Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Reprod Dev ; 70(3): 169-176, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38644218

ABSTRACT

Metabolic stress and subsequent hepatic dysfunction in high-producing dairy cows are associated with inflammatory diseases and declining fertility. Lipopolysaccharide (LPS)-binding protein (LBP) is produced by hepatocytes and controls the immune response, suggesting that it is involved in the pathophysiology of inflammation-related attenuation of reproductive functions during metabolic stress. This study investigated the effect of LBP on the inflammatory status, oocyte quality, and steroidogenesis in the follicular microenvironment of dairy cows. Using bovine ovaries obtained from a slaughterhouse, follicular fluid and granulosa cells were collected from large follicles to evaluate the follicular status of metabolism, inflammation, and steroidogenesis. Cumulus-oocyte complexes were aspirated from small follicles and subjected to in vitro embryo production. The results showed that follicular fluid LBP concentrations were significantly higher in cows with fatty livers and hepatitis than in those with healthy livers. Follicular fluid LBP and LPS concentrations were negatively correlated, whereas LPS concentration showed a positive correlation with the concentrations of non-esterified fatty acids (NEFA) and ß-hydroxybutyric acid in follicular fluid. The blastulation rate of oocytes after in vitro fertilization was impaired in cows in which coexisting large follicles had high NEFA levels. Follicular fluid NEFA concentration was negatively correlated with granulosa cell expression of the estradiol (E2) synthesis-related gene (CYP19A1). Follicular fluid LBP concentration was positively correlated with follicular fluid E2 concentration and granulosa cell CYP19A1 expression. In conclusion, follicular fluid LBP may be associated with favorable conditions in the follicular microenvironment, including low LPS levels and high E2 production by granulosa cells.


Subject(s)
Acute-Phase Proteins , Carrier Proteins , Follicular Fluid , Granulosa Cells , Inflammation , Membrane Glycoproteins , Ovarian Follicle , Animals , Female , Follicular Fluid/metabolism , Cattle , Granulosa Cells/metabolism , Acute-Phase Proteins/metabolism , Carrier Proteins/metabolism , Ovarian Follicle/metabolism , Membrane Glycoproteins/metabolism , Inflammation/metabolism , Inflammation/veterinary , Lipopolysaccharides/pharmacology , Oocytes/metabolism , Estradiol/metabolism , Fertilization in Vitro/veterinary , Fatty Acids, Nonesterified/metabolism , Cattle Diseases/metabolism , Aromatase/metabolism
2.
J Reprod Dev ; 70(2): 55-64, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38246612

ABSTRACT

The mammalian X chromosome exhibits enrichment in genes associated with germ cell development. Previously, we generated a rat model of Becker muscular dystrophy (BMD) characterized by an in-frame mutation in the dystrophin gene, situated on the X chromosome and responsible for encoding a protein crucial for muscle integrity. Male BMD rats are infertile owing to the absence of normal spermatids in the epididymis. Within the seminiferous tubules of BMD rats, elongated spermatids displayed abnormal morphology. To elucidate the cause of infertility, we identified a putative gene containing an open reading frame situated in the intronic region between exons 6 and 7 of the dystrophin gene, specifically deleted in male BMD rats. This identified gene, along with its encoded protein, exhibited specific detection within the testes, exclusively localized in round to elongated spermatids during spermiogenesis. Consequently, we designated the encoded protein as dystrophin-locus-derived testis-specific protein (DTSP). Given the absence of DTSP in the testes of BMD rats, we hypothesized that the loss of DTSP contributes to the infertility observed in male BMD rats.


Subject(s)
Infertility , Succinimides , Testis , Male , Rats , Animals , Testis/metabolism , Dystrophin/genetics , Dystrophin/metabolism , Spermatogenesis/genetics , Proteins/metabolism , Infertility/metabolism , Mammals
3.
Reprod Domest Anim ; 58(1): 129-140, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36178063

ABSTRACT

The aims of this study were to analyse the protein phosphatase 1 regulatory subunit 11 (PPP1R11) expression and cellular localization in yak follicles and investigate its effects on cell proliferation, apoptosis and oestrogen secretion in granulosa cells (GCs). Ten healthy and non-pregnant female yaks (4-year-old) were used as experimental animals. The mRNA relative expression level of PPP1R11 in GCs from small (<3.0 mm), medium (3.0-5.9 mm) and large (6.0-9.0 mm) follicles was detected by RT-qPCR, and the cellular localization of PPP1R11 protein was detected by immunohistochemistry staining (IHC). After isolation, culture and identification of yak GCs in vitro, si-PPP1R11 and si-NC (negative control) were transfected into GCs. RT-qPCR and immunofluorescence staining were used to evaluate the interference efficiency, and ELISA was performed to detect oestrogen concentration. Then, EdU staining and TUNEL staining were conducted to analyse cell proliferation and apoptosis. In addition, the oestrogen synthesis, proliferation- and apoptosis-related genes were detected by RT-qPCR after knockdown PPP1R11. The results showed that PPP1R11 is mainly located in ovarian GCs, and the expression levels of PPP1R11 in GCs from large follicles were significantly higher than that from medium and small follicles. Transfection of si-PPP1R11 into GCs could significantly inhibit the expression of PPP1R11. Interestingly, the oestrogen secretion ability and the expression level of oestrogen pathway-related genes (STAR, CYP11A1, CYP19A1 and HSD17B1) were also significantly downregulated. Moreover, the proportion of positive cells was decreased, and cellular proliferation-related genes (PCNA, CCNB1 and CDC25A) were significantly downregulated after knockdown PPP1R11. However, the proportion of apoptotic cells was increased, and apoptosis-related genes (BAX, CASP3 and P53) were significantly upregulated. Taken together, this study was the first revealed the expression and cellular localization of PPP1R11 in yak follicles. Interference PPP1R11 could reduce oestrogen secretion, inhibit proliferation and promote apoptosis in GCs, which provided a basis for further studies on the regulatory mechanism of PPP1R11 in follicle development.


Subject(s)
Granulosa Cells , Ovary , Female , Cattle , Animals , Protein Phosphatase 1/metabolism , Granulosa Cells/metabolism , Ovary/metabolism , RNA, Messenger/metabolism , Apoptosis/physiology , Estrogens/metabolism
4.
Reproduction ; 164(5): 207-219, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36099331

ABSTRACT

In brief: Uterine inflammatory diseases are a major cause of infertility in humans and domestic animals. The current findings that intrauterine lipopolysaccharide is absorbed in systemic circulation and attenuates ovarian cyclic activities could provide a basis for developing novel treatments to improve fertility. Abstract: Uterine inflammatory diseases are a major cause of infertility in humans and domestic animals. Circulating lipopolysaccharide (LPS), a bacterial endotoxin causing uterine inflammation, reportedly downregulates the hypothalamic-pituitary-gonadal axis to mediate ovarian dysfunction. In contrast, the mechanism whereby intrauterine LPS affects ovarian function has not been fully clarified. This study aimed to elucidate whether uterine exposure to LPS downregulates hypothalamic kisspeptin gene (Kiss1) expression, gonadotropin release, and ovarian function. Uterine inflammation was induced by intrauterine LPS administration to ovary-intact and ovariectomized female rats. As a result, plasma LPS concentrations were substantially higher in control rats until 48 h post injection, and the estrous cyclicity was disrupted with a prolonged diestrous phase. Three days post injection, the number of Graafian follicles and plasma estradiol concentration were reduced in LPS-treated rats, while numbers of Kiss1-expressing cells in the anteroventral periventricular nucleus and arcuate nucleus (ARC) were comparable in ovary-intact rats. Four days post injection, ovulation rate and plasma progesterone levels reduced significantly while gene expression of interleukin1ß and tumor necrosis factor α was upregulated in the ovaries of LPS-treated rats that failed to ovulate. Furthermore, the number of Kiss1-expressing cells in the ARC and pulsatile luteinizing hormone (LH) release were significantly reduced in ovariectomized rats 24 h post injection. In conclusion, these results indicate that intrauterine LPS is absorbed in systemic circulation and attenuates ovarian function. This detrimental effect might be caused, at least partly, by the inhibition of ARC Kiss1 expression and LH pulses along with an induction of ovarian inflammatory response.


Subject(s)
Infertility , Kisspeptins , Animals , Arcuate Nucleus of Hypothalamus , Estradiol/pharmacology , Female , Infertility/metabolism , Inflammation/metabolism , Kisspeptins/metabolism , Lipopolysaccharides/toxicity , Luteinizing Hormone , Progesterone/metabolism , Rats , Tumor Necrosis Factor-alpha/metabolism
5.
Endocr J ; 69(7): 797-807, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35125377

ABSTRACT

Prenatal and postnatal biphasic increases in plasma testosterone levels derived from perinatal testes are considered critical for defeminizing/masculinizing the brain mechanism that regulates sexual behavior in male rats. Hypothalamic kisspeptin neurons are indispensable for stimulating GnRH and downstream gonadotropin, as well as the consequent testicular testosterone production/release in adult male rats. However, it is unclear whether kisspeptin is responsible for the increase in plasma testosterone levels in perinatal male rats. The present study aimed to investigate the role of Kiss1/kisspeptin in generating perinatal plasma LH and the consequent testosterone increase in male rats by comparing the plasma testosterone and LH profiles of wild-type (Kiss1+/+) and Kiss1 knockout (Kiss1-/-) male rats. A biphasic pattern of plasma testosterone levels, with peaks in the prenatal and postnatal periods, was found in both Kiss1+/+ and Kiss1-/- male rats. Postnatal plasma testosterone and LH levels were significantly lower in Kiss1-/- male rats than in Kiss1+/+ male rats, whereas the levels in the prenatal embryonic period were comparable between the genotypes. Exogenous kisspeptin challenge significantly increased plasma testosterone and LH levels and the number of c-Fos-immunoreactive GnRH neurons in neonatal Kiss1-/- and Kiss1+/+ male rats. Kiss1 and Gpr54 (kisspeptin receptor gene) were found in the testes of neonatal rats, but kisspeptin treatment failed to stimulate testosterone release in the cultured testes of both genotypes. These findings suggest that postnatal, but not prenatal, testosterone increase in male rats is mainly induced by central kisspeptin-dependent stimulation of GnRH and consequent LH release.


Subject(s)
Kisspeptins , Testosterone , Animals , Female , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Kisspeptins/pharmacology , Luteinizing Hormone , Male , Pregnancy , Rats
6.
Reproduction ; 161(5): 593-602, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33784244

ABSTRACT

The epididymis is an androgen-responsive organ, whose structure and functions are modulated by the coordination between androgen and epididymal cues. Highly regulated molecular interaction within the epididymis is required to support viable sperm development necessary for subsequent fertilization. In the present study, we extended our earlier findings on a promising epididymal protein, quiescin sulfhydryl oxidase 2 (QSOX2), and demonstrated a positive correlation between testosterone and QSOX2 protein synthesis through the use of loss- and restore-of-function animal models. Moreover, based on transcriptomic analyses and 2D culture system, we determined that an additional polarized effect of glutamate is indispensable for the regulatory action of testosterone on QSOX2 synthesis. In conclusion, we propose noncanonical testosterone signaling supports epididymal QSOX2 protein synthesis, providing a novel perspective on the regulation of sperm maturation within the epididymis.


Subject(s)
Epididymis/metabolism , Gene Expression Regulation/drug effects , Glutamic Acid/metabolism , Glutamine/metabolism , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Sperm Maturation , Testosterone/pharmacology , Amino Acid Transport System X-AG/metabolism , Animals , Carrier Proteins/metabolism , Epididymis/cytology , Epididymis/drug effects , Male , Mice , Mice, Inbred ICR , Oxidoreductases Acting on Sulfur Group Donors/genetics
7.
J Reprod Dev ; 67(1): 15-23, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33100283

ABSTRACT

Kisspeptin neurons located in the hypothalamic preoptic area (POA) are suggested to be responsible for the induction of the gonadotropin-releasing hormone (GnRH) surge and the following luteinizing hormone (LH) surge to regulate female mammals' ovulation. Accumulating evidence demonstrates that the preovulatory level of estrogen activates the POA kisspeptin neurons (estrogen positive feedback), which in turn induces a GnRH/LH surge. This study aimed to derive a cell line from goat POA kisspeptin neurons as an in vitro model to analyze the estrogen positive feedback mechanism in ruminants. Neuron-derived cell clones obtained by the immortalization of POA tissue from a female Shiba goat fetus were analyzed for the expression of kisspeptin (KISS1) and estrogen receptor α (ESR1) genes using quantitative real-time reverse transcription-polymerase chain reaction and three cell clones were selected as POA kisspeptin neuron cell line candidates. One cell line (GP64) out of the three clones showed significant increase in the KISS1 level by incubation with estradiol for 24 h, indicating that the GP64 cells mimic endogenous goat POA kisspeptin neurons. The GP64 cells showed immunoreactivities for kisspeptin and estrogen receptor α and retained a stable growth rate throughout three passages. Further, intracellular calcium levels in the GP64 cells were increased by the KCl challenge, indicating their neurosecretory ability. In conclusion, we generated a new KISS1-expressing cell line derived from goat POA. The current GP64 cell line could be a useful model to elucidate the estrogen positive feedback mechanism responsible for the GnRH/LH surge generation in ruminants.


Subject(s)
Estradiol/pharmacology , Kisspeptins/genetics , Preoptic Area/cytology , Animals , Cell Line, Transformed , Female , Fetus/cytology , Gene Expression Regulation, Developmental/drug effects , Goats/embryology , Kisspeptins/metabolism , Preoptic Area/embryology , Up-Regulation/drug effects , Up-Regulation/genetics
8.
Endocr J ; 68(8): 933-941, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-33867395

ABSTRACT

The brain mechanism responsible for the pulsatile secretion of gonadotropin-releasing hormone (GnRH) is important for maintaining reproductive function in mammals. Accumulating evidence suggests that kisspeptin/neurokinin B/dynorphin A (KNDy) neurons in the hypothalamic arcuate nucleus (ARC) play a critical role in the regulation of pulsatile GnRH and subsequent gonadotropin secretion. Dynorphin A (Dyn) and its receptor, kappa-opioid receptor (KOR, encoded by Oprk1), have been shown to be involved in the suppression of pulsatile GnRH/luteinizing hormone (LH) release. On the other hand, it is still unclear whether the inhibitory Dyn signaling affects KNDy neurons or KOR-expressing non-KNDy cells in the ARC or other brain regions. We therefore aimed to clarify the role of ARC-specific Dyn-KOR signaling in the regulation of pulsatile GnRH/LH release by the ARC specific cell deletion of KOR-expressing cells using Dyn-conjugated-saporin (Dyn-SAP). Estrogen-primed ovariectomized female rats were administered Dyn-SAP to the ARC. In situ hybridization of Oprk1 showed that ARC Dyn-SAP administration significantly decreased the number of Oprk1-expressing cells in the ARC, but not in the ventromedial hypothalamic nucleus and paraventricular nucleus. The frequency of LH pulses significantly increased in animals bearing the ARC Dyn-SAP administration. The number of Kiss1-expressing cells in the ARC was not affected by ARC Dyn-SAP treatment. Dyn-KOR signaling within the ARC seems to mediate the suppression of the frequency of pulsatile GnRH/LH release, and ARC non-KNDy KOR neurons may be involved in the mechanism modulating GnRH/LH pulse generation.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Luteinizing Hormone/blood , Neurons/metabolism , Receptors, Opioid, kappa/metabolism , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Dynorphins/administration & dosage , Female , Neurons/drug effects , Rats , Rats, Wistar , Saponins/administration & dosage
9.
J Reprod Dev ; 66(4): 369-375, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32336702

ABSTRACT

Accumulating evidence suggests that kisspeptin-GPR54 signaling is indispensable for gonadotropin-releasing hormone (GnRH)/gonadotropin secretion and consequent reproductive functions in mammals. Conventional Kiss1 knockout (KO) mice and rats are reported to be infertile. To date, however, no study has investigated the effect of inducible central Kiss1 KO/knockdown on pulsatile gonadotropin release in male mammals. Here we report an in vivo analysis of inducible conditional Kiss1 knockdown male mice. The mice were generated by a bilateral injections of either adeno-associated virus (AAV) vectors driving Cre recombinase (AAV-Cre) or AAV vectors driving GFP (AAV-GFP, control) into the hypothalamic arcuate nucleus (ARC) of Kiss1-floxed male mice, in which exon 3 of the Kiss1 gene were floxed with loxP sites. Four weeks after the AAV-Cre injection, the mice showed a profound decrease in the both number of ARC Kiss1-expressing cells and the luteinizing hormone (LH) pulse frequency. Interestingly, pulsatile LH secretion was apparent 8 weeks after the AAV-Cre injection despite the suppression of ARC Kiss1 expression. The control Kiss1-floxed mice infected with AAV-GFP showed apparent LH pulses and Kiss1 expression in the ARC at both 4 and 8 weeks after the AAV-GFP injection. These results with an inducible conditional Kiss1 knockdown in the ARC of male mice suggest that ARC kisspeptin neurons are responsible for pulsatile LH secretion in male mice, and indicate the possibility of a compensatory mechanism that restores GnRH/LH pulse generation.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Kisspeptins/genetics , Luteinizing Hormone/blood , Neurons/metabolism , Animals , Gene Knockdown Techniques , Gonadotropin-Releasing Hormone/metabolism , Kisspeptins/metabolism , Male , Mice
10.
J Reprod Dev ; 66(4): 351-357, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32281549

ABSTRACT

Accumulating evidence suggests that KNDy neurons located in the hypothalamic arcuate nucleus (ARC), which are reported to express kisspeptin, neurokinin B, and dynorphin A, are indispensable for the gonadotropin-releasing hormone (GnRH) pulse generation that results in rhythmic GnRH secretion. The aims of the present study were to investigate the effects of peripheral administration of the neurokinin 3 receptor (NK3R/TACR3, a receptor for neurokinin B) antagonist, SB223412, on GnRH pulse-generating activity and pulsatile luteinizing hormone (LH) secretion in ovariectomized Shiba goats treated with luteal phase levels of estrogen. The NK3R antagonist was infused intravenously for 4 h {0.16 or 1.6 mg/(kg body weight [BW]·4 h)} during which multiple unit activity (MUA) in the ARC was recorded, an electrophysiological technique commonly employed to monitor GnRH pulse generator activity. In a separate experiment, the NK3R antagonist (40 or 200 mg/[kg BW·day]) was administered orally for 7 days to determine whether the NK3R antagonist could modulate pulsatile LH secretion when administered via the oral route. Intravenous infusion of the NK3R antagonist significantly increased the interval of episodic bursts of MUA compared with that of the controls. Oral administration of the antagonist for 7 days also significantly prolonged the interpulse interval of LH pulses. The results of this study demonstrate that peripheral administration of an NK3R antagonist suppresses pulsatile LH secretion by acting on the GnRH pulse generator, suggesting that NK3R antagonist administration could be used to modulate reproductive functions in ruminants.


Subject(s)
Estradiol/pharmacology , Gonadotropin-Releasing Hormone/metabolism , Luteinizing Hormone/blood , Neurons/drug effects , Quinolines/pharmacology , Receptors, Neurokinin-3/antagonists & inhibitors , Administration, Oral , Animals , Female , Goats , Injections, Intravenous , Neurons/metabolism , Ovariectomy
11.
J Obstet Gynaecol Res ; 45(12): 2318-2329, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31608564

ABSTRACT

Ovulation is an essential phenomenon for reproduction in mammalian females along with follicular growth. It is well established that gonadal function is controlled by the neuroendocrine system called the hypothalamus-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons, localized in the hypothalamus, had been considered to be the head in governing the HPG axis for a long time until the discovery of kisspeptin. In females, induction of ovulation and folliculogenesis has been linked to a surge mode and pulse mode of GnRH releases, respectively. The mechanisms of how the two modes of GnRH are differently regulated had long remained elusive. The discovery of kisspeptin neurons, distributed in two hypothalamic nuclei, such as the arcuate nucleus in the caudal hypothalamus and preoptic area or the anteroventral periventricular nucleus in the rostral hypothalamic regions, and analyses of the detailed functions of kisspeptin neurons have led marked progress on the understanding of different mechanisms regulating GnRH surges (ovulation) and GnRH pulses (folliculogenesis). The present review will focus on the role of kisspeptin neurons as the GnRH surge generator, including the sexual differentiation of the surge generation system and factors that regulate the surge generator. Comparative aspects between mammalian species are especially focused on.


Subject(s)
Arcuate Nucleus of Hypothalamus/physiology , Gonadotropin-Releasing Hormone/blood , Hypothalamus, Anterior/physiology , Kisspeptins/physiology , Animals , Female , Humans , Hypothalamo-Hypophyseal System/physiology , Luteinizing Hormone/blood , Mice , Ovulation , Rats , Sex Differentiation , gamma-Aminobutyric Acid/physiology
12.
Biol Reprod ; 99(5): 1022-1033, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29800099

ABSTRACT

Sulfhydryl oxidation is part of the sperm maturation process essential for the acquisition of sperm fertilization competency and its structural stabilization; however, the specific sulfhydryl oxidases that fulfill these roles have yet to be identified. In this study, we investigate the potential involvement of one atypical thiol oxidase family called quiescin Q6/sulfhydryl oxidase (QSOX) using the mouse epididymis as our model system. With multidisciplinary approaches, we show that QSOX isoform 1 and 2 exhibit complementary distribution throughout the epididymal duct, but that each variant possesses distinct subcellular localization within the epididymal principal cells. While QSOX2 was exclusively present in the Golgi apparatus of the caput and corpus epididymis, QSOX1c, the most profusely express QSOX1 variant, was abundantly present in the cauda luminal fluids. Moreover, immunohistochemistry studies together with proteomic identification in isolated epididymosomes provided evidence substantiating the release of QSOX2, but not QSOX1c, via an apocrine secretory pathway. Furthermore, we demonstrate for the first time, distinct association of QSOX1c and QSOX2 with the sperm acrosome and implantation fossa, during different stages of their epididymal maturation. In conclusion, our study provides the first comprehensive comparisons between QSOX1 and QSOX2 in the mouse epididymis, revealing their distinct epididymal distribution, cellular localization, mechanisms of secretion and sperm membrane association. Together, these data suggest that QSOX1 and QSOX2 have discrete biological functions in male germ cell development.


Subject(s)
Epididymis/enzymology , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Spermatozoa/enzymology , Animals , Epididymis/growth & development , Golgi Apparatus/enzymology , Immunohistochemistry , Isoenzymes , Male , Mice , Mice, Inbred ICR , Oxidoreductases Acting on Sulfur Group Donors/genetics , Sperm Maturation
13.
Neuroendocrinology ; 103(6): 640-9, 2016.
Article in English | MEDLINE | ID: mdl-26964105

ABSTRACT

After the discovery of hypothalamic kisspeptin encoded by the Kiss1 gene, the central mechanism regulating gonadotropin-releasing hormone (GnRH) secretion, and hence gonadotropin secretion, is gradually being unraveled. This has increased our understanding of the central mechanism regulating puberty and subsequent reproductive performance in mammals. Recently, emerging evidence has indicated the molecular and epigenetic mechanism regulating hypothalamic Kiss1 gene expression. Here we compile data regarding DNA and histone modifications in the Kiss1 promoter region and provide a hypothetic scheme of the molecular and epigenetic mechanism regulating Kiss1 gene expression in two populations of hypothalamic kisspeptin neurons, which govern puberty and subsequent reproductive performance via GnRH/gonadotropin secretion.


Subject(s)
Epigenesis, Genetic , Gene Expression/physiology , Hypothalamus/cytology , Kisspeptins/genetics , Kisspeptins/metabolism , Neurons/metabolism , Animals , Histones/genetics , Histones/metabolism , Humans , Hypothalamus/metabolism , Mammals/genetics
14.
Bioorg Med Chem ; 24(16): 3494-500, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27298001

ABSTRACT

The neurokinin B (NKB)-neurokinin-3 receptor (NK3R) signaling positively regulates the release of gonadotropin-releasing hormone (GnRH) from the hypothalamus. The NK3R-selective antagonists may suppress the reproductive functions of mammals. For development of novel NK3R antagonists with reduced environmental toxicity, a structure-activity relationship study of an NK3R antagonist, talnetant, was carried out. Among several talnetant derivatives with labile functional groups in the natural environment, 3-mercaptoquinoline 2f exhibited a comparable biological activity to that of the parent talnetant. Additionally, compound 2f was converted into the disulfide 3f or isothiazolone 8 by air-oxidation, both of which showed no binding affinity to NK3R.


Subject(s)
Receptors, Neurokinin-3/antagonists & inhibitors , Animals , Environmental Pollutants , Humans
15.
J Reprod Dev ; 62(5): 471-477, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27349533

ABSTRACT

Elucidating the physiological mechanisms that control reproduction is an obvious strategy for improving the fertility of cattle and developing new agents to control reproductive functions. The present study aimed to identify kisspeptin neurons in the bovine hypothalamus, clarifying that a central mechanism is also present in the cattle brain, as kisspeptin is known to play an important role in the stimulation of gonadotropin-releasing hormone (GnRH)/gonadotropin secretion in other mammals. To characterize kisspeptin neurons in the bovine hypothalamus, the co-localizations of kisspeptin and neurokinin B (NKB) or kisspeptin and dynorphin A (Dyn) were examined. Hypothalamic tissue was collected from Japanese Black or Japanese Black × Holstein crossbred cows during the follicular and luteal phases. Brain sections, including the arcuate nucleus (ARC) and the preoptic area (POA), were dual immunostained with kisspeptin and either NKB or Dyn. In the ARC, both NKB and Dyn were co-localized in kisspeptin neurons during both the follicular and luteal phases, demonstrating the presence of kisspeptin/NKB/Dyn-containing neurons, referred to as KNDy neurons, in cows. In the POA, no co-localization of kisspeptin with either NKB or Dyn was detected. Kisspeptin expression in the follicular phase was higher than that in the luteal phase, suggesting that kisspeptin expression in the POA is positively controlled by estrogen in cows. The kisspeptin neuronal populations in the ARC and POA likely play important roles in regulating the GnRH pulse and surge, respectively, in cows.


Subject(s)
Dynorphins/metabolism , Estrous Cycle/physiology , Hypothalamus/metabolism , Kisspeptins/metabolism , Neurokinin B/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Breeding , Cattle , Estradiol/blood , Female , Gonadotropin-Releasing Hormone/metabolism , Immunohistochemistry , Neurons/metabolism , Preoptic Area/metabolism , Progesterone/blood , Radioimmunoassay
16.
J Reprod Dev ; 60(4): 312-6, 2014.
Article in English | MEDLINE | ID: mdl-24909600

ABSTRACT

Puberty is associated with an increase in gonadotropin secretion as a result of an increase in gonadotropin-releasing hormone (GnRH) secretion. Kisspeptin is considered to play a key role in puberty onset in many mammalian species, including rodents, ruminants and primates. The present study aimed to determine if changes in hypothalamic expression of the KISS1 gene, encoding kisspeptin, are associated with the onset of puberty in pigs. The animals (n=4 in each group) were perfused with 4% paraformaldehyde at 0, 1, 2, 3 and 4 months old, as prepubertal stages, and at 5 months old, as the peripubertal stage, following each blood sampling. KISS1 gene expressions in coronal sections of brains were visualized by in situ hybridization. Plasma luteinizing hormone (LH) was measured by radioimmunoassay. KISS1 mRNA signals were observed in the arcuate nucleus (ARC) at all ages examined without any significant difference in the number of KISS1-expressing cells, indicating that the KISS1 gene is constantly expressed in the ARC throughout pubertal development in pigs. The plasma LH concentration was the highest in 0-month-old piglets and significantly decreased in the 1- and 2 month-old groups (P<0.05), suggesting a developing negative feedback mechanism affecting gonadotropin release during the prepubertal period. Considering the potent stimulating effect of kisspeptin on gonadotropin release in prepubertal pigs, kisspeptin secretion rather than kisspeptin synthesis may be responsible for the onset of puberty in pigs.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Kisspeptins/metabolism , Sexual Maturation , Animals , Arcuate Nucleus of Hypothalamus/growth & development , Estradiol/blood , Female , Follicle Stimulating Hormone/blood , Kisspeptins/genetics , Luteinizing Hormone/blood , Ovary/growth & development , Progesterone/blood , Swine
17.
Theriogenology ; 215: 187-194, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086312

ABSTRACT

In postpartum dairy cows, lipopolysaccharide (LPS) derived from gram-negative bacteria causes uterine or mammary inflammation, resulting in low fertility. The present study aimed to investigate the effect of LPS on the in vitro growth (IVG), steroidogenesis, and maturation of oocyte-cumulus-granulosa cell complexes (OCGCs) derived from bovine early antral follicles. OCGCs were isolated from bovine early antral follicles (0.5-1 mm in diameter) and cultured in vitro for 12 days using media containing 0 (control), 0.01, or 1 µg/mL of LPS. The viability, cavity formation, and oocyte diameter of the OCGCs, as well as the concentrations of estradiol (E2) and progesterone (P4) in the IVG culture media, were determined. After IVG culture, oocytes collected from viable OCGCs were matured in vitro (IVM) in a medium without LPS. The nuclear maturation rate and the mitochondrial membrane potential of oocytes were determined. Bovine oocytes and cumulus-granulosa complexes derived from early antral follicles expressed genes encoding LPS receptor complex, such as toll-like receptor 4 (TLR4). Immunohistochemistry analysis further localized TLR4 expression predominantly in follicular granulosa and theca cells of early antral follicles. The viability of OCGCs and cavity formation in OCGCs were lower in the 0.01 and 1 µg/mL LPS groups than in the control group. No significant difference in oocyte diameter was observed between the treatment groups throughout the culture period. Moreover, E2 production was suppressed in the 0.01 and 1 µg/mL LPS groups from Days 4-8, whereas P4 production increased in the 1 µg/mL LPS group from Days 0-8. The nuclear maturation rate after IVM was lower in the 0.01 and 1 µg/mL LPS groups than in the control group. The mitochondrial membrane potential of post-IVM oocytes was lower in the 0.01 and 1 µg/mL LPS groups than in the control group. Taken together, these results indicate that LPS inhibited the growth and steroidogenesis of OCGCs and the meiosis and mitochondrial function of oocytes derived from early antral follicles. This study suggests that the detrimental effects of LPS on developing oocytes may contribute to long-term decreased fertility in postpartum dairy cows.


Subject(s)
Lipopolysaccharides , Toll-Like Receptor 4 , Female , Cattle , Animals , Lipopolysaccharides/pharmacology , Toll-Like Receptor 4/metabolism , Oocytes/physiology , Cumulus Cells/metabolism , Meiosis , In Vitro Oocyte Maturation Techniques/veterinary
18.
J Ovarian Res ; 17(1): 66, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504307

ABSTRACT

BACKGROUND: Quiescin sulfhydryl oxidase 2 (QSOX2) is a flavin adenine dinucleotide-dependent sulfhydryl oxidase that is known to be involved in protein folding, cell growth regulation, and redox state modification through oxidative activities. Earlier studies demonstrated the tissue and cellular localization of QSOX2 in the male reproductive tract, as well as the highly-regulated mechanism of QSOX2 protein synthesis and expression through the coordinated action of testosterone and epididymal-enriched amino acid, glutamate. However, the presence and the functions of QSOX2 in female reproduction are unknown. In this study, we applied the Cre-loxP gene manipulation system to generate the heterozygous and homozygous Qsox2 knockout mice and examined its effects on ovarian function. RESULTS: We demonstrated that QSOX2 was detected in the follicle-supporting cells (granulosa and cumulus cells) of ovarian follicles of all stages but was absent in the corpus luteum, suggesting its supportive role in folliculogenesis. In comparison with reproductive organogenesis in wild-type mice, there was no difference in testicular and epididymal structure in male Qsox2 knockout; however, Qsox2 knockout disrupted the regular ovulation process in female mice as a drastic decrease in the formation of the corpus luteum was detected, and no pregnancy was achieved when mating males with homozygous Qsox2 knockout females. RNAseq analyses further revealed that Qsox2 knockout altered critical signaling pathways and genes that are responsible for maintaining ovarian functions. CONCLUSION: Our data demonstrated for the first time that Qsox2 is critical for ovarian function in mice.


Subject(s)
Granulosa Cells , Oxidoreductases , Tamoxifen , Female , Mice , Male , Animals , Granulosa Cells/metabolism , Tamoxifen/pharmacology , Tamoxifen/metabolism , Ovary , Ovulation , Mice, Knockout
19.
J Reprod Dev ; 59(5): 463-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23812498

ABSTRACT

Neurokinin B (NKB), encoded by TAC3, is thought to be an important accelerator of pulsatile gonadotropin-releasing hormone release. This study aimed to clarify the transcriptional regulatory mechanism of goat TAC3. First, we determined the full-length mRNA sequence of goat TAC3 from the hypothalamus to be 820 b, including a 381 b coding region, with the putative transcription start site located 143-b upstream of the start codon. The deduced amino acid sequence of NKB, which is produced from preproNKB, was completely conserved among goat, cattle, and human. Next, we cloned 5'-upstream region of goat TAC3 up to 3400 b from the translation initiation site, and this region was highly homologous with cattle TAC3 (89%). We used this goat TAC3 5'-upstream region to perform luciferase assays. We created a luciferase reporter vector containing DNA constructs from -2706, -1837, -834, -335, or -197 to +166 bp (the putative transcription start site was designated as +1) of goat TAC3 and these were transiently transfected into mouse hypothalamus-derived N7 cells and human neuroblastoma-derived SK-N-AS cells. The luciferase activity gradually increased with the deletion of the 5'-upstream region, suggesting that the transcriptional suppressive region is located between -2706 and -336 bp and that the core promoter exists downstream of -197 bp. Estradiol treatment did not lead to significant suppression of luciferase activity of any constructs, suggesting the existence of other factor(s) that regulate goat TAC3 transcription.


Subject(s)
Goats , Neurokinin B/metabolism , Neurons/metabolism , Promoter Regions, Genetic , Transcription, Genetic , 5' Flanking Region , Amino Acid Sequence , Animals , Animals, Inbred Strains , Base Sequence , Cell Line , Conserved Sequence , Estrogens/pharmacology , Female , Fertility Agents, Female/pharmacology , Genes, Reporter/drug effects , Humans , Japan , Male , Mice , Molecular Sequence Data , Neurokinin B/chemistry , Neurokinin B/genetics , Neurons/drug effects , Promoter Regions, Genetic/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Homology , Transcription, Genetic/drug effects
20.
J Reprod Dev ; 59(6): 588-94, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24107742

ABSTRACT

Kisspeptin is a key molecule that stimulates gonadotropin secretion via release of gonadotropin-releasing hormone (GnRH). In the present study, our aim was to investigate whether kisspeptin has stimulatory effects on follicular development via GnRH/gonadotropin secretion in cows. Japanese Black beef cows were intravenously injected with full-length bovine kisspeptin [Kp-53 (0.2 or 2 nmol/kg)] or vehicle 5 days after they exhibited standing estrus (Day 0). In cows injected with Kp-53 at 2 nmol/kg, the follicular sizes of the first dominant follicles increased on Day 6 and thereafter. Ovulation of the first dominant follicle occurred in 1 out of 4 cows treated with Kp-53 at 2 nmol/kg. Injection of Kp-53 at 2 nmol/kg increased the concentration of plasma luteinizing hormone (LH) but not follicle-stimulating hormone, over a 4-h period following injection in all cows. The present study suggests that administration of full-length kisspeptin causes LH secretion, which is sustained for a few hours, and it is capable of stimulating follicular development and/or ovulation.


Subject(s)
Cattle/physiology , Fertility Agents, Female/pharmacology , Kisspeptins/pharmacology , Oogenesis/drug effects , Ovarian Follicle/drug effects , Ovulation Induction/veterinary , Ovulation/drug effects , Animals , Animals, Inbred Strains , Cattle/growth & development , Dose-Response Relationship, Drug , Female , Fertility Agents, Female/administration & dosage , Injections, Intravenous/veterinary , Japan , Kinetics , Kisspeptins/administration & dosage , Luteinizing Hormone/blood , Luteinizing Hormone/metabolism , Ovarian Follicle/diagnostic imaging , Ovarian Follicle/growth & development , Pituitary Gland, Anterior/drug effects , Pituitary Gland, Anterior/metabolism , Ultrasonography , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL