isolation rates between Chinese and UK farms, the prevalences of serotypes previously associated with human disease were significantly greater in the Chinese collection (P = 0.003). A significant effect of temperature was found on the positive isolation rate of the Chinese samples and the prevalence of human disease-associated serotypes in the UK S. suis population (China, P = 0.004; United Kingdom, P = 0.024) and on the prevalence of isolates carrying key virulence genes in China (P = 0.044). Finally, we found marked diversity among S. suis isolates, with statistically significant temperature effects on detection of multiple strain types within individual pigs. This study highlighted the high carriage prevalence and diversity of S. suis among clinically healthy pig herds of China and the United Kingdom. The significant effect of temperature on prevalence of isolation, human disease-associated serotypes, and diversity carried by individual pigs may shed new light on geographic variations in human S. suis-associated disease.IMPORTANCEStreptococcus suis is a global zoonotic pathogen and also a normal colonizer mainly carried on the tonsil of pigs. Thus, it is important to study the effect of environmental and management-associated factors on the S. suis populations in clinically healthy pigs. In this research, we investigated the similarities and differences between the S. suis populations obtained from different pig ages, seasons, and farm management systems and discovered the relationship between high climatic temperature and the prevalence of S. suis.


Subject(s)
Animal Husbandry/methods , Genetic Variation , Streptococcal Infections/veterinary , Streptococcus suis/physiology , Swine Diseases/epidemiology , Age Factors , Animals , China/epidemiology , Genome, Bacterial , Longitudinal Studies , Prevalence , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Streptococcus suis/genetics , Swine , Swine Diseases/microbiology , Temperature , United Kingdom/epidemiology
9.
Proc Natl Acad Sci U S A ; 112(3): 863-8, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25535353

ABSTRACT

Many bacterial pathogens are specialized, infecting one or few hosts, and this is often associated with more acute disease presentation. Specific genomes show markers of this specialization, which often reflect a balance between gene acquisition and functional gene loss. Within Salmonella enterica subspecies enterica, a single lineage exists that includes human and animal pathogens adapted to cause infection in different hosts, including S. enterica serovar Enteritidis (multiple hosts), S. Gallinarum (birds), and S. Dublin (cattle). This provides an excellent evolutionary context in which differences between these pathogen genomes can be related to host range. Genome sequences were obtained from ∼ 60 isolates selected to represent the known diversity of this lineage. Examination and comparison of the clades within the phylogeny of this lineage revealed signs of host restriction as well as evolutionary events that mark a path to host generalism. We have identified the nature and order of events for both evolutionary trajectories. The impact of functional gene loss was predicted based upon position within metabolic pathways and confirmed with phenotyping assays. The structure of S. Enteritidis is more complex than previously known, as a second clade of S. Enteritidis was revealed that is distinct from those commonly seen to cause disease in humans or animals, and that is more closely related to S. Gallinarum. Isolates from this second clade were tested in a chick model of infection and exhibited a reduced colonization phenotype, which we postulate represents an intermediate stage in pathogen-host adaptation.


Subject(s)
Adaptation, Physiological , Evolution, Molecular , Genome, Bacterial , Salmonella/genetics , Chromosomes, Bacterial , Pseudogenes
10.
BMC Genomics ; 18(1): 426, 2017 05 31.
Article in English | MEDLINE | ID: mdl-28569133

ABSTRACT

BACKGROUND: Utilising next generation sequencing to interrogate saturated bacterial mutant libraries provides unprecedented information for the assignment of genome-wide gene essentiality. Exposure of saturated mutant libraries to specific conditions and subsequent sequencing can be exploited to uncover gene essentiality relevant to the condition. Here we present a barcoded transposon directed insertion-site sequencing (TraDIS) system to define an essential gene list for Streptococcus equi subsp. equi, the causative agent of strangles in horses, for the first time. The gene essentiality data for this group C Streptococcus was compared to that of group A and B streptococci. RESULTS: Six barcoded variants of pGh9:ISS1 were designed and used to generate mutant libraries containing between 33,000-66,000 unique mutants. TraDIS was performed on DNA extracted from each library and data were analysed separately and as a combined master pool. Gene essentiality determined that 19.5% of the S. equi genome was essential. Gene essentialities were compared to those of group A and group B streptococci, identifying concordances of 90.2% and 89.4%, respectively and an overall concordance of 83.7% between the three species. CONCLUSIONS: The use of barcoded pGh9:ISS1 to generate mutant libraries provides a highly useful tool for the assignment of gene function in S. equi and other streptococci. The shared essential gene set of group A, B and C streptococci provides further evidence of the close genetic relationships between these important pathogenic bacteria. Therefore, the ABC of gene essentiality reported here provides a solid foundation towards reporting the functional genome of streptococci.


Subject(s)
Genes, Bacterial/genetics , High-Throughput Nucleotide Sequencing , Streptococcus/genetics , Genes, Essential/genetics , Genomics , Mutation
11.
Microbiology (Reading) ; 163(8): 1217-1228, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28749324

ABSTRACT

The Gram-positive bacterium Streptococcus equi subspecies equi (S. equi) is the causative agent of strangles, among the most frequently diagnosed infectious diseases of horses worldwide. Genome analysis of S. equi strain 4047 (Se4047) identified a putative operon, Fim1, with similarity to the pilus loci of other Gram-positive bacteria. The Fim1 locus was present in all strains of S. equi and its close relative S. equi subspecies zooepidemicus (S. zooepidemicus) that have been studied to date. In this study we provide evidence that the putative structural pilus proteins, SEQ_0936 and CNE, are produced on the cell surface during in vitro growth and in vivo infection. Although the proteins encoded within the Fim1 locus are not essential for attachment or biofilm formation, over-transcription of SEQ_0936 and CNE enhanced attachment to equine tissue in vitro. Our data suggest that whilst the Fim1 locus does not produce a polymerized pilus structure, the products of the Fim1 locus may fulfil an adhesive function. The putative pilus-associated regulator, tetR, which contains a nonsense mutation in S. equi, was able to regulate transcription of the Fim1 locus following repair and over-transcription, confirming its predicted role in the operon.

12.
J Clin Microbiol ; 55(9): 2617-2628, 2017 09.
Article in English | MEDLINE | ID: mdl-28615466

ABSTRACT

Haemophilus parasuis is a diverse bacterial species that is found in the upper respiratory tracts of pigs and can also cause Glässer's disease and pneumonia. A previous pangenome study of H. parasuis identified 48 genes that were associated with clinical disease. Here, we describe the development of a generalized linear model (termed a pathotyping model) to predict the potential virulence of isolates of H. parasuis based on a subset of 10 genes from the pangenome. A multiplex PCR (mPCR) was constructed based on these genes, the results of which were entered into the pathotyping model to yield a prediction of virulence. This new diagnostic mPCR was tested on 143 field isolates of H. parasuis that had previously been whole-genome sequenced and a further 84 isolates from the United Kingdom from cases of H. parasuis-related disease in pigs collected between 2013 and 2014. The combination of the mPCR and the pathotyping model predicted the virulence of an isolate with 78% accuracy for the original isolate collection and 90% for the additional isolate collection, providing an overall accuracy of 83% (81% sensitivity and 93% specificity) compared with that of the "current standard" of detailed clinical metadata. This new pathotyping assay has the potential to aid surveillance and disease control in addition to serotyping data.


Subject(s)
Haemophilus Infections/diagnosis , Haemophilus Infections/veterinary , Haemophilus parasuis/genetics , Haemophilus parasuis/pathogenicity , Molecular Diagnostic Techniques/methods , Swine Diseases/diagnosis , Animals , Genome/genetics , Haemophilus Infections/microbiology , Haemophilus parasuis/isolation & purification , Multiplex Polymerase Chain Reaction , Swine , Swine Diseases/microbiology , Virulence/genetics
13.
J Antimicrob Chemother ; 72(6): 1617-1623, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28175320

ABSTRACT

Objectives: Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. Methods: Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. Results: We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital ( ρ = 0.9, two-tailed P <0.0001) and farm ( ρ = 0.5, two-tailed P <0.0001) effluents and that two ß-lactam resistance genes ( bla GES and bla OXA ) were overexpressed in all hospital effluent samples. High ß-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. Conclusions: We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source.


Subject(s)
Drug Resistance, Microbial/genetics , Gene Expression , Hospitals , Wastewater/microbiology , Water Microbiology , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Dairying , Farms , Gene Expression Profiling , Genes, Bacterial , Humans , Metagenomics , Rivers/microbiology , Spatio-Temporal Analysis , beta-Lactam Resistance/genetics
14.
Microb Pathog ; 104: 202-211, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28131954

ABSTRACT

Campylobacter jejuni is the leading cause of bacterial food borne illness. While helical cell shape is considered important for C. jejuni pathogenesis, this bacterium is capable of adopting other morphologies. To better understand how helical-shaped C. jejuni maintain their shape and thus any associated colonisation, pathogenicity or other advantage, it is first important to identify the genes and proteins involved. So far, two peptidoglycan modifying enzymes Pgp1 and Pgp2 have been shown to be required for C. jejuni helical cell shape. We performed a visual screen of ∼2000 transposon mutants of C. jejuni for cell shape mutants. Whole genome sequence data of the mutants with altered cell shape, directed mutants, wild type stocks and isolated helical and rod-shaped 'wild type' C. jejuni, identified a number of different mutations in pgp1 and pgp2, which result in a change in helical to rod bacterial cell shape. We also identified an isolate with a loss of curvature. In this study, we have identified the genomic change in this isolate, and found that targeted deletion of the gene with the change resulted in bacteria with loss of curvature. Helical cell shape was restored by supplying the gene in trans. We examined the effect of loss of the gene on bacterial motility, adhesion and invasion of tissue culture cells and chicken colonisation, as well as the effect on the muropeptide profile of the peptidoglycan sacculus. Our work identifies another factor involved in helical cell shape.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Campylobacter jejuni/cytology , Campylobacter jejuni/genetics , Bacterial Adhesion , Caco-2 Cells , Campylobacter jejuni/physiology , Cell Wall/metabolism , DNA Transposable Elements , Endocytosis , Gene Deletion , Genetic Complementation Test , Humans , Locomotion , Mutagenesis, Insertional , Peptidoglycan/metabolism
15.
Infect Immun ; 84(4): 989-997, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26787719

ABSTRACT

Salmonella enterica causes systemic diseases (typhoid and paratyphoid fever), nontyphoidal septicemia (NTS), and gastroenteritis in humans and other animals worldwide. An important but underrecognized emerging infectious disease problem in sub-Saharan Africa is NTS in children and immunocompromised adults. A current goal is to identify Salmonella mutants that are not pathogenic in the absence of key components of the immune system such as might be found in immunocompromised hosts. Such attenuated strains have the potential to be used as live vaccines. We have used transposon-directed insertion site sequencing (TraDIS) to screen mutants of Salmonella enterica serovar Typhimurium for their ability to infect and grow in the tissues of wild-type and immunodeficient mice. This was to identify bacterial genes that might be deleted for the development of live attenuated vaccines that would be safer to use in situations and/or geographical areas where immunodeficiencies are prevalent. The relative fitness of each of 9,356 transposon mutants, representing mutations in 3,139 different genes, was determined in gp91(-/-) phox mice. Mutations in certain genes led to reduced fitness in both wild-type and mutant mice. To validate these results, these genes were mutated by allelic replacement, and resultant mutants were retested for fitness in the mice. A defined deletion mutant of cysE was attenuated in C57BL/6 wild-type mice and immunodeficient gp91(-/-) phox mice and was effective as a live vaccine in wild-type mice.


Subject(s)
Membrane Glycoproteins/metabolism , NADPH Oxidases/metabolism , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/pathogenicity , Alleles , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Vaccines/immunology , Gene Expression Regulation, Bacterial/physiology , Immunocompromised Host , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , NADPH Oxidase 2 , NADPH Oxidases/genetics , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/prevention & control , Virulence
16.
BMC Genomics ; 17: 79, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26813574

ABSTRACT

BACKGROUND: Mycobacterium avium subspecies paratuberculosis (Map) is an infectious enteric pathogen that causes Johne's disease in livestock. Determining genetic diversity is prerequisite to understanding the epidemiology and biology of Map. We performed the first whole genome sequencing (WGS) of 141 global Map isolates that encompass the main molecular strain types currently reported. We investigated the phylogeny of the Map strains, the diversity of the genome and the limitations of commonly used genotyping methods. RESULTS: Single nucleotide polymorphism (SNP) and phylogenetic analyses confirmed two major lineages concordant with the former Type S and Type C designations. The Type I and Type III strain groups are subtypes of Type S, and Type B strains are a subtype of Type C and not restricted to Bison species. We found that the genome-wide SNPs detected provided greater resolution between isolates than currently employed genotyping methods. Furthermore, the SNP used for IS1311 typing is not informative, as it is likely to have occurred after Type S and C strains diverged and does not assign all strains to the correct lineage. Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat (MIRU-VNTR) differentiates Type S from Type C but provides limited resolution between isolates within these lineages and the polymorphisms detected do not necessarily accurately reflect the phylogenetic relationships between strains. WGS of passaged strains and coalescent analysis of the collection revealed a very high level of genetic stability, with the substitution rate estimated to be less than 0.5 SNPs per genome per year. CONCLUSIONS: This study clarifies the phylogenetic relationships between the previously described Map strain groups, and highlights the limitations of current genotyping techniques. Map isolates exhibit restricted genetic diversity and a substitution rate consistent with a monomorphic pathogen. WGS provides the ultimate level of resolution for differentiation between strains. However, WGS alone will not be sufficient for tracing and tracking Map infections, yet importantly it can provide a phylogenetic context for affirming epidemiological connections.


Subject(s)
Mycobacterium avium subsp. paratuberculosis/genetics , Phylogeny , Genotype , Mycobacterium avium subsp. paratuberculosis/classification , Polymorphism, Single Nucleotide/genetics
17.
BMC Genomics ; 17: 406, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27229469

ABSTRACT

BACKGROUND: Next-generation sequencing of transposon-genome junctions from a saturated bacterial mutant library (Tn-seq) is a powerful tool that permits genome-wide determination of the contribution of genes to fitness of the organism under a wide range of experimental conditions. We report development, testing, and results from a Tn-seq system for use in Streptococcus agalactiae (group B Streptococcus; GBS), an important cause of neonatal sepsis. METHODS: Our method uses a Himar1 mini-transposon that inserts at genomic TA dinucleotide sites, delivered to GBS on a temperature-sensitive plasmid that is subsequently cured from the bacterial population. In order to establish the GBS essential genome, we performed Tn-seq on DNA collected from three independent mutant libraries-with at least 135,000 mutants per library-at serial 24 h time points after outgrowth in rich media. RESULTS: After statistical analysis of transposon insertion density and distribution, we identified 13.5 % of genes as essential and 1.2 % as critical, with high levels of reproducibility. Essential and critical genes are enriched for fundamental cellular housekeeping functions, such as acyl-tRNA biosynthesis, nucleotide metabolism, and glycolysis. We further validated our system by comparing fitness assignments of homologous genes in GBS and a close bacterial relative, Streptococcus pyogenes, which demonstrated 93 % concordance. Finally, we used our fitness assignments to identify signal transduction pathway components predicted to be essential or critical in GBS. CONCLUSIONS: We believe that our baseline fitness assignments will be a valuable tool for GBS researchers and that our system has the potential to reveal key pathogenesis gene networks and potential therapeutic/preventative targets.


Subject(s)
Genome, Bacterial , Genomics , Streptococcal Infections/microbiology , Streptococcus agalactiae/genetics , DNA Transposable Elements , Gene Library , Genetic Vectors/genetics , Genomics/methods , Mutagenesis, Insertional , Signal Transduction , Streptococcus agalactiae/metabolism
18.
PLoS Pathog ; 10(9): e1004359, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25233077

ABSTRACT

Salmonella enterica infections are a significant global health issue, and development of vaccines against these bacteria requires an improved understanding of how vaccination affects the growth and spread of the bacteria within the host. We have combined in vivo tracking of molecularly tagged bacterial subpopulations with mathematical modelling to gain a novel insight into how different classes of vaccines and branches of the immune response protect against secondary Salmonella enterica infections of the mouse. We have found that a live Salmonella vaccine significantly reduced bacteraemia during a secondary challenge and restrained inter-organ spread of the bacteria in the systemic organs. Further, fitting mechanistic models to the data indicated that live vaccine immunisation enhanced both the bacterial killing in the very early stages of the infection and bacteriostatic control over the first day post-challenge. T-cell immunity induced by this vaccine is not necessary for the enhanced bacteriostasis but is required for subsequent bactericidal clearance of Salmonella in the blood and tissues. Conversely, a non-living vaccine while able to enhance initial blood clearance and killing of virulent secondary challenge bacteria, was unable to alter the subsequent bacterial growth rate in the systemic organs, did not prevent the resurgence of extensive bacteraemia and failed to control the spread of the bacteria in the body.


Subject(s)
Models, Theoretical , Salmonella Infections, Animal/prevention & control , Salmonella Vaccines/administration & dosage , Salmonella enterica/immunology , Vaccination , Animals , DNA, Bacterial/genetics , Female , Liver/immunology , Liver/microbiology , Mice , Mice, Inbred C57BL , Polymerase Chain Reaction , Salmonella Infections, Animal/immunology , Salmonella Vaccines/immunology , Salmonella enterica/genetics , Salmonella enterica/growth & development , Spleen/immunology , Spleen/microbiology
19.
PLoS Genet ; 9(4): e1003456, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23637626

ABSTRACT

Chickens, pigs, and cattle are key reservoirs of Salmonella enterica, a foodborne pathogen of worldwide importance. Though a decade has elapsed since publication of the first Salmonella genome, thousands of genes remain of hypothetical or unknown function, and the basis of colonization of reservoir hosts is ill-defined. Moreover, previous surveys of the role of Salmonella genes in vivo have focused on systemic virulence in murine typhoid models, and the genetic basis of intestinal persistence and thus zoonotic transmission have received little study. We therefore screened pools of random insertion mutants of S. enterica serovar Typhimurium in chickens, pigs, and cattle by transposon-directed insertion-site sequencing (TraDIS). The identity and relative fitness in each host of 7,702 mutants was simultaneously assigned by massively parallel sequencing of transposon-flanking regions. Phenotypes were assigned to 2,715 different genes, providing a phenotype-genotype map of unprecedented resolution. The data are self-consistent in that multiple independent mutations in a given gene or pathway were observed to exert a similar fitness cost. Phenotypes were further validated by screening defined null mutants in chickens. Our data indicate that a core set of genes is required for infection of all three host species, and smaller sets of genes may mediate persistence in specific hosts. By assigning roles to thousands of Salmonella genes in key reservoir hosts, our data facilitate systems approaches to understand pathogenesis and the rational design of novel cross-protective vaccines and inhibitors. Moreover, by simultaneously assigning the genotype and phenotype of over 90% of mutants screened in complex pools, our data establish TraDIS as a powerful tool to apply rich functional annotation to microbial genomes with minimal animal use.


Subject(s)
Salmonella Infections, Animal , Salmonella typhimurium , Animals , Chickens , Intestines , Salmonella enterica/genetics , Salmonella typhimurium/genetics , Virulence
20.
Water Sci Technol ; 73(7): 1541-9, 2016.
Article in English | MEDLINE | ID: mdl-27054725

ABSTRACT

The aquatic environment has been implicated as a reservoir for antimicrobial resistance genes (ARGs). In order to identify sources that are contributing to these gene reservoirs, it is crucial to assess effluents that are entering the aquatic environment. Here we describe a metagenomic assessment for two types of effluent entering a river catchment. We investigated the diversity and abundance of resistance genes, mobile genetic elements (MGEs) and pathogenic bacteria. Findings were normalised to a background sample of river source water. Our results show that effluent contributed an array of genes to the river catchment, the most abundant being tetracycline resistance genes tetC and tetW from farm effluents and the sulfonamide resistance gene sul2 from wastewater treatment plant (WWTP) effluents. In nine separate samples taken across 3 years, we found 53 different genes conferring resistance to seven classes of antimicrobial. Compared to the background sample taken up river from effluent entry, the average abundance of genes was three times greater in the farm effluent and two times greater in the WWTP effluent. We conclude that effluents disperse ARGs, MGEs and pathogenic bacteria within a river catchment, thereby contributing to environmental reservoirs of ARGs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Metagenomics , Rivers/microbiology , Anti-Bacterial Agents/chemistry , Bacteria/genetics , Wastewater/microbiology , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL