Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Genet ; 17(10): e1009848, 2021 10.
Article in English | MEDLINE | ID: mdl-34662339

ABSTRACT

Patients with inherited retinal dystrophies (IRDs) were recruited from two understudied populations: Mexico and Pakistan as well as a third well-studied population of European Americans to define the genetic architecture of IRD by performing whole-genome sequencing (WGS). Whole-genome analysis was performed on 409 individuals from 108 unrelated pedigrees with IRDs. All patients underwent an ophthalmic evaluation to establish the retinal phenotype. Although the 108 pedigrees in this study had previously been examined for mutations in known IRD genes using a wide range of methodologies including targeted gene(s) or mutation(s) screening, linkage analysis and exome sequencing, the gene mutations responsible for IRD in these 108 pedigrees were not determined. WGS was performed on these pedigrees using Illumina X10 at a minimum of 30X depth. The sequence reads were mapped against hg19 followed by variant calling using GATK. The genome variants were annotated using SnpEff, PolyPhen2, and CADD score; the structural variants (SVs) were called using GenomeSTRiP and LUMPY. We identified potential causative sequence alterations in 61 pedigrees (57%), including 39 novel and 54 reported variants in IRD genes. For 57 of these pedigrees the observed genotype was consistent with the initial clinical diagnosis, the remaining 4 had the clinical diagnosis reclassified based on our findings. In seven pedigrees (12%) we observed atypical causal variants, i.e. unexpected genotype(s), including 4 pedigrees with causal variants in more than one IRD gene within all affected family members, one pedigree with intrafamilial genetic heterogeneity (different affected family members carrying causal variants in different IRD genes), one pedigree carrying a dominant causative variant present in pseudo-recessive form due to consanguinity and one pedigree with a de-novo variant in the affected family member. Combined atypical and large structural variants contributed to about 20% of cases. Among the novel mutations, 75% were detected in Mexican and 50% found in European American pedigrees and have not been reported in any other population while only 20% were detected in Pakistani pedigrees and were not previously reported. The remaining novel IRD causative variants were listed in gnomAD but were found to be very rare and population specific. Mutations in known IRD associated genes contributed to pathology in 63% Mexican, 60% Pakistani and 45% European American pedigrees analyzed. Overall, contribution of known IRD gene variants to disease pathology in these three populations was similar to that observed in other populations worldwide. This study revealed a spectrum of mutations contributing to IRD in three populations, identified a large proportion of novel potentially causative variants that are specific to the corresponding population or not reported in gnomAD and shed light on the genetic architecture of IRD in these diverse global populations.


Subject(s)
Ethnicity/genetics , Retinal Degeneration/genetics , Consanguinity , DNA Mutational Analysis/methods , Exome/genetics , Eye Proteins/genetics , Female , Genetic Association Studies/methods , Genetic Linkage/genetics , Genotype , Humans , Male , Mexico , Mutation/genetics , Pakistan , Pedigree , Retina/pathology , Exome Sequencing/methods , Whole Genome Sequencing/methods
2.
PLoS Comput Biol ; 18(2): e1009918, 2022 02.
Article in English | MEDLINE | ID: mdl-35226669

ABSTRACT

Reactivation of fetal-specific genes and isoforms occurs during heart failure. However, the underlying molecular mechanisms and the extent to which the fetal program switch occurs remains unclear. Limitations hindering transcriptome-wide analyses of alternative splicing differences (i.e. isoform switching) in cardiovascular system (CVS) tissues between fetal, healthy adult and heart failure have included both cellular heterogeneity across bulk RNA-seq samples and limited availability of fetal tissue for research. To overcome these limitations, we have deconvoluted the cellular compositions of 996 RNA-seq samples representing heart failure, healthy adult (heart and arteria), and fetal-like (iPSC-derived cardiovascular progenitor cells) CVS tissues. Comparison of the expression profiles revealed that reactivation of fetal-specific RNA-binding proteins (RBPs), and the accompanied re-expression of 1,523 fetal-specific isoforms, contribute to the transcriptome differences between heart failure and healthy adult heart. Of note, isoforms for 20 different RBPs were among those that reverted in heart failure to the fetal-like expression pattern. We determined that, compared with adult-specific isoforms, fetal-specific isoforms encode proteins that tend to have more functions, are more likely to harbor RBP binding sites, have canonical sequences at their splice sites, and contain typical upstream polypyrimidine tracts. Our study suggests that compared with healthy adult, fetal cardiac tissue requires stricter transcriptional regulation, and that during heart failure reversion to this stricter transcriptional regulation occurs. Furthermore, we provide a resource of cardiac developmental stage-specific and heart failure-associated genes and isoforms, which are largely unexplored and can be exploited to investigate novel therapeutics for heart failure.


Subject(s)
Heart Failure , Adult , Alternative Splicing/genetics , Fetus/metabolism , Heart Failure/genetics , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
3.
Hum Mutat ; 42(2): 189-199, 2021 02.
Article in English | MEDLINE | ID: mdl-33252167

ABSTRACT

Inherited retinal degenerations (IRDs) are a group of genetically heterogeneous conditions with a broad phenotypic heterogeneity. Here, we report detection and validation of the underlying cause of progressive retinal degeneration in a nuclear family of European descent with a single affected individual. Whole genome sequencing of the proband and her unaffected sibling identified a novel intron 8 donor splice site variant (c.1296 + 1G>A) and a novel 731 base pair deletion encompassing exon 9 (Chr2:g.112751488_112752218 del) resulting in c.1297_1451del; p.K433_G484fsTer3 in the Mer tyrosine kinase protooncogene (MERTK), which is highly expressed in the retinal pigment epithelium (RPE). The proband carried both variants in the heterozygous state, which segregated with disease in the pedigree. These MERTK variants are predicted to result in the defective splicing of exon 8 and loss of exon 9 respectively. To evaluate the impact of these novel variants, peripheral blood mononuclear cells of the proband and her parents were reprogrammed to humaninduced pluripotent stem cell (hiPSC) lines, which were subsequently differentiated to hiPSC-RPE. Analysis of the proband's hiPSC-RPE revealed the absence of both MERTK transcript and its respective protein as well as abnormal phagocytosis when compared with the parental hiPSC-RPE. In summary, whole genome sequencing identified novel compound heterozygous variants in MERTK as the underlying cause of progressive retinal degeneration in a simplex case. Further, analysis using an hiPSC-RPE model established the functional impact of novel MERTK mutations and revealed the potential mechanism underlying pathology in the proband.


Subject(s)
Induced Pluripotent Stem Cells , Retinal Degeneration , Female , Humans , Leukocytes, Mononuclear/pathology , Mutation , Phagocytosis , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Pigment Epithelium/pathology , Whole Genome Sequencing , c-Mer Tyrosine Kinase/genetics
4.
J Infect Chemother ; 26(7): 736-740, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32201195

ABSTRACT

BACKGROUND: Febrile neonates and young infants presenting with seizure require immediate evaluation and treatment. Herein we experienced two young infants with parechovirus-A3 (PeV-A3) encephalitis, initially presented with focal seizure suspecting herpes simplex virus (HSV) encephalitis. CASES: We have experienced 2 infantile cases, initially presented with focal seizure. At presentation, HSV encephalitis was strongly suspected and empiric acyclovir therapy was started; however, serum and/or cerebrospinal fluid (CSF) PCR for HSV were negative. Instead, serum and/or CSF PCR for parechovirus-A was positive. PeV-A3 infection was confirmed by genetic sequence analyses. Both cases required multiple anticonvulsant therapy and intensive care for intractable seizure. Diffusion-weighted imaging of brain magnetic resonance imaging (MRI) showed distinct findings; high-intensity lesions in the gray matter of parietal and occipital lobes in Case 1, and bilateral decreased diffusion of the deep white matter and corpus callosum in Case 2. We have followed two cases more than four years; Case 1 developed epilepsy, has been on an anticonvulsant to control her seizure. Case 2 has significant neurodevelopmental delay, unable to stand or communicate with language. CONCLUSIONS: PeV-A3 encephalitis needs to be in differential diagnosis when neonates and young infants present with focal seizure, mimicking HSV encephalitis. Special attention may be necessary in patients with PeV-A3 encephalitis given it could present with intractable seizure with high morbidity in a long-term.


Subject(s)
Encephalitis, Herpes Simplex/diagnosis , Encephalitis, Viral/diagnosis , Parechovirus/isolation & purification , Picornaviridae Infections/diagnosis , Seizures/virology , Brain/diagnostic imaging , DNA, Viral/isolation & purification , Diagnosis, Differential , Diffusion Magnetic Resonance Imaging , Encephalitis, Herpes Simplex/virology , Encephalitis, Viral/cerebrospinal fluid , Encephalitis, Viral/complications , Encephalitis, Viral/virology , Epilepsy/drug therapy , Epilepsy/virology , Female , Humans , Infant , Infant, Premature , Male , Neurodevelopmental Disorders/virology , Parechovirus/genetics , Picornaviridae Infections/cerebrospinal fluid , Picornaviridae Infections/complications , Picornaviridae Infections/virology , Polymerase Chain Reaction , RNA, Viral/blood , RNA, Viral/cerebrospinal fluid , RNA, Viral/isolation & purification , Seizures/blood , Seizures/cerebrospinal fluid , Seizures/diagnosis , Simplexvirus/genetics , Simplexvirus/isolation & purification
5.
Hum Mol Genet ; 26(23): 4741-4751, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28973684

ABSTRACT

The aim of this work is to identify the molecular cause of autosomal recessive early onset retinal degeneration in a consanguineous pedigree. Seventeen members of a four-generation Pakistani family were recruited and underwent a detailed ophthalmic examination. Exomes of four affected and two unaffected individuals were sequenced. Variants were filtered using exomeSuite to identify rare potentially pathogenic variants in genes expressed in the retina and/or brain and consistent with the pattern of inheritance. Effect of the variant observed in the gene Intraflagellar Transport Protein 43 (IFT43) was studied by heterologous expression in mIMCD3 and MDCK cells. Expression and sub-cellular localization of IFT43 in the retina and transiently transfected cells was examined by RT-PCR, western blot analysis, and immunohistochemistry. Affected members were diagnosed with early onset non-syndromic progressive retinal degeneration and the presence of bone spicules distributed throughout the retina at younger ages while the older affected members showed severe central choroidal atrophy. Whole-exome sequencing analysis identified a novel homozygous c.100 G > A change in IFT43 segregating with retinal degeneration and not present in ethnicity-matched controls. Immunostaining showed IFT43 localized in the photoreceptors, and to the tip of the cilia in transfected mIMCD3 and MDCK cells. The cilia in mIMCD3 and MDCK cells expressing mutant IFT43 were found to be significantly shorter (P < 0.001) than cells expressing wild-type IFT43. Our studies identified a novel homozygous mutation in the ciliary protein IFT43 as the underlying cause of recessive inherited retinal degeneration. This is the first report demonstrating the involvement of IFT43 in retinal degeneration.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Base Sequence , Consanguinity , Exome , Female , Genes, Recessive , Homozygote , Humans , Male , Mutation , Pedigree , Phenotype , Retina/metabolism , Retina/physiology , Exome Sequencing/methods
6.
Hum Genet ; 137(6-7): 447-458, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29978320

ABSTRACT

Whole genome sequencing (WGS) was performed to identify the variants responsible for inherited retinal degeneration (IRD) in a Caucasian family. Segregation analysis of selected rare variants with pathogenic potential identified a set of compound heterozygous changes p.Arg266*:c.796C>T and p.Ala568Thr:c.1702G>A in the intraflagellar transport protein-88 (IFT88) gene segregating with IRD. Expression of IFT88 with the p.Arg266* and p.Ala568Thr mutations in mIMDC3 cells by transient transfection and in HeLa cells by introducing the mutations using CRISPR-cas9 system suggested that both mutations result in the formation of abnormal ciliary structures. The introduction of the IFT88 p.Arg266* variant in the homozygous state in HeLa cells by CRISPR-Cas9 genome-editing revealed that the mutant transcript undergoes nonsense-mediated decay leading to a significant depletion of IFT88 transcript. Additionally, abnormal ciliogenesis was observed in these cells. These observations suggest that the rare and unique combination of IFT88 alleles observed in this study provide insight into the physiological role of IFT88 in humans and the likely mechanism underlying retinal pathology in the pedigree with IRD.


Subject(s)
Ciliopathies/genetics , Retinal Degeneration/genetics , Tumor Suppressor Proteins/genetics , Whole Genome Sequencing , Alleles , CRISPR-Cas Systems/genetics , Ciliopathies/physiopathology , Female , Gene Editing , Genetic Predisposition to Disease , HeLa Cells , Homozygote , Humans , Male , Middle Aged , Mutation , Pedigree , Retina/pathology , Retinal Degeneration/physiopathology
7.
Proc Natl Acad Sci U S A ; 112(30): E4055-64, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26159421

ABSTRACT

The available evidence suggests that the lethality of glioblastoma is driven by small subpopulations of cells that self-renew and exhibit tumorigenicity. It remains unclear whether tumorigenicity exists as a static property of a few cells or as a dynamically acquired property. We used tumor-sphere and xenograft formation as assays for tumorigenicity and examined subclones isolated from established and primary glioblastoma lines. Our results indicate that glioblastoma tumorigenicity is largely deterministic, yet the property can be acquired spontaneously at low frequencies. Further, these dynamic transitions are governed by epigenetic reprogramming through the lysine-specific demethylase 1 (LSD1). LSD depletion increases trimethylation of histone 3 lysine 4 at the avian myelocytomatosis viral oncogene homolog (MYC) locus, which elevates MYC expression. MYC, in turn, regulates oligodendrocyte lineage transcription factor 2 (OLIG2), SRY (sex determining region Y)-box 2 (SOX2), and POU class 3 homeobox 2 (POU3F2), a core set of transcription factors required for reprogramming glioblastoma cells into stem-like states. Our model suggests epigenetic regulation of key transcription factors governs transitions between tumorigenic states and provides a framework for glioblastoma therapeutic development.


Subject(s)
Brain Neoplasms/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Histone Demethylases/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Gene Expression Profiling , Gene Silencing , Humans , Male , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Neoplasms/metabolism , Stochastic Processes
8.
Physiol Genomics ; 48(12): 922-927, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27764769

ABSTRACT

While more than 250 genes are known to cause inherited retinal degenerations (IRD), nearly 40-50% of families have the genetic basis for their disease unknown. In this study we sought to identify the underlying cause of IRD in a family by whole genome sequence (WGS) analysis. Clinical characterization including standard ophthalmic examination, fundus photography, visual field testing, electroretinography, and review of medical and family history was performed. WGS was performed on affected and unaffected family members using Illumina HiSeq X10. Sequence reads were aligned to hg19 using BWA-MEM and variant calling was performed with Genome Analysis Toolkit. The called variants were annotated with SnpEff v4.11, PolyPhen v2.2.2, and CADD v1.3. Copy number variations were called using Genome STRiP (svtoolkit 2.00.1611) and SpeedSeq software. Variants were filtered to detect rare potentially deleterious variants segregating with disease. Candidate variants were validated by dideoxy sequencing. Clinical evaluation revealed typical adolescent-onset recessive retinitis pigmentosa (arRP) in affected members. WGS identified about 4 million variants in each individual. Two rare and potentially deleterious compound heterozygous variants p.Arg281Cys and p.Arg487* were identified in the gene ATP/GTP binding protein like 5 (AGBL5) as likely causal variants. No additional variants in IRD genes that segregated with disease were identified. Mutation analysis confirmed the segregation of these variants with the IRD in the pedigree. Homology models indicated destabilization of AGBL5 due to the p.Arg281Cys change. Our findings establish the involvement of mutations in AGBL5 in RP and validate the WGS variant filtering pipeline we designed.


Subject(s)
Carboxypeptidases/genetics , Retinitis Pigmentosa/genetics , Adolescent , DNA Mutational Analysis , Electroretinography/methods , Female , Genetic Association Studies/methods , Humans , Male , Mutation/genetics , Pedigree , Retinal Degeneration/genetics , Whole Genome Sequencing/methods , Young Adult
9.
BMC Bioinformatics ; 15: 125, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24884706

ABSTRACT

BACKGROUND: Genotypes generated in next generation sequencing studies contain errors which can significantly impact the power to detect signals in common and rare variant association tests. These genotyping errors are not explicitly filtered by the standard GATK Variant Quality Score Recalibration (VQSR) tool and thus remain a source of errors in whole exome sequencing (WES) projects that follow GATK's recommended best practices. Therefore, additional data filtering methods are required to effectively remove these errors before performing association analyses with complex phenotypes. Here we empirically derive thresholds for genotype and variant filters that, when used in conjunction with the VQSR tool, achieve higher data quality than when using VQSR alone. RESULTS: The detailed filtering strategies improve the concordance of sequenced genotypes with array genotypes from 99.33% to 99.77%; improve the percent of discordant genotypes removed from 10.5% to 69.5%; and improve the Ti/Tv ratio from 2.63 to 2.75. We also demonstrate that managing batch effects by separating samples based on different target capture and sequencing chemistry protocols results in a final data set containing 40.9% more high-quality variants. In addition, imputation is an important component of WES studies and is used to estimate common variant genotypes to generate additional markers for association analyses. As such, we demonstrate filtering methods for imputed data that improve genotype concordance from 79.3% to 99.8% while removing 99.5% of discordant genotypes. CONCLUSIONS: The described filtering methods are advantageous for large population-based WES studies designed to identify common and rare variation associated with complex diseases. Compared to data processed through standard practices, these strategies result in substantially higher quality data for common and rare association analyses.


Subject(s)
Exome , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Genotype , High-Throughput Nucleotide Sequencing/standards , Humans , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/standards
10.
Bioinformatics ; 29(15): 1908-9, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23712659

ABSTRACT

SUMMARY: We present Mutascope, a sequencing analysis pipeline specifically developed for the identification of somatic variants present at low-allelic fraction from high-throughput sequencing of amplicons from matched tumor-normal specimen. Using datasets reproducing tumor genetic heterogeneity, we demonstrate that Mutascope has a higher sensitivity and generates fewer false-positive calls than tools designed for shotgun sequencing or diploid genomes. AVAILABILITY: Freely available on the web at http://sourceforge.net/projects/mutascope/. CONTACT: oharismendy@ucsd.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing/methods , Software , Humans , Internet , Mutation , Neoplasms/genetics
11.
Nat Commun ; 15(1): 1664, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395976

ABSTRACT

Stem cells exist in vitro in a spectrum of interconvertible pluripotent states. Analyzing hundreds of hiPSCs derived from different individuals, we show the proportions of these pluripotent states vary considerably across lines. We discover 13 gene network modules (GNMs) and 13 regulatory network modules (RNMs), which are highly correlated with each other suggesting that the coordinated co-accessibility of regulatory elements in the RNMs likely underlie the coordinated expression of genes in the GNMs. Epigenetic analyses reveal that regulatory networks underlying self-renewal and pluripotency are more complex than previously realized. Genetic analyses identify thousands of regulatory variants that overlapped predicted transcription factor binding sites and are associated with chromatin accessibility in the hiPSCs. We show that the master regulator of pluripotency, the NANOG-OCT4 Complex, and its associated network are significantly enriched for regulatory variants with large effects, suggesting that they play a role in the varying cellular proportions of pluripotency states between hiPSCs. Our work bins tens of thousands of regulatory elements in hiPSCs into discrete regulatory networks, shows that pluripotency and self-renewal processes have a surprising level of regulatory complexity, and suggests that genetic factors may contribute to cell state transitions in human iPSC lines.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Gene Regulatory Networks , Chromatin/genetics , Cell Differentiation/genetics , Octamer Transcription Factor-3/genetics
12.
Breast Cancer Res ; 15(6): R115, 2013 Dec 10.
Article in English | MEDLINE | ID: mdl-24326041

ABSTRACT

INTRODUCTION: The increasing number of targeted therapies, together with a deeper understanding of cancer genetics and drug response, have prompted major healthcare centers to implement personalized treatment approaches relying on high-throughput tumor DNA sequencing. However, the optimal way to implement this transformative methodology is not yet clear. Current assays may miss important clinical information such as the mutation allelic fraction, the presence of sub-clones or chromosomal rearrangements, or the distinction between inherited variants and somatic mutations. Here, we present the evaluation of ultra-deep targeted sequencing (UDT-Seq) to generate and interpret the molecular profile of 38 breast cancer patients from two academic medical centers. METHODS: We sequenced 47 genes in matched germline and tumor DNA samples from 38 breast cancer patients. The selected genes, or the pathways they belong to, can be targeted by drugs or are important in familial cancer risk or drug metabolism. RESULTS: Relying on the added value of sequencing matched tumor and germline DNA and using a dedicated analysis, UDT-Seq has a high sensitivity to identify mutations in tumors with low malignant cell content. Applying UDT-Seq to matched tumor and germline specimens from the 38 patients resulted in a proposal for at least one targeted therapy for 22 patients, the identification of tumor sub-clones in 3 patients, the suggestion of potential adverse drug effects in 3 patients and a recommendation for genetic counseling for 2 patients. CONCLUSION: Overall our study highlights the additional benefits of a sequencing strategy, which includes germline DNA and is optimized for heterogeneous tumor tissues.


Subject(s)
Breast Neoplasms/genetics , High-Throughput Nucleotide Sequencing/methods , Mutation , Precision Medicine/methods , Breast Neoplasms/pathology , Chromosome Aberrations , DNA, Neoplasm/genetics , Female , Gene Dosage , Humans
13.
Nat Commun ; 14(1): 1132, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36854752

ABSTRACT

The causal variants and genes underlying thousands of cardiac GWAS signals have yet to be identified. Here, we leverage spatiotemporal information on 966 RNA-seq cardiac samples and perform an expression quantitative trait locus (eQTL) analysis detecting eQTLs considering both eGenes and eIsoforms. We identify 2,578 eQTLs associated with a specific developmental stage-, tissue- and/or cell type. Colocalization between eQTL and GWAS signals of five cardiac traits identified variants with high posterior probabilities for being causal in 210 GWAS loci. Pulse pressure GWAS loci are enriched for colocalization with fetal- and smooth muscle- eQTLs; pulse rate with adult- and cardiac muscle- eQTLs; and atrial fibrillation with cardiac muscle- eQTLs. Fine mapping identifies 79 credible sets with five or fewer SNPs, of which 15 were associated with spatiotemporal eQTLs. Our study shows that many cardiac GWAS variants impact traits and disease in a developmental stage-, tissue- and/or cell type-specific fashion.


Subject(s)
Atrial Fibrillation , Heart , Humans , Myocardium , Atrial Fibrillation/genetics , Blood Pressure , Fetus
14.
Nat Commun ; 14(1): 6928, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903777

ABSTRACT

The impact of genetic regulatory variation active in early pancreatic development on adult pancreatic disease and traits is not well understood. Here, we generate a panel of 107 fetal-like iPSC-derived pancreatic progenitor cells (iPSC-PPCs) from whole genome-sequenced individuals and identify 4065 genes and 4016 isoforms whose expression and/or alternative splicing are affected by regulatory variation. We integrate eQTLs identified in adult islets and whole pancreas samples, which reveal 1805 eQTL associations that are unique to the fetal-like iPSC-PPCs and 1043 eQTLs that exhibit regulatory plasticity across the fetal-like and adult pancreas tissues. Colocalization with GWAS risk loci for pancreatic diseases and traits show that some putative causal regulatory variants are active only in the fetal-like iPSC-PPCs and likely influence disease by modulating expression of disease-associated genes in early development, while others with regulatory plasticity likely exert their effects in both the fetal and adult pancreas by modulating expression of different disease genes in the two developmental stages.


Subject(s)
Diabetes Mellitus , Quantitative Trait Loci , Adult , Humans , Quantitative Trait Loci/genetics , Genome-Wide Association Study , Pancreas , Base Sequence , Diabetes Mellitus/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
15.
bioRxiv ; 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37292794

ABSTRACT

Stem cells exist in vitro in a spectrum of interconvertible pluripotent states. Analyzing hundreds of hiPSCs derived from different individuals, we show the proportions of these pluripotent states vary considerably across lines. We discovered 13 gene network modules (GNMs) and 13 regulatory network modules (RNMs), which were highly correlated with each other suggesting that the coordinated co-accessibility of regulatory elements in the RNMs likely underlied the coordinated expression of genes in the GNMs. Epigenetic analyses revealed that regulatory networks underlying self-renewal and pluripotency have a surprising level of complexity. Genetic analyses identified thousands of regulatory variants that overlapped predicted transcription factor binding sites and were associated with chromatin accessibility in the hiPSCs. We show that the master regulator of pluripotency, the NANOG-OCT4 Complex, and its associated network were significantly enriched for regulatory variants with large effects, suggesting that they may play a role in the varying cellular proportions of pluripotency states between hiPSCs. Our work captures the coordinated activity of tens of thousands of regulatory elements in hiPSCs and bins these elements into discrete functionally characterized regulatory networks, shows that regulatory elements in pluripotency networks harbor variants with large effects, and provides a rich resource for future pluripotent stem cell research.

16.
Cell Rep ; 37(7): 110020, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34762851

ABSTRACT

Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types.


Subject(s)
COVID-19/genetics , SARS-CoV-2/genetics , Chromosome Mapping/methods , Computational Biology/methods , Databases, Genetic , Ethnicity/genetics , Gene Expression/genetics , Gene Expression Profiling/methods , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Humans , Organ Specificity/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , SARS-CoV-2/pathogenicity , Severity of Illness Index , Transcriptome/genetics
17.
medRxiv ; 2021 May 12.
Article in English | MEDLINE | ID: mdl-34013287

ABSTRACT

Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we applied colocalization to compare summary statistics for 16 GWASs from the COVID-19 Host Genetics Initiative to investigate similarities and differences in their genetic signals. We identified 9 loci associated with susceptibility (one with two independent GWAS signals; one with an ethnicity-specific signal), 14 associated with severity (one with two independent GWAS signals; two with ethnicity-specific signals) and one harboring two discrepant GWAS signals (one for susceptibility; one for severity). Utilizing colocalization we also identified 45 GTEx tissues that had eQTL(s) for 18 genes strongly associated with GWAS signals in eleven loci (1-4 genes per locus). Some of these genes showed tissue-specific altered expression and others showed altered expression in up to 41 different tissue types. Our study provides insights into the complex molecular mechanisms underlying inherited predispositions to COVID-19-disease phenotypes.

18.
Stem Cell Res ; 49: 102096, 2020 12.
Article in English | MEDLINE | ID: mdl-33370871

ABSTRACT

Cancer-derived iPSCs have provided valuable insight into oncogenesis, but human cancer cells can often be difficult to reprogram, especially in cases of complex genetic abnormalities. Here we report, to our knowledge, the first successful generation of an iPSC line from a human immortalized acute myeloid leukemia (AML) cell line, the cell line HL-60. This iPSC line retains a majority of the leukemic genotype and displays defects in myeloid differentiation, thus providing a tool for modeling and studying AML.


Subject(s)
Induced Pluripotent Stem Cells , Leukemia, Myeloid, Acute , Cell Differentiation , HL-60 Cells , Hematopoiesis , Humans , Leukemia, Myeloid, Acute/genetics
19.
Nat Commun ; 11(1): 2928, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32522985

ABSTRACT

Structural variants (SVs) and short tandem repeats (STRs) are important sources of genetic diversity but are not routinely analyzed in genetic studies because they are difficult to accurately identify and genotype. Because SVs and STRs range in size and type, it is necessary to apply multiple algorithms that incorporate different types of evidence from sequencing data and employ complex filtering strategies to discover a comprehensive set of high-quality and reproducible variants. Here we assemble a set of 719 deep whole genome sequencing (WGS) samples (mean 42×) from 477 distinct individuals which we use to discover and genotype a wide spectrum of SV and STR variants using five algorithms. We use 177 unique pairs of genetic replicates to identify factors that affect variant call reproducibility and develop a systematic filtering strategy to create of one of the most complete and well characterized maps of SVs and STRs to date.


Subject(s)
Microsatellite Repeats/genetics , Whole Genome Sequencing/methods , Algorithms , Computational Biology , Genotype , Haplotypes/genetics , High-Throughput Nucleotide Sequencing , Humans
20.
Nat Commun ; 11(1): 2927, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32522982

ABSTRACT

Structural variants (SVs) and short tandem repeats (STRs) comprise a broad group of diverse DNA variants which vastly differ in their sizes and distributions across the genome. Here, we identify genomic features of SV classes and STRs that are associated with gene expression and complex traits, including their locations relative to eGenes, likelihood of being associated with multiple eGenes, associated eGene types (e.g., coding, noncoding, level of evolutionary constraint), effect sizes, linkage disequilibrium with tagging single nucleotide variants used in GWAS, and likelihood of being associated with GWAS traits. We identify a set of high-impact SVs/STRs associated with the expression of three or more eGenes via chromatin loops and show that they are highly enriched for being associated with GWAS traits. Our study provides insights into the genomic properties of structural variant classes and short tandem repeats that are associated with gene expression and human traits.


Subject(s)
Microsatellite Repeats/genetics , Cell Line , Genetic Variation/genetics , Genome-Wide Association Study , Humans , Linkage Disequilibrium/genetics , Multifactorial Inheritance , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL