Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Int Immunol ; 36(2): 65-73, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38189591

ABSTRACT

In currently ongoing adoptive T-cell therapies, T cells collected from patients are given back to them after ex vivo activation and expansion. In some cases, T cells are transduced with chimeric antigen receptor (CAR) or T-cell receptor (TCR) genes during the ex vivo culture period in order to endow T cells with the desired antigen specificity. Although such strategies are effective in some types of cancer, there remain issues to be solved: (i) the limited number of cells, (ii) it is time-consuming, (iii) it is costly, and (iv) the quality can be unstable. Points (ii) and (iv) can be solved by preparing allogeneic T cells and cryopreserving them in advance and methods are being developed using healthy donor-derived T cells or pluripotent stem cells as materials. Whereas it is difficult to solve (i) and (iii) in the former case, all the issues can be cleared in the latter case. However, in either case, a new problem arises: rejection by the patient's immune system. Deletion of human leukocyte antigen (HLA) avoids rejection by recipient T cells, but causes rejection by NK cells, which can recognize loss of HLA class I. Various countermeasures have been developed, but no definitive solution is yet available. Therefore, further research and development are necessary.


Subject(s)
Hematopoietic Stem Cell Transplantation , Neoplasms , Humans , Immunotherapy, Adoptive/methods , T-Lymphocytes , Killer Cells, Natural , Receptors, Antigen, T-Cell
2.
Blood ; 140(24): 2611-2625, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36112959

ABSTRACT

Blood cells are thought to have emerged as phagocytes in the common ancestor of animals followed by the appearance of novel blood cell lineages such as thrombocytes, erythrocytes, and lymphocytes, during evolution. However, this speculation is not based on genetic evidence and it is still possible to argue that phagocytes in different species have different origins. It also remains to be clarified how the initial blood cells evolved; whether ancient animals have solely developed de novo programs for phagocytes or they have inherited a key program from ancestral unicellular organisms. Here, we traced the evolutionary history of blood cells, and cross-species comparison of gene expression profiles revealed that phagocytes in various animal species and Capsaspora (C.) owczarzaki, a unicellular organism, are transcriptionally similar to each other. We also found that both phagocytes and C. owczarzaki share a common phagocytic program, and that CEBPα is the sole transcription factor highly expressed in both phagocytes and C. owczarzaki. We further showed that the function of CEBPα to drive phagocyte program in nonphagocytic blood cells has been conserved in tunicate, sponge, and C. owczarzaki. We finally showed that, in murine hematopoiesis, repression of CEBPα to maintain nonphagocytic lineages is commonly achieved by polycomb complexes. These findings indicate that the initial blood cells emerged inheriting a unicellular organism program driven by CEBPα and that the program has also been seamlessly inherited in phagocytes of various animal species throughout evolution.


Subject(s)
Eukaryota , Evolution, Molecular , Animals , Mice , Phylogeny , Eukaryota/genetics , Gene Expression Regulation , Blood Cells
3.
Adv Exp Med Biol ; 1444: 207-217, 2024.
Article in English | MEDLINE | ID: mdl-38467982

ABSTRACT

In the field of cancer immunotherapy, the effectiveness of a method in which patient-derived T cells are genetically modified ex vivo and administered to patients has been demonstrated. However, problems remain with this method, such as (1) time-consuming, (2) costly, and (3) difficult to guarantee the quality. To overcome these barriers, strategies to regenerate T cells using iPSC technology are being pursued by several groups in the last decade. The authors have been developing a method by which specific TCR genes are introduced into iPSCs and T cells are generated from those iPSCs (TCR-iPSC method). At present, our group is preparing this approach for clinical trial, where iPSCs provided from the iPSC project are transduced with WT1 antigen-specific TCR that had been already clinically tested, and killer T cells are generated from such TCR-iPSCs, to be administered to acute myeloid leukemia patients. While the adoptive T cell therapies have been mainly directed to be used in cancer immunotherapy, it is possible to apply these approaches to viral infections. Strategies by other groups to regenerate various types of T cells from iPSCs will also be introduced.


Subject(s)
Induced Pluripotent Stem Cells , Leukemia, Myeloid, Acute , Humans , T-Lymphocytes, Cytotoxic , Leukemia, Myeloid, Acute/metabolism , Receptors, Antigen, T-Cell , Cell- and Tissue-Based Therapy , Immunotherapy, Adoptive
4.
Genes Dev ; 30(22): 2475-2485, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27913604

ABSTRACT

In general, cell fate is determined primarily by transcription factors, followed by epigenetic mechanisms fixing the status. While the importance of transcription factors controlling cell fate has been well characterized, epigenetic regulation of cell fate maintenance remains to be elucidated. Here we provide an obvious fate conversion case, in which the inactivation of polycomb-medicated epigenetic regulation results in conversion of T-lineage progenitors to the B-cell fate. In T-cell-specific Ring1A/B-deficient mice, T-cell development was severely blocked at an immature stage. We found that these developmentally arrested T-cell precursors gave rise to functional B cells upon transfer to immunodeficient mice. We further demonstrated that the arrest was almost completely canceled by additional deletion of Pax5 These results indicate that the maintenance of T-cell fate critically requires epigenetic suppression of the B-lineage gene program.


Subject(s)
B-Lymphocytes/cytology , Cell Transformation, Neoplastic/genetics , Epigenesis, Genetic/genetics , Gene Silencing , Polycomb-Group Proteins/metabolism , T-Lymphocytes/cytology , Animals , Cell Lineage , Gene Deletion , Gene Expression Regulation, Developmental , Immunoglobulin Heavy Chains/genetics , Mice, Inbred C57BL , PAX5 Transcription Factor/genetics , PAX5 Transcription Factor/metabolism , Polycomb Repressive Complex 1/genetics , Promoter Regions, Genetic/genetics , Ubiquitin-Protein Ligases/genetics
5.
Cancer Immunol Immunother ; 72(8): 2585-2596, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37060363

ABSTRACT

PURPOSE: Though programmed cell death-1 (PD-1) inhibitors mainly target tumor-infiltrating lymphocytes (TILs) expressing PD-1, developing T cells in thymus also express PD-1 in their process of maturation. To predict the therapeutic effect of PD-1 inhibitors for thymoma, it is necessary to clarify the proportions of TILs and intratumoral developing T cells. METHODS: The expressions of CD4, CD8, and PD-1 on T cells were analyzed by flow cytometry in 31 thymomas. The amount of T cell receptor excision circles (TRECs), which can be detected in newly formed naïve T cells in the thymus, was evaluated using sorted lymphocytes from thymomas by quantitative PCR. The expressions of granzyme B (GZMB) and lymphocyte activation gene-3 (LAG-3) in PD-1 + CD8 T cells were analyzed by image cytometry using multiplex immunohistochemistry. RESULTS: The PD-1 + rate in both CD4 and CD8 T cells was significantly higher in type AB/B1/B2 than in type A/B3 thymomas. The amounts of TRECs in CD4 and CD8 T cells were significantly higher in type AB/B1/B2 than in type A/B3 thymomas and comparable to normal thymus. PD-1 expression at each stage of T cell development of type AB/B1/B2 thymomas was comparable to that of normal thymus. Both the percentages and cell densities of PD-1 + CD8 T cells expressing GZMB or LAG-3, which are known to contain tumor-reactive T cells, were significantly lower in type AB/B1/B2 thymomas. CONCLUSION: Most PD-1 + T cells in type AB/B1/B2 thymomas are intratumoral developing T cells and are not TILs.


Subject(s)
Thymoma , Thymus Neoplasms , Humans , Thymoma/therapy , Programmed Cell Death 1 Receptor , Lymphocytes, Tumor-Infiltrating/metabolism , Thymus Neoplasms/therapy , Lymphocytes/metabolism
6.
Int Immunol ; 33(12): 827-833, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34661676

ABSTRACT

In currently ongoing adoptive T-cell therapies, T cells collected from the patient are given back to the patient after ex vivo cell activation and expansion. In some cases, T cells are transduced with chimeric antigen receptor (CAR) or T-cell receptor (TCR) genes during the ex vivo culture period. Although such strategies have been shown to be effective in some types of cancer, there remain issues to be solved; these methods (i) are time-consuming, (ii) are costly and (iii) it is difficult to guarantee the quality because the products depend on patient-derived T cells. To address these issues, several groups including ours have developed methods in which cytotoxic cells are mass-produced by using induced pluripotent stem cell (iPSC) technology. For the regeneration of T cells, the basic idea is as follows: iPSCs produced from T cells inherit rearranged TCR genes, and thus all regenerated T cells should express the same TCR. Based on this idea, various types of T cells have been regenerated, including conventional cytotoxic T lymphocytes (CTLs), γδT cells, NKT cells and mucosal-associated invariant T (MAIT) cells. On the other hand, any cytotoxic cells can be used as the base cells into which CAR is introduced, and thus iPSC-derived NK cells have been developed. To apply the iPSC-based cell therapy in an allogeneic setting, the authors' group developed a method in which non-T-cell-derived iPSCs are transduced with exogenous TCR genes (TCR-iPSC method). This approach is being prepared for a clinical trial to be realized in Kyoto University Hospital, in which acute myeloid leukemia patients will be treated by the regenerated WT1 antigen-specific CTLs.


Subject(s)
Antigens/immunology , Induced Pluripotent Stem Cells/immunology , T-Lymphocytes/immunology , Animals , Humans
7.
Nature ; 534(7607): 402-6, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27281199

ABSTRACT

Successful treatment of many patients with advanced cancer using antibodies against programmed cell death 1 (PD-1; also known as PDCD1) and its ligand (PD-L1; also known as CD274) has highlighted the critical importance of PD-1/PD-L1-mediated immune escape in cancer development. However, the genetic basis for the immune escape has not been fully elucidated, with the exception of elevated PD-L1 expression by gene amplification and utilization of an ectopic promoter by translocation, as reported in Hodgkin and other B-cell lymphomas, as well as stomach adenocarcinoma. Here we show a unique genetic mechanism of immune escape caused by structural variations (SVs) commonly disrupting the 3' region of the PD-L1 gene. Widely affecting multiple common human cancer types, including adult T-cell leukaemia/lymphoma (27%), diffuse large B-cell lymphoma (8%), and stomach adenocarcinoma (2%), these SVs invariably lead to a marked elevation of aberrant PD-L1 transcripts that are stabilized by truncation of the 3'-untranslated region (UTR). Disruption of the Pd-l1 3'-UTR in mice enables immune evasion of EG7-OVA tumour cells with elevated Pd-l1 expression in vivo, which is effectively inhibited by Pd-1/Pd-l1 blockade, supporting the role of relevant SVs in clonal selection through immune evasion. Our findings not only unmask a novel regulatory mechanism of PD-L1 expression, but also suggest that PD-L1 3'-UTR disruption could serve as a genetic marker to identify cancers that actively evade anti-tumour immunity through PD-L1 overexpression.


Subject(s)
3' Untranslated Regions/genetics , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Programmed Cell Death 1 Receptor/genetics , Tumor Escape/genetics , Up-Regulation , Adenocarcinoma/genetics , Animals , Antibodies/pharmacology , Antibodies/therapeutic use , CRISPR-Cas Systems , Cell Line, Tumor , Clonal Selection, Antigen-Mediated , Female , Genetic Markers/genetics , Humans , Leukemia-Lymphoma, Adult T-Cell/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Mice , Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/biosynthesis , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stomach Neoplasms/genetics
8.
Eur J Haematol ; 106(3): 327-339, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33197296

ABSTRACT

OBJECTIVES: CCAAT/enhancer-binding protein α (CEBPA) is an essential transcription factor for myeloid differentiation. Not only mutation of the CEBPA gene, but also promoter methylation, which results in silencing of CEBPA, contributes to the pathogenesis of acute myeloid leukemia (AML). We sought for another differentially methylated region (DMR) that associates with the CEBPA silencing and disease phenotype. METHODS: Using databases, we identified a conserved DMR in the CEBPA 3'-untranslated region (UTR). RESULTS: Methylation-specific PCR analysis of 231 AML cases showed that hypermethylation of the 3'-UTR was associated with AML that had a myeloid/NK/T-cell phenotype and downregulated CEBPA. Most of these cases were of an immature phenotype with CD7/CD56 positivity. These cases were significantly associated with lower hemoglobin levels than the others. Furthermore, we discovered that the CEBPA 3'-UTR DMR can enhance transcription from the CEBPA native promoter. In vitro experiments identified IKZF1-binding sites in the 3'-UTR that are responsible for this increased transcription of CEBPA. CONCLUSIONS: These results indicate that the CEBPA 3'-UTR DMR is a novel regulatory element of CEBPA related to myeloid/NK/T-cell lineage leukemogenesis. Transcriptional regulation of CEBPA by IKZF1 may provide a clue for understanding the fate determination of myeloid vs. NK/T-lymphoid progenitors.


Subject(s)
3' Untranslated Regions , CCAAT-Enhancer-Binding Proteins/genetics , Genetic Predisposition to Disease , Leukemia, Biphenotypic, Acute/diagnosis , Leukemia, Biphenotypic, Acute/genetics , Regulatory Sequences, Nucleic Acid , Binding Sites , Biomarkers , DNA Methylation , Epigenesis, Genetic , Genetic Association Studies , Humans , Immunophenotyping , Leukemia, Biphenotypic, Acute/metabolism , Myeloid Cells/metabolism , Myeloid Cells/pathology , Natural Killer T-Cells/metabolism , Natural Killer T-Cells/pathology , Phenotype , Protein Binding
9.
Rinsho Ketsueki ; 62(5): 512-520, 2021.
Article in Japanese | MEDLINE | ID: mdl-34248129

ABSTRACT

In human hematopoiesis, cells of various lineages exist, such as neutrophils, lymphocytes, and erythrocytes. Unveiling the pathway from stem cells to the various lineages helps us understand the blood disorders and develop therapies for them. We have studied the developmental pathway of hematopoiesis for decades and found that myeloid potential is retained just before the differentiation into each lineage of the various lineage progenitors. This uniqueness of myeloid cells might reflect the character of mixed-phenotype leukemia and provide a very important clue in determining the evolutional history of blood cells. Recent studies concerning the differentiation pathways of megakaryocytes and granulocytes as well as the findings on the hemocytes of invertebrates have strongly supported the concept of the uniqueness of myeloid cells and enabled us to propose insights into the evolutional history of blood. In this paper, we discuss the origin of blood cells in the context of developmental pathways during ontogeny and phylogeny.


Subject(s)
Hematopoiesis , Myeloid Cells , Cell Differentiation , Cell Lineage , Granulocytes , Humans
10.
Nat Immunol ; 9(10): 1113-21, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18776907

ABSTRACT

CD4 and the transcription factor ThPOK are essential for the differentiation of major histocompatibility complex class II-restricted thymocytes into the helper T cell lineage; their genes (Cd4 and Zbtb7b (called 'ThPOK' here)) are repressed by transcriptional silencer elements in cytotoxic T cells. The molecular mechanisms regulating expression of these genes during helper T cell lineage differentiation remain unknown. Here we showed that inefficient upregulation of ThPOK, induced by removal of the proximal enhancer from the ThPOK locus, resulted in the transdifferentiation of helper lineage-specified cells into the cytotoxic T cell lineage. Furthermore, direct antagonism by ThPOK of the Cd4 and ThPOK silencers generated two regulatory loops that initially inhibited Cd4 downregulation and later stabilized ThPOK expression. Our results show how an initial lineage-specification signal can be amplified and stabilized during the lineage-commitment process.


Subject(s)
Cell Transdifferentiation/immunology , Gene Expression Regulation/immunology , Silencer Elements, Transcriptional/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Helper-Inducer/cytology , Transcription Factors/genetics , Animals , CD4 Antigens/immunology , CD4 Antigens/metabolism , CD8 Antigens/immunology , CD8 Antigens/metabolism , Cell Differentiation/immunology , Cell Lineage/immunology , Flow Cytometry , Mice , Mice, Transgenic , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Thymus Gland/cytology , Thymus Gland/immunology , Transfection
11.
Gan To Kagaku Ryoho ; 47(10): 1415-1420, 2020 Oct.
Article in Japanese | MEDLINE | ID: mdl-33130732

ABSTRACT

Current adoptive T cell therapies conducted in an autologous setting are costly, time consuming, and depend on the quality of the patient's T cells. To address these issues, we developed a strategy in which T cells are regenerated from induced pluripotent stem cells (iPSCs) that were originally derived from T cells, and succeeded in regenerating cytotoxic T lymphocytes (CTLs) specific for the WT1 antigen, which exhibited therapeutic efficacy in a xenograft model of leukemia. We recently have extended our strategy to solid tumors. To make our method more generally applicable, we developed an allogeneic approach by transducing HLA-haplotype homozygous iPSCs with WT1-specific TCR α/ß genes that had been tested clinically. The regenerated CTLs antigen-specifically suppressed tumor growth in a patient-derived xenograft model of renal cell carcinoma, demonstrating the feasibility of our strategy against solid tumors.


Subject(s)
Induced Pluripotent Stem Cells , Leukemia , Neoplasms , Humans , T-Lymphocytes, Cytotoxic
12.
Dev Biol ; 415(1): 33-45, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27178667

ABSTRACT

Hoxa3(null) mice have severe defects in the development of pharyngeal organs including athymia, aparathyroidism, thyroid hypoplasia, and ultimobranchial body persistence, in addition to defects of the throat cartilages and cranial nerves. Some of the structures altered in the Hoxa3(null) mutant embryos are anterior to the described Hoxa3 gene expression boundary: the thyroid, soft palate, and lesser hyoid horn. All of these structures develop over time and through the interactions of multiple cell types. To investigate the specific cellular targets for HOXA3 function in these structures across developmental time, we performed a comprehensive analysis of the temporal and tissue-specific requirements for Hoxa3, including a lineage analysis using Hoxa3(Cre). The combination of these approaches showed that HOXA3 functions in both a cell autonomous and non-cell autonomous manner during development of the 3rd and 4th arch derivatives, and functions in a neural crest cell (NCC)-specific, non-cell autonomous manner for structures that were Hoxa3-negative by lineage tracing. Our data indicate that HOXA3 is required for tissue organization and organ differentiation in endodermal cells (in the tracheal epithelium, thymus, and parathyroid), and contributes to organ migration and morphogenesis in NCCs. These data provide a detailed picture of where and when HOXA3 acts to promote the development of the diverse structures that are altered in the Hoxa3(null) mutant. Data presented here, combined with our previous studies, indicate that the regionally restricted defects in Hoxa3 mutants do not reflect a role in positional identity (establishment of cell or tissue fate), but instead indicate a wider variety of functions including controlling distinct genetic programs for differentiation and morphogenesis in different cell types during development.


Subject(s)
Embryonic Development , Gene Expression Regulation, Developmental , Homeodomain Proteins/physiology , Neck/embryology , Neural Crest/cytology , Animals , Cell Lineage , Endoderm/embryology , Gene Deletion , Homeodomain Proteins/genetics , Mice , Mice, Inbred C57BL , Organ Specificity , Organogenesis , Palate/embryology , Parathyroid Glands/embryology , Pharynx/embryology , Thymus Gland/embryology , Thyroid Gland/embryology , Trachea/embryology , Ultimobranchial Body/embryology
13.
Development ; 141(19): 3697-708, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25249461

ABSTRACT

Hoxa3 was the first Hox gene to be mutated by gene targeting in mice and is required for the development of multiple endoderm and neural crest cell (NCC)-derived structures in the pharyngeal region. Previous studies have shown that the Hoxa3 null mutant lacks third pharyngeal pouch derivatives, the thymus and parathyroids by E18.5, and organ-specific markers are absent or downregulated during initial organogenesis. Our current analysis of the Hoxa3 null mutant shows that organ-specific domains did undergo initial patterning, but the location and timing of key regional markers within the pouch, including Tbx1, Bmp4 and Fgf8, were altered. Expression of the parathyroid marker Gcm2 was initiated but was quickly downregulated and differentiation failed; by contrast, thymus markers were delayed but achieved normal levels, concurrent with complete loss through apoptosis. To determine the cell type-specific roles of Hoxa3 in third pharyngeal pouch development, we analyzed tissue-specific mutants using endoderm and/or NCC-specific Cre drivers. Simultaneous deletion with both drivers resulted in athymia at E18.5, similar to the null. By contrast, the individual tissue-specific Hoxa3 deletions resulted in small, ectopic thymi, although each had a unique phenotype. Hoxa3 was primarily required in NCCs for morphogenesis. In endoderm, Hoxa3 temporally regulated initiation of the thymus program and was required in a cell-autonomous manner for parathyroid differentiation. Furthermore, Hoxa3 was required for survival of third pharyngeal pouch-derived organs, but expression in either tissue was sufficient for this function. These data show that Hoxa3 has multiple complex and tissue-specific functions during patterning, differentiation and morphogenesis of the thymus and parathyroids.


Subject(s)
Biomarkers/metabolism , Cell Differentiation/physiology , Gene Expression Regulation, Developmental/physiology , Homeodomain Proteins/metabolism , Morphogenesis/physiology , Parathyroid Glands/embryology , Thymus Gland/embryology , Animals , Apoptosis/physiology , Branchial Region/metabolism , DNA Primers/genetics , Galactosides , Gene Expression Regulation, Developmental/genetics , Genotype , Histological Techniques , Immunohistochemistry , In Situ Hybridization , Indoles , Mice , Models, Anatomic , Morphogenesis/genetics , Statistics, Nonparametric
14.
Rinsho Ketsueki ; 57(8): 1066-73, 2016 08.
Article in Japanese | MEDLINE | ID: mdl-27599425

ABSTRACT

Tumor immunotherapy, especially tumor antigen specific T cell therapy, is currently attracting attention. However, a critical issue still awaits resolution; it is difficult to efficiently expand tumor antigen-specific T cells. To solve this problem, we are now utilizing iPS cell technology. When iPS cells are established from tumor antigen specific T cells, T cells regenerated from these iPS cells are expected to express the same TCRs as the original T cells. In line with this concept, we succeeded in regenerating tumor antigen specific cytotoxic T cells. The regenerated T cells exhibited TCR specific killing activity comparable to that of the original cells, and were able to kill leukemia cells in an antigen-specific manner. We are currently endeavoring to apply this method clinically. In the future, we intend to establish an allogeneic transfusion system, in which various tumor antigen specific T-iPS cells from a wide range of HLA haplotype homozygous donors will be lined up as a "T-iPS cell bank", with the aim of making off-the-shelf tumor immunotherapy a reality.


Subject(s)
Antigens, Neoplasm/immunology , Induced Pluripotent Stem Cells/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Haplotypes , Histocompatibility Antigens Class I/immunology , Humans , Receptors, Antigen, T-Cell/immunology
15.
Blood ; 120(4): 789-99, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22709691

ABSTRACT

Immune defect in ataxia telangiectasia patients has been attributed to either the failure of V(D)J recombination or class-switch recombination, and the chromosomal translocation in their lymphoma often involves the TCR gene. The ATM-deficient mouse exhibits fewer CD4 and CD8 single-positive T cells because of a failure to develop from the CD4(+)CD8(+) double-positive phase to the single-positive phase. Although the occurrence of chromosome 14 translocations involving TCR-δ gene in ATM-deficient lymphomas suggests that these are early events in T-cell development, a thorough analysis focusing on early T-cell development has never been performed. Here we demonstrate that ATM-deficient mouse thymocytes are perturbed in passing through the ß- or γδ-selection checkpoint, leading in part to the developmental failure of T cells. Detailed karyotype analysis using the in vitro thymocyte development system revealed that RAG-mediated TCR-α/δ locus breaks occur and are left unrepaired during the troublesome ß- or γδ-selection checkpoints. By getting through these selection checkpoints, some of the clones with random or nonrandom chromosomal translocations involving TCR-α/δ locus are selected and accumulate. Thus, our study visualized the first step of multistep evolutions toward lymphomagenesis in ATM-deficient thymocytes associated with T-lymphopenia and immunodeficiency.


Subject(s)
Cell Cycle Proteins/physiology , DNA-Binding Proteins/physiology , Gene Rearrangement, T-Lymphocyte , Protein Serine-Threonine Kinases/physiology , Thymocytes/immunology , Thymocytes/pathology , Translocation, Genetic , Tumor Suppressor Proteins/physiology , V(D)J Recombination , Animals , Apoptosis , Ataxia Telangiectasia Mutated Proteins , Blotting, Western , Bone Marrow Transplantation , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Cycle , Cell Differentiation , Cell Proliferation , Female , Flow Cytometry , Genomic Instability , In Situ Hybridization, Fluorescence , Karyotyping , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Thymocytes/metabolism
16.
Nature ; 452(7188): 768-72, 2008 Apr 10.
Article in English | MEDLINE | ID: mdl-18401412

ABSTRACT

During haematopoiesis, pluripotent haematopoietic stem cells are sequentially restricted to give rise to a variety of lineage-committed progenitors. The classical model of haematopoiesis postulates that, in the first step of differentiation, the stem cell generates common myelo-erythroid progenitors and common lymphoid progenitors (CLPs). However, our previous studies in fetal mice showed that myeloid potential persists even as the lineage branches segregate towards T and B cells. We therefore proposed the 'myeloid-based' model of haematopoiesis, in which the stem cell initially generates common myelo-erythroid progenitors and common myelo-lymphoid progenitors. T-cell and B-cell progenitors subsequently arise from common myelo-lymphoid progenitors through myeloid-T and myeloid-B stages, respectively. However, it has been unclear whether this myeloid-based model is also valid for adult haematopoiesis. Here we provide clonal evidence that the early cell populations in the adult thymus contain progenitors that have lost the potential to generate B cells but retain substantial macrophage potential as well as T-cell, natural killer (NK)-cell and dendritic-cell potential. We also show that such T-cell progenitors can give rise to macrophages in the thymic environment in vivo. Our findings argue against the classical dichotomy model in which T cells are derived from CLPs; instead, they support the validity of the myeloid-based model for both adult and fetal haematopoiesis.


Subject(s)
Aging/physiology , Cell Lineage , Hematopoiesis , Hematopoietic Stem Cells/cytology , Myeloid Cells/cytology , T-Lymphocytes/cytology , Animals , B-Lymphocytes/cytology , Cells, Cultured , Coculture Techniques , Dendritic Cells/cytology , Fetus , Hematopoietic Stem Cells/metabolism , Killer Cells, Natural/cytology , Macrophages/cytology , Macrophages/metabolism , Mice , Models, Biological , Myeloid Cells/metabolism , Stromal Cells/cytology , T-Lymphocytes/metabolism , Thymus Gland/cytology , Thymus Gland/embryology , Thymus Gland/transplantation
18.
Immunol Rev ; 238(1): 23-36, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20969582

ABSTRACT

Most hematology and immunology textbooks describe that the first branch point from the hematopoietic stem cells (HSCs) produces two progenitors, one for myelo-erythroid cells and the other for lymphoid cells including T and B cells. This model is based on the concept that the blood cell family can be subdivided into two major lineages, a myelo-erythroid lineage and a lymphoid lineage. Several alternative models have been proposed during the last three decades. We proposed the myeloid-based model in 2001, in which myeloid potential is retained in an early stage of branches toward erythroid, T-, and B-cell lineages. In this review, we focus on the point that cell differentiation models have two different facets: as a map of developmental potential and a cell fate map. These two are expressed in other words as a map for lineage restriction and a map for physiological production routes. We argue that a map of potential is first and foremost essential for the study of molecular mechanisms of lineage commitment, which is the least clarified aspect of cell differentiation. The validity of the myeloid-based model of hematopoiesis will be discussed in reference to these two issues, developmental potential and cell fate.


Subject(s)
Cell Lineage/immunology , Hematopoiesis/immunology , Models, Immunological , Myeloid Progenitor Cells/immunology , Thymus Gland/embryology , Animals , Antigens, Differentiation/immunology , Humans , T-Lymphocytes/immunology , Thymus Gland/immunology
19.
Transplant Cell Ther ; 30(4): 419.e1-419.e12, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38266963

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) is a rare, life-threatening disorder characterized by systemic hyperinflammation. Although allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the only potentially curative treatment for primary and relapsed/refractory HLH, the optimal strategy has not been established. We retrospectively analyzed 56 adult patients (≥18 years) with primary and secondary HLH (mainly consisting of Epstein-Barr virus-associated HLH) who underwent allo-HSCT using the registry database of the Japanese Society for Transplantation and Cellular Therapy, including 26 patients who underwent cord blood transplantation (CBT). One-fourth of patients received myeloablative conditioning (MAC), mainly consisting of total body irradiation-based regimens. The 3-year overall survival (OS) was 40.6%, while the 3-year cumulative incidences of relapse and non-relapse mortality (NRM) were 19.8% and 39.6%, respectively. In univariable analysis, age at allo-HSCT (the 3-year OS: 27.5% for ≥ 25 years old vs 58.0% for < 25 years old, P = .025), conditioning intensity (7.1% for MAC vs 51.8% for reduced-intensity conditioning (RIC), P = .002), and donor source (26.0% for CBT vs 52.9% for bone marrow or peripheral blood stem cell transplantation (BMT/PBSCT), P = .030) were associated with significantly inferior OS. In multivariable analysis, older age at allo-HSCT (≥ 25 years old) (Hazard ratio [HR], 2.37; 95% CI, 1.01 to 5.58; P = .048), MAC (HR, 2.45; 95% CI, 1.09 to 5.53; P = .031), and CBT (HR, 2.21; 95% CI, 1.04 to 4.71; P = .040) were independently associated with worse OS. In addition, only conditioning intensity predicted higher NRM (the 3-year NRM: 78.6% for MAC vs 26.6% for RIC), while no factors were associated with the relapse rate. This study includes the largest number of adult HLH patients undergoing CBT. Although the use of CBT is acceptable, BMT/PBSCT are more favorable strategies in allo-HSCT in adult HLH. Regarding conditioning intensity, RIC regimens are more beneficial in this setting.


Subject(s)
Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Lymphohistiocytosis, Hemophagocytic , Adult , Humans , Child, Preschool , Lymphohistiocytosis, Hemophagocytic/therapy , Lymphohistiocytosis, Hemophagocytic/etiology , Retrospective Studies , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human , Hematopoietic Stem Cell Transplantation/adverse effects , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL