Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Ann Neurol ; 95(6): 1178-1192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38466158

ABSTRACT

OBJECTIVE: To apply a machine learning analysis to clinical and presynaptic dopaminergic imaging data of patients with rapid eye movement (REM) sleep behavior disorder (RBD) to predict the development of Parkinson disease (PD) and dementia with Lewy bodies (DLB). METHODS: In this multicenter study of the International RBD study group, 173 patients (mean age 70.5 ± 6.3 years, 70.5% males) with polysomnography-confirmed RBD who eventually phenoconverted to overt alpha-synucleinopathy (RBD due to synucleinopathy) were enrolled, and underwent baseline presynaptic dopaminergic imaging and clinical assessment, including motor, cognitive, olfaction, and constipation evaluation. For comparison, 232 RBD non-phenoconvertor patients (67.6 ± 7.1 years, 78.4% males) and 160 controls (68.2 ± 7.2 years, 53.1% males) were enrolled. Imaging and clinical features were analyzed by machine learning to determine predictors of phenoconversion. RESULTS: Machine learning analysis showed that clinical data alone poorly predicted phenoconversion. Presynaptic dopaminergic imaging significantly improved the prediction, especially in combination with clinical data, with 77% sensitivity and 85% specificity in differentiating RBD due to synucleinopathy from non phenoconverted RBD patients, and 85% sensitivity and 86% specificity in discriminating PD-converters from DLB-converters. Quantification of presynaptic dopaminergic imaging showed that an empirical z-score cutoff of -1.0 at the most affected hemisphere putamen characterized RBD due to synucleinopathy patients, while a cutoff of -1.0 at the most affected hemisphere putamen/caudate ratio characterized PD-converters. INTERPRETATION: Clinical data alone poorly predicted phenoconversion in RBD due to synucleinopathy patients. Conversely, presynaptic dopaminergic imaging allows a good prediction of forthcoming phenoconversion diagnosis. This finding may be used in designing future disease-modifying trials. ANN NEUROL 2024;95:1178-1192.


Subject(s)
Dopamine , Lewy Body Disease , Machine Learning , Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , REM Sleep Behavior Disorder/diagnostic imaging , Male , Female , Aged , Synucleinopathies/diagnostic imaging , Middle Aged , Lewy Body Disease/diagnostic imaging , Parkinson Disease/diagnostic imaging , Parkinson Disease/complications , Dopamine/metabolism , Tomography, Emission-Computed, Single-Photon , Presynaptic Terminals/metabolism , Dopaminergic Imaging
2.
Eur J Nucl Med Mol Imaging ; 51(7): 1876-1890, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38355740

ABSTRACT

PURPOSE: Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017-2022), highlighting methodological shortcomings. METHODS: Studies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy. RESULTS: Sensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer's dementia were 43-100% and 63-94% for [18F]FDG-PET and 64-94% and 48-93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (n > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47-100% SE and 71-100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [123I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47-100% SE and 71-100% SP. CONCLUSION: Molecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer's dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings.


Subject(s)
Cognitive Dysfunction , Dementia , Disease Progression , Humans , Cognitive Dysfunction/diagnostic imaging , Dementia/diagnostic imaging , Molecular Imaging/methods
3.
Neuroradiology ; 66(5): 653-675, 2024 May.
Article in English | MEDLINE | ID: mdl-38507081

ABSTRACT

Autoimmune encephalitis is a relatively novel nosological entity characterized by an immune-mediated damage of the central nervous system. While originally described as a paraneoplastic inflammatory phenomenon affecting limbic structures, numerous instances of non-paraneoplastic pathogenesis, as well as extra-limbic involvement, have been characterized. Given the wide spectrum of insidious clinical presentations ranging from cognitive impairment to psychiatric symptoms or seizures, it is crucial to raise awareness about this disease category. In fact, an early diagnosis can be dramatically beneficial for the prognosis both to achieve an early therapeutic intervention and to detect a potential underlying malignancy. In this scenario, the radiologist can be the first to pose the hypothesis of autoimmune encephalitis and refer the patient to a comprehensive diagnostic work-up - including clinical, serological, and neurophysiological assessments.In this article, we illustrate the main radiological characteristics of autoimmune encephalitis and its subtypes, including the typical limbic presentation, the features of extra-limbic involvement, and also peculiar imaging findings. In addition, we review the most relevant alternative diagnoses that should be considered, ranging from other encephalitides to neoplasms, vascular conditions, and post-seizure alterations. Finally, we discuss the most appropriate imaging diagnostic work-up, also proposing a suggested MRI protocol.


Subject(s)
Autoimmune Diseases of the Nervous System , Encephalitis , Hashimoto Disease , Limbic Encephalitis , Humans , Encephalitis/diagnostic imaging , Hashimoto Disease/diagnostic imaging , Autoantibodies , Seizures , Radiologists , Limbic Encephalitis/diagnostic imaging
4.
Cereb Cortex ; 33(20): 10514-10527, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37615301

ABSTRACT

Here we tested the hypothesis of a relationship between the cortical default mode network (DMN) structural integrity and the resting-state electroencephalographic (rsEEG) rhythms in patients with Alzheimer's disease with dementia (ADD). Clinical and instrumental datasets in 45 ADD patients and 40 normal elderly (Nold) persons originated from the PDWAVES Consortium (www.pdwaves.eu). Individual rsEEG delta, theta, alpha, and fixed beta and gamma bands were considered. Freeware platforms served to derive (1) the (gray matter) volume of the DMN, dorsal attention (DAN), and sensorimotor (SMN) cortical networks and (2) the rsEEG cortical eLORETA source activities. We found a significant positive association between the DMN gray matter volume, the rsEEG alpha source activity estimated in the posterior DMN nodes (parietal and posterior cingulate cortex), and the global cognitive status in the Nold and ADD participants. Compared with the Nold, the ADD group showed lower DMN gray matter, lower rsEEG alpha source activity in those nodes, and lower global cognitive status. This effect was not observed in the DAN and SMN. These results suggest that the DMN structural integrity and the rsEEG alpha source activities in the DMN posterior hubs may be related and predict the global cognitive status in ADD and Nold persons.

5.
Neurol Sci ; 45(3): 849-859, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38169013

ABSTRACT

INTRODUCTION: Guillain-Barré syndrome associated with Coronavirus-2-related severe acute respiratory syndrome (COV-GBS) occurs as para- or post-infectious forms, depending on the timing of disease onset. In these two forms, we aimed to compare the cerebrospinal fluid (CSF) and serum proinflammatory cytokine profiles to evaluate differences that could possibly have co-pathogenic relevance. MATERIALS AND METHODS: We studied a retrospective cohort of 26 patients with either post-COV-GBS (n = 15), with disease onset occurring > 7 days after SARS-CoV-2 infection, or para-COV-GBS (n = 11), with disease onset 7 days or less. TNF-α, IL-6, and IL-8 were measured in the serum with SimplePlex™ Ella™ immunoassay. In addition to the para-/post-COV-GBS patients, serum levels of these cytokines were determined in those with non-COVID-associated-GBS (NC-GBS; n = 43), paucisymptomatic SARS-CoV-2 infection without GBS (COVID, n = 20), and in healthy volunteers (HV; n = 12). CSF cytokine levels were measured in patients with para-/post-COV-GBS, in those with NC-GBS (n = 29), or with Alzheimer's disease (AD; n = 24). RESULTS: Serum/CSF cytokine levels did not differ in para- vs post-COV-GBS. We found that SARS-CoV-2 infection raises the serum levels of TNF-α, IL-6, and IL-8, as well as an increase of IL-6 (in serum and CSF) and IL-8 (in CSF) in either NC-GBS or COV-GBS than controls. CSF and serum cytokine levels resulted independent one with another. CONCLUSIONS: The change of cytokines linked to SARS-CoV-2 in COV-GBS appears to be driven by viral infection, although it has unique characteristics in GBS as such and does not account for cases with para- or post-infectious onset.


Subject(s)
COVID-19 , Guillain-Barre Syndrome , Humans , COVID-19/complications , SARS-CoV-2 , Guillain-Barre Syndrome/complications , Cytokines , Interleukin-6/cerebrospinal fluid , Tumor Necrosis Factor-alpha , Retrospective Studies , Interleukin-8
6.
Alzheimers Dement ; 20(3): 1815-1826, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38131463

ABSTRACT

INTRODUCTION: Sex influences neurodegeneration, but it has been poorly investigated in dementia with Lewy bodies (DLB). We investigated sex differences in brain atrophy in DLB using magnetic resonance imaging (MRI). METHODS: We included 436 patients from the European-DLB consortium and the Mayo Clinic. Sex differences and sex-by-age interactions were assessed through visual atrophy rating scales (n = 327; 73 ± 8 years, 62% males) and automated estimations of regional gray matter volume and cortical thickness (n = 165; 69 ± 9 years, 72% males). RESULTS: We found a higher likelihood of frontal atrophy and smaller volumes in six cortical regions in males and thinner olfactory cortices in females. There were significant sex-by-age interactions in volume (six regions) and cortical thickness (seven regions) across the entire cortex. DISCUSSION: We demonstrate that males have more widespread cortical atrophy at younger ages, but differences tend to disappear with increasing age, with males and females converging around the age of 75. HIGHLIGHTS: Male DLB patients had higher odds for frontal atrophy on radiological visual rating scales. Male DLB patients displayed a widespread pattern of cortical gray matter alterations on automated methods. Sex differences in gray matter measures in DLB tended to disappear with increasing age.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Humans , Male , Female , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/pathology , Alzheimer Disease/pathology , Sex Characteristics , Cerebral Cortex/pathology , Atrophy/pathology , Magnetic Resonance Imaging
7.
J Neurol Neurosurg Psychiatry ; 94(1): 83-86, 2023 01.
Article in English | MEDLINE | ID: mdl-35944974

ABSTRACT

INTRODUCTION: ß-synuclein (ß-syn) is a presynaptic protein, whose cerebrospinal fluid (CSF) levels are increased in patients with Alzheimer's diseases (AD) showing mild cognitive impairment (MCI) and dementia (dem). Here, we aimed to investigate CSF ß-syn in subjects at different AD stages, including preclinical AD (pre-AD), and to compare its behaviour with another synaptic biomarker, α-synuclein (α-syn), and two biomarkers of neuro-axonal damage, namely neurofilament light chain protein (NfL) and total tau protein (t-tau). METHODS: We measured ß-syn, α-syn, t-tau and NfL in CSF of 75 patients with AD (pre-AD n=17, MCI-AD n=28, dem-AD n=30) and 35 controls (subjective memory complaints, SMC-Ctrl n=13, non-degenerative neurological disorders, Dis-Ctrl n=22). RESULTS: CSF ß-syn, α-syn, t-tau were significantly elevated in pre-AD patients compared with controls (p<0.0001, p=0.02 and p=0.0001, respectively), while NfL only increased in dem-AD (p=0.001). Pre-AD cases showed lower t-tau concentrations than MCI-AD (p=0.04) and dem-AD (p=0.01). CSF ß-syn had the best diagnostic performance for the discrimination of pre-AD subjects from all controls (area under the curve, AUC=0.97) and from SMC-Ctrl subjects (AUC=0.99). DISCUSSION: CSF ß-syn increases in the whole AD continuum since the preclinical stage and represents a promising biomarker of synaptic damage in AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , beta-Synuclein , tau Proteins/cerebrospinal fluid , Cognitive Dysfunction/psychology , Biomarkers/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid
8.
Eur J Nucl Med Mol Imaging ; 50(4): 1090-1102, 2023 03.
Article in English | MEDLINE | ID: mdl-36471041

ABSTRACT

PURPOSE: A cut-off of -2 z-score for striatal or putaminal SBR has been to date arbitrarily used to define an abnormal DaT SPECT in patients with suspected neurodegenerative parkinsonism. We aimed to experimentally identify the most accurate z-score cut-offs for SBR of striatal and substriatal regions to independently discriminate PD and DLB, with respect to essential tremor (ET) and Alzheimer's disease (AD) respectively. METHODS: Two-hundred twenty-five patients undergoing DaT SPECT were enrolled (seventy-five de novo PD, eighty ET, fifty DLB, and twenty AD). Semiquantification was computed by means of Datquant® software which returns measures of striatal SBR and z-scores with respect to 118 healthy volunteers belonging to the Parkinson's Progression Markers Initiative (PPMI). ROC analysis was used to identify most accurate cut-offs for z-score for striatum and substriatal regions (clinical diagnosis at follow-up as gold standard). RESULTS: Posterior putamen of the most affected hemisphere (MAH) with a z-score cut-off of - 1.27 demonstrated the highest accuracy to differentiate between PD and ET (sensitivity 0.97, specificity 0.94). The whole putamen (z-score cut-off - 0.96) was the most accurate parameter to support the diagnosis of DLB (sensitivity 0.74, specificity 0.95). Putamen to caudate ratio was accurate to detect PD (especially in early stages) while not DLB patients. CONCLUSION: We experimentally demonstrated that different substriatal regions and cut-offs for z-score of SBR should be considered to support the diagnosis of either PD or DLB. The identified less conservative cut-offs showed higher sensitivity without a measurable reduction in specificity with respect to the arbitrary - 2 z-score.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Lewy Body Disease/diagnostic imaging , Tomography, Emission-Computed, Single-Photon/methods , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolism
9.
Mov Disord ; 38(1): 57-67, 2023 01.
Article in English | MEDLINE | ID: mdl-36190111

ABSTRACT

BACKGROUND: Idiopathic rapid eye movement sleep behavior disorder (iRBD) represents the prodromal stage of α-synucleinopathies. Reliable biomarkers are needed to predict phenoconversion. OBJECTIVE: The aim was to derive and validate a brain glucose metabolism pattern related to phenoconversion in iRBD (iRBDconvRP) using spatial covariance analysis (Scaled Subprofile Model and Principal Component Analysis [SSM-PCA]). METHODS: Seventy-six consecutive iRBD patients (70 ± 6 years, 15 women) were enrolled in two centers and prospectively evaluated to assess phenoconversion (30 converters, 73 ± 6 years, 14 Parkinson's disease and 16 dementia with Lewy bodies, follow-up time: 21 ± 14 months; 46 nonconverters, 69 ± 6 years, follow-up time: 33 ± 19 months). All patients underwent [18 F]FDG-PET (18 F-fluorodeoxyglucose positron emitting tomography) to investigate brain glucose metabolism at baseline. SSM-PCA was applied to obtain the iRBDconvRP; nonconverter patients were considered as the reference group. Survival analysis and Cox regression were applied to explore prediction power. RESULTS: First, we derived and validated two distinct center-specific iRBDconvRP that were comparable and significantly able to predict phenoconversion. Then, SSM-PCA was applied to the whole set, identifying the iRBDconvRP. The iRBDconvRP included positive voxel weights in cerebellum; brainstem; anterior cingulate cortex; lentiform nucleus; and middle, mesial temporal, and postcentral areas. Negative voxel weights were found in posterior cingulate, precuneus, middle frontal gyrus, and parietal areas. Receiver operating characteristic analysis showed an area under the curve of 0.85 (sensitivity: 87%, specificity: 72%), discriminating converters from nonconverters. The iRBDconvRP significantly predicted phenoconversion (hazard ratio: 7.42, 95% confidence interval: 2.6-21.4). CONCLUSIONS: We derived and validated an iRBDconvRP to efficiently discriminate converter from nonconverter iRBD patients. [18 F]FDG-PET pattern analysis has potential as a phenoconversion biomarker in iRBD patients. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Humans , Female , Fluorodeoxyglucose F18 , Sleep, REM , REM Sleep Behavior Disorder/diagnostic imaging , REM Sleep Behavior Disorder/metabolism , Biomarkers , Glucose/metabolism
10.
Neurol Sci ; 44(9): 3161-3168, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37140829

ABSTRACT

BACKGROUND: A brain glucose metabolism pattern related to phenoconversion in patients with idiopathic/isolated REM sleep behaviour disorder (iRBDconvRP) was recently identified. However, the validation of the iRBDconvRP in an external, independent group of iRBD patients is needed to verify the reproducibility of such pattern, so to increase its importance in clinical and research settings. The aim of this work was to validate the iRBDconvRP in an independent group of iRBD patients. METHODS: Forty iRBD patients (70 ± 5.59 years, 19 females) underwent brain [18F]FDG-PET in Seoul National University. Thirteen patients phenoconverted at follow-up (7 Parkinson disease, 5 Dementia with Lewy bodies, 1 Multiple system atrophy; follow-up time 35 ± 20.56 months) and 27 patients were still free from parkinsonism/dementia after 62 ± 29.49 months from baseline. We applied the previously identified iRBDconvRP to validate its phenoconversion prediction power. RESULTS: The iRBDconvRP significantly discriminated converters from non-converters iRBD patients (p = 0.016; Area under the Curve 0.74, Sensitivity 0.69, Specificity 0.78), and it significantly predicted phenoconversion (Hazard ratio 4.26, C.I.95%: 1.18-15.39). CONCLUSIONS: The iRBDconvRP confirmed its robustness in predicting phenoconversion in an independent group of iRBD patients, suggesting its potential role as a stratification biomarker for disease-modifying trials.


Subject(s)
Parkinson Disease , Parkinsonian Disorders , REM Sleep Behavior Disorder , Female , Humans , REM Sleep Behavior Disorder/diagnostic imaging , Reproducibility of Results , Parkinson Disease/metabolism , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/metabolism , Brain/diagnostic imaging , Brain/metabolism
11.
Alzheimers Dement ; 19(5): 1729-1741, 2023 05.
Article in English | MEDLINE | ID: mdl-36209379

ABSTRACT

INTRODUCTION: Etiological diagnosis of neurocognitive disorders of middle-old age relies on biomarkers, although evidence for their rational use is incomplete. A European task force is defining a diagnostic workflow where expert experience fills evidence gaps for biomarker validity and prioritization. We report methodology and preliminary results. METHODS: Using a Delphi consensus method supported by a systematic literature review, 22 delegates from 11 relevant scientific societies defined workflow assumptions. RESULTS: We extracted diagnostic accuracy figures from literature on the use of biomarkers in the diagnosis of main forms of neurocognitive disorders. Supported by this evidence, panelists defined clinical setting (specialist outpatient service), application stage (MCI-mild dementia), and detailed pre-assessment screening (clinical-neuropsychological evaluations, brain imaging, and blood tests). DISCUSSION: The Delphi consensus on these assumptions set the stage for the development of the first pan-European workflow for biomarkers' use in the etiological diagnosis of middle-old age neurocognitive disorders at MCI-mild dementia stages. HIGHLIGHTS: Rational use of biomarkers in neurocognitive disorders lacks consensus in Europe. A consensus of experts will define a workflow for the rational use of biomarkers. The diagnostic workflow will be patient-centered and based on clinical presentation. The workflow will be updated as new evidence accrues.


Subject(s)
Cognitive Dysfunction , Dementia , Humans , Cognitive Dysfunction/diagnosis , Consensus , Sensitivity and Specificity , Dementia/diagnosis , Biomarkers
12.
Eur J Nucl Med Mol Imaging ; 49(4): 1263-1274, 2022 03.
Article in English | MEDLINE | ID: mdl-34651219

ABSTRACT

PURPOSE: FDG-PET is an established supportive biomarker in dementia with Lewy bodies (DLB), but its diagnostic accuracy is unknown at the mild cognitive impairment (MCI-LB) stage when the typical metabolic pattern may be difficultly recognized at the individual level. Semiquantitative analysis of scans could enhance accuracy especially in less skilled readers, but its added role with respect to visual assessment in MCI-LB is still unknown. METHODS: We assessed the diagnostic accuracy of visual assessment of FDG-PET by six expert readers, blind to diagnosis, in discriminating two matched groups of patients (40 with prodromal AD (MCI-AD) and 39 with MCI-LB), both confirmed by in vivo biomarkers. Readers were provided in a stepwise fashion with (i) maps obtained by the univariate single-subject voxel-based analysis (VBA) with respect to a control group of 40 age- and sex-matched healthy subjects, and (ii) individual odds ratio (OR) plots obtained by the volumetric regions of interest (VROI) semiquantitative analysis of the two main hypometabolic clusters deriving from the comparison of MCI-AD and MCI-LB groups in the two directions, respectively. RESULTS: Mean diagnostic accuracy of visual assessment was 76.8 ± 5.0% and did not significantly benefit from adding the univariate VBA map reading (77.4 ± 8.3%) whereas VROI-derived OR plot reading significantly increased both accuracy (89.7 ± 2.3%) and inter-rater reliability (ICC 0.97 [0.96-0.98]), regardless of the readers' expertise. CONCLUSION: Conventional visual reading of FDG-PET is moderately accurate in distinguishing between MCI-LB and MCI-AD, and is not significantly improved by univariate single-subject VBA but by a VROI analysis built on macro-regions, allowing for high accuracy independent of reader skills.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Lewy Body Disease , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Biomarkers/metabolism , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/metabolism , Fluorodeoxyglucose F18/metabolism , Humans , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/metabolism , Positron-Emission Tomography/methods , Reproducibility of Results
13.
Mov Disord ; 37(1): 52-61, 2022 01.
Article in English | MEDLINE | ID: mdl-34533239

ABSTRACT

BACKGROUND: Dopamine transporter single photon-emission computed tomography (DAT-SPECT) is the strongest risk factor for phenoconversion in patients with idiopathic rapid eye movement (REM)-sleep behavior disorder (iRBD). However, it might be used as a second-line stratification tool in clinical trials, because it is expensive and mini-invasive. OBJECTIVE: Aim of the study is to investigate whether other cost-effective and non-invasive biomarkers may be proposed as first-line stratification tools. METHODS: Forty-seven consecutive iRBD patients (68.53 ± 7.16 years, 40 males) underwent baseline clinical and neuropsychological assessment, olfaction test, resting electroencephalogram (EEG), and DAT-SPECT. All patients underwent 6 month-based clinical follow-up to investigate the emergence of parkinsonism and/or dementia. Survival analysis and Cox regression were used to estimate conversion risk. RESULTS: Seventeen patients developed an overt synucleinopathy (eight Parkinsonism and nine dementia) 32.8 ± 22 months after diagnosis. The strongest risk factors were putamen specific to non-displaceable binding ratio (SBR) (hazard ratio [HR], 7.3), attention/working memory cognitive function (NPS-AT/WM) (HR, 5.9), EEG occipital mean frequency (HR, 2.7) and clinical motor assessment (HR, 2.3). On multivariate Cox-regression analysis, only putamen SBR and NPS-AT/WM significantly contributed to the model (HR, 6.2, 95% confidence interval [CI], 1.9-19.8). At post-hoc analysis, the trail-making test B (TMT-B) was the single most efficient first-line stratification tool that allowed to reduce the number of eligible subjects to 76.6% (sensitivity 1, specificity 0.37). Combining TMT-B and DAT-SPECT further reduced the sample to 66% (sensitivity 0.88, specificity 0.47). CONCLUSION: The TMT-B seems to be a cost-effective and efficient first-line screening tool, to be used to select patients that deserve DAT-SPECT as second-line screening tool for disease-modifying clinical trials. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinsonian Disorders , REM Sleep Behavior Disorder , Synucleinopathies , Aged , Female , Humans , Male , Middle Aged , Putamen/metabolism , REM Sleep Behavior Disorder/metabolism , Tomography, Emission-Computed, Single-Photon
14.
J Neural Transm (Vienna) ; 129(2): 207-230, 2022 02.
Article in English | MEDLINE | ID: mdl-34460014

ABSTRACT

The diagnosis of neurodegenerative disorders is often challenging due to the lack of diagnostic tools, comorbidities and shared pathological manifestations. Synaptic dysfunction is an early pathological event in many neurodegenerative disorders, but the underpinning mechanisms are still poorly characterised. Reliable quantification of synaptic damage is crucial to understand the pathophysiology of neurodegeneration, to track disease status and to obtain prognostic information. Neuronal pentraxins (NPTXs) are extracellular scaffolding proteins emerging as potential biomarkers of synaptic dysfunction in neurodegeneration. They are a family of proteins involved in homeostatic synaptic plasticity by recruiting post-synaptic receptors into synapses. Recent research investigates the dynamic changes of NPTXs in the cerebrospinal fluid (CSF) as an expression of synaptic damage, possibly related to cognitive impairment. In this review, we summarise the available data on NPTXs structure and expression patterns as well as on their contribution in synaptic function and plasticity and other less well-characterised roles. Moreover, we propose a mechanism for their involvement in synaptic damage and neurodegeneration and assess their potential as CSF biomarkers for neurodegenerative diseases.


Subject(s)
Nerve Tissue Proteins , Synapses , Biomarkers/cerebrospinal fluid , C-Reactive Protein , Nerve Tissue Proteins/metabolism , Neuronal Plasticity/physiology , Synapses/metabolism
15.
Nature ; 539(7630): 555-559, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27828947

ABSTRACT

Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Gαi protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.


Subject(s)
Cannabinoids/adverse effects , Memory Disorders/chemically induced , Memory/drug effects , Memory/physiology , Mitochondria/drug effects , Mitochondria/metabolism , Adenylyl Cyclases/metabolism , Animals , Cannabinoids/metabolism , Cell Respiration/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Electron Transport/drug effects , Energy Metabolism/drug effects , Female , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Male , Memory Disorders/enzymology , Memory Disorders/metabolism , Memory Disorders/pathology , Mice , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/enzymology , Mitochondrial Membranes/metabolism , NADH Dehydrogenase/metabolism , Oxidative Phosphorylation/drug effects , Receptor, Cannabinoid, CB1/deficiency , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Signal Transduction/drug effects , Synaptic Transmission/drug effects
16.
Neurol Sci ; 43(11): 6441-6447, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35953578

ABSTRACT

BACKGROUND: The immunotherapy strategy for autoimmune encephalitis is based on several types and schedules of both first- and second-line drugs. Failing to respond to the latter prompts the use of non-conventional rescue therapies, with higher risks of severe adverse effects. We report on a protocol that entails the use of intravenous immunoglobulin cycles to bridge the 4-month period that the second-line drug rituximab needs to exert its full therapeutic effects. METHODS: Three patients with NMDAR encephalitis who were non-responders to first-line treatments entered the study. The protocol consisted of six monthly cycles of intravenous immunoglobulins (IVIG, 0.4 mg/kg/die for 5 days), starting 1 month after the last rituximab infusion (1000 mg at days 0 and 15). Brain MRI and [18F]-FDG-PET were performed at onset and at six and 18 months after onset. RESULTS: In the three patients, substantial improvements of disability or complete recovery were achieved, without modifications over the 30-to-50-month follow-up. No adverse events nor laboratory test abnormalities were recorded. Imaging findings paralleled the favorable disease courses. Brain [18F]-FDG-PET was more sensitive than MRI in detecting abnormalities. DISCUSSION: Our observations suggest that the herein-described protocol might be used in patients with NMDAR encephalitis at risk for poor prognosis in the mid-term when they need to shift to rituximab. [18F]-FDG-PET confirmed to be a sensitive tool to detect the minimal brain lesions that can underlie isolated cognitive and psychiatric symptoms.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Immunoglobulins, Intravenous , Humans , Immunoglobulins, Intravenous/therapeutic use , Rituximab/therapeutic use , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnostic imaging , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/drug therapy , Fluorodeoxyglucose F18 , Receptors, N-Methyl-D-Aspartate
17.
Neurol Sci ; 43(4): 2531-2536, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34586541

ABSTRACT

BACKGROUND: Sleep disturbances are common non-motor symptoms of Parkinson's Disease (PD). METHODS: The aim of this study was to investigate the polysomnographic correlates of sleep changes, as investigated by the Parkinson's Disease Sleep Scale-2 (PDSS-2), in a cohort of sixty-two consecutive de novo, drug naïve PD patients (71.40 ± 7.84 y/o). RESULTS: PDSS-2 total score showed a direct correlation with stage shifts (p = 0.008). Fragmented sleep showed an inverse correlation with sleep efficiency (p = 0.012). Insomnia symptoms showed an inverse correlation with wake after sleep onset (p = 0.005) and direct correlation with periodic leg movements (p = 0.006) and stage shift indices (p = 0.003). Motor Symptoms showed a direct correlation with Apnoea-Hypopnoea (AHI; p = 0.02) and awakenings indices (p = 0.003). Dream distressing showed a direct correlation with REM without atonia (RWA, p = 0.042) and an inverse correlation with AHI (p = 0.012). Sleep quality showed an inverse correlation with RWA (p = 0.008). CONCLUSION: PDSS-2 features are significantly correlated with polysomnography objective findings, thus further supporting its reliability to investigate sleep disturbances in PD patients.


Subject(s)
Parkinson Disease , Sleep Wake Disorders , Humans , Parkinson Disease/complications , Polysomnography , Reproducibility of Results , Sleep , Sleep Wake Disorders/diagnosis , Sleep Wake Disorders/etiology
18.
Int J Mol Sci ; 23(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35805926

ABSTRACT

SerpinA1 (α1-antitrypsin) is a soluble glycoprotein, the cerebrospinal fluid (CSF) isoforms of which showed disease-specific changes in neurodegenerative disorders that are still unexplored in Alz-heimer's disease (AD). By means of capillary isoelectric focusing immunoassay, we investigated six serpinA1 isoforms in CSF samples of controls (n = 29), AD-MCI (n = 29), AD-dem (n = 26) and Lewy body disease (LBD, n = 59) patients and correlated the findings with CSF AD core biomarkers (Aß42/40 ratio, p-tau, t-tau). Four CSF serpinA1 isoforms were differently expressed in AD patients compared to controls and LBD patients, especially isoforms 2 and 4. AD-specific changes were found since the MCI stage and significantly correlated with decreased Aß42/40 (p < 0.05) and in-creased p-tau and t-tau levels in CSF (p < 0.001). Analysis of serpinA1 isoform provided good di-agnostic accuracy in discriminating AD patients versus controls (AUC = 0.80) and versus LBD patients (AUC = 0.92), with best results in patients in the dementia stage (AUC = 0.97). SerpinA1 isoform expression is altered in AD patients, suggesting a common, albeit disease-specific, in-volvement of serpinA1 in most neurodegenerative disorders.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Neurodegenerative Diseases , alpha 1-Antitrypsin , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Humans , Lewy Body Disease/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Protein Isoforms , alpha 1-Antitrypsin/cerebrospinal fluid , tau Proteins/cerebrospinal fluid
19.
Eur J Nucl Med Mol Imaging ; 48(9): 2834-2845, 2021 08.
Article in English | MEDLINE | ID: mdl-33511424

ABSTRACT

PURPOSE: To investigate brain functional correlates of mild cognitive impairment (MCI) in idiopathic REM sleep behavior disorder (iRBD). METHODS: Thirty-nine consecutive iRBD patients, 17 with (RBD-MCI, 73.6±6.5 years), and 22 without (RBD-NC, 69.6±6.1 years) MCI underwent neuropsychological assessment, 18F-FDG-PET, and 123I-FP-CIT-SPECT as a marker of nigro-striatal dopaminergic function. Forty-two healthy subjects (69.6±8.5 years) were used as control for 18F-FDG-PET analysis. Brain metabolism was compared between the three groups by univariate analysis of variance. Post hoc comparison between RBD-MCI and RBD-NC was performed to investigate the presence of an MCI-related volume of interest (MCI-VOI). Brain functional connectivity was explored by interregional correlation analysis (IRCA), using the whole-brain normalized MCI-VOI uptake as the independent variable. Moreover, the MCI-VOI uptake was correlated with 123I-FP-CIT-SPECT specific-to-non displaceable binding ratios (SBR) and neuropsychological variables. Finally, the MCI-VOI white matter structural connectivity was analyzed by using a MRI-derived human atlas. RESULTS: The MCI-VOI was characterized by a relative hypometabolism involving precuneus and cuneus (height threshold p<0.0001). IRCA (height threshold p<0.0001) revealed a brain functional network involving regions in frontal, temporal, parietal, and occipital lobes, thalamus, caudate, and red nuclei in iRBD patients. In controls, the network was smaller and involved temporal, occipital, cingulate cortex, and cerebellum. Moreover, MCI-VOI metabolism was correlated with verbal memory (p=0.01), executive functions (p=0.0001), and nigro-putaminal SBR (p=0.005). Finally, MCI-VOI was involved in a white matter network including cingulate fasciculus and corpus callosum. CONCLUSION: Our data suggest that cuneus/precuneus is a hub of a large functional network subserving cognitive function in iRBD.


Subject(s)
Cognitive Dysfunction , Sleep, REM , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Humans , Occipital Lobe , Parietal Lobe
20.
Mov Disord ; 36(10): 2293-2302, 2021 10.
Article in English | MEDLINE | ID: mdl-34021923

ABSTRACT

BACKGROUND: Degeneration of the nigrostriatal dopaminergic (DA) and the raphe-thalamic serotonergic (SE) systems is among the earliest changes observed in Parkinson's disease (PD). The consequences of those changes on brain metabolism, especially regarding their impact on the cortex, are poorly understood. OBJECTIVES: Using multi-tracer molecular imaging, we assessed in a cohort of drug-naive PD patients the association between cortical metabolism and DA and SE system deafferentation of either striatum or thalamus, and we explored whether this association was mediated by either striatum or thalamus metabolism. METHODS: We recruited 96 drug-naive PD patients (aged 71.9 ± 7.5 years) who underwent [123 I]ioflupane single-photon emission computed tomography ([123 I]FP-CIT-SPECT) and brain [18 F]fluorodeoxyglucose positron emission tomography ([18 F]FDG-PET). We used a voxel-wise analysis of [18 F]FDG-PET images to correlate regional metabolism with striatal DA and thalamic SE innervation as assessed using [123 I]FP-CIT-SPECT. RESULTS: We found that [123 I]FP-CIT specific to nondisplaceable binding ratio (SBR) and glucose metabolism positively correlated with one another in the deep gray matter (thalamus: P = 0.001, r = 0.541; caudate P = 0.001, r = 0.331; putamen P = 0.001, r = 0.423). We then observed a direct correlation between temporoparietal metabolism and caudate DA innervation, as well as a direct correlation between prefrontal metabolism and thalamus SE innervation. The effect of caudate [123 I]FP-CIT SBR values on temporoparietal metabolism was mediated by caudate metabolic values (percentage mediated: 89%, P-value = 0.008), and the effect of thalamus [123 I]FP-CIT SBR values on prefrontal metabolism was fully mediated by thalamus metabolic values (P < 0.001). CONCLUSIONS: These data suggest that the impact of deep gray matter monoaminergic deafferentation on cortical function is mediated by striatal and thalamic metabolism in drug-naive PD. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Dopamine , Dopamine Plasma Membrane Transport Proteins , Humans , Parkinson Disease/diagnostic imaging , Positron-Emission Tomography , Tomography, Emission-Computed, Single-Photon
SELECTION OF CITATIONS
SEARCH DETAIL