Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Proc Natl Acad Sci U S A ; 117(3): 1543-1551, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31900362

ABSTRACT

The circadian clock regulates many aspects of immunity. Bacterial infections are affected by time of day, but the mechanisms involved remain undefined. Here we show that loss of the core clock protein BMAL1 in macrophages confers protection against pneumococcal pneumonia. Infected mice show both reduced weight loss and lower bacterial burden in circulating blood. In vivo studies of macrophage phagocytosis reveal increased bacterial ingestion following Bmal1 deletion, which was also seen in vitro. BMAL1-/- macrophages exhibited marked differences in actin cytoskeletal organization, a phosphoproteome enriched for cytoskeletal changes, with reduced phosphocofilin and increased active RhoA. Further analysis of the BMAL1-/- macrophages identified altered cell morphology and increased motility. Mechanistically, BMAL1 regulated a network of cell movement genes, 148 of which were within 100 kb of high-confidence BMAL1 binding sites. Links to RhoA function were identified, with 29 genes impacting RhoA expression or activation. RhoA inhibition restored the phagocytic phenotype to that seen in control macrophages. In summary, we identify a surprising gain of antibacterial function due to loss of BMAL1 in macrophages, associated with a RhoA-dependent cytoskeletal change, an increase in cell motility, and gain of phagocytic function.


Subject(s)
ARNTL Transcription Factors/antagonists & inhibitors , ARNTL Transcription Factors/genetics , Cell Movement/drug effects , Disease Resistance/genetics , Macrophages/drug effects , Phagocytosis/drug effects , Pneumonia, Pneumococcal/metabolism , Actins/metabolism , Animals , Circadian Clocks/genetics , Circadian Clocks/physiology , Cytoskeleton , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Streptococcus pneumoniae/pathogenicity , rhoA GTP-Binding Protein/metabolism
2.
J Cell Sci ; 133(11)2020 06 11.
Article in English | MEDLINE | ID: mdl-32381682

ABSTRACT

Glucocorticoids (GCs) act through the glucocorticoid receptor (GR, also known as NR3C1) to regulate immunity, energy metabolism and tissue repair. Upon ligand binding, activated GR mediates cellular effects by regulating gene expression, but some GR effects can occur rapidly without new transcription. Here, we show that GCs rapidly inhibit cell migration, in response to both GR agonist and antagonist ligand binding. The inhibitory effect on migration is prevented by GR knockdown with siRNA, confirming GR specificity, but not by actinomycin D treatment, suggesting a non-transcriptional mechanism. We identified a rapid onset increase in microtubule polymerisation following GC treatment, identifying cytoskeletal stabilisation as the likely mechanism of action. HDAC6 overexpression, but not knockdown of αTAT1, rescued the GC effect, implicating HDAC6 as the GR effector. Consistent with this hypothesis, ligand-dependent cytoplasmic interaction between GR and HDAC6 was demonstrated by quantitative imaging. Taken together, we propose that activated GR inhibits HDAC6 function, and thereby increases the stability of the microtubule network to reduce cell motility. We therefore report a novel, non-transcriptional mechanism whereby GCs impair cell motility through inhibition of HDAC6 and rapid reorganization of the cell architecture.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Glucocorticoids , Receptors, Glucocorticoid , Cell Movement , Cytosol , Gene Expression , Glucocorticoids/pharmacology , Histone Deacetylase 6 , Receptors, Glucocorticoid/genetics
3.
Int J Mol Sci ; 23(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35562959

ABSTRACT

The ß-site Amyloid precursor protein Cleaving Enzyme 1 (BACE1) is an extensively studied therapeutic target for Alzheimer's disease (AD), owing to its role in the production of neurotoxic amyloid beta (Aß) peptides. However, despite numerous BACE1 inhibitors entering clinical trials, none have successfully improved AD pathogenesis, despite effectively lowering Aß concentrations. This can, in part, be attributed to an incomplete understanding of BACE1, including its physiological functions and substrate specificity. We propose that BACE1 has additional important physiological functions, mediated through substrates still to be identified. Thus, to address this, we computationally analysed a list of 533 BACE1 dependent proteins, identified from the literature, for potential BACE1 substrates, and compared them against proteins differentially expressed in AD. We identified 15 novel BACE1 substrates that were specifically altered in AD. To confirm our analysis, we validated Protein tyrosine phosphatase receptor type D (PTPRD) and Netrin receptor DCC (DCC) using Western blotting. These findings shed light on the BACE1 inhibitor failings and could enable the design of substrate-specific inhibitors to target alternative BACE1 substrates. Furthermore, it gives us a greater understanding of the roles of BACE1 and its dysfunction in AD.


Subject(s)
Alzheimer Disease , DCC Receptor , Receptor-Like Protein Tyrosine Phosphatases, Class 2 , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Aspartic Acid Endopeptidases/metabolism , Computational Biology , DCC Receptor/genetics , DCC Receptor/metabolism , Data Mining , Humans , Phosphoric Monoester Hydrolases , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism
4.
FASEB J ; 33(1): 126-139, 2019 01.
Article in English | MEDLINE | ID: mdl-29965797

ABSTRACT

The circadian clock is a critical regulator of immune function. We recently highlighted a role for the circadian clock in a mouse model of pulmonary inflammation. The epithelial clock protein Bmal1 was required to regulate neutrophil recruitment in response to inflammatory challenge. Bmal1 regulated glucocorticoid receptor (GR) recruitment to the neutrophil chemokine, CXC chemokine ligand 5 (CXCL5), providing a candidate mechanism. We now show that clock control of pulmonary neutrophilia persists without rhythmic glucocorticoid availability. Epithelial GR-null mice had elevated expression of proinflammatory chemokines in the lung under homeostatic conditions. However, deletion of GR in the bronchial epithelium blocked rhythmic CXCL5 production, identifying GR as required to confer circadian control to CXCL5. Surprisingly, rhythmic pulmonary neutrophilia persisted, despite nonrhythmic CXCL5 responses, indicating additional circadian control mechanisms. Deletion of GR in myeloid cells alone did not prevent circadian variation in pulmonary neutrophilia and showed reduced neutrophilic inflammation in response to dexamethasone treatment. These new data show GR is required to confer circadian control to some inflammatory chemokines, but that this alone is insufficient to prevent circadian control of neutrophilic inflammation in response to inhaled LPS, with additional control mechanisms arising in the myeloid cell lineage.-Ince, L. M., Zhang, Z., Beesley, S., Vonslow, R. M., Saer, B. R., Matthews, L. C., Begley, N., Gibbs, J. E., Ray, D. W., Loudon, A. S. I. Circadian variation in pulmonary inflammatory responses is independent of rhythmic glucocorticoid signaling in airway epithelial cells.


Subject(s)
Circadian Rhythm/immunology , Epithelial Cells/immunology , Macrophages, Peritoneal/immunology , Neutrophils/immunology , Pneumonia/immunology , Receptors, Glucocorticoid/physiology , Respiratory System/immunology , Animals , Cells, Cultured , Chemokine CXCL5/metabolism , Circadian Rhythm/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Glucocorticoids/pharmacology , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration , Neutrophils/drug effects , Neutrophils/metabolism , Neutrophils/pathology , Pneumonia/drug therapy , Pneumonia/metabolism , Pneumonia/pathology , Respiratory System/drug effects , Respiratory System/metabolism , Respiratory System/pathology , Signal Transduction
5.
Proc Natl Acad Sci U S A ; 114(37): 9948-9953, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28851829

ABSTRACT

Glucocorticoid (GC) and hypoxic transcriptional responses play a central role in tissue homeostasis and regulate the cellular response to stress and inflammation, highlighting the potential for cross-talk between these two signaling pathways. We present results from an unbiased in vivo chemical screen in zebrafish that identifies GCs as activators of hypoxia-inducible factors (HIFs) in the liver. GCs activated consensus hypoxia response element (HRE) reporters in a glucocorticoid receptor (GR)-dependent manner. Importantly, GCs activated HIF transcriptional responses in a zebrafish mutant line harboring a point mutation in the GR DNA-binding domain, suggesting a nontranscriptional route for GR to activate HIF signaling. We noted that GCs increase the transcription of several key regulators of glucose metabolism that contain HREs, suggesting a role for GC/HIF cross-talk in regulating glucose homeostasis. Importantly, we show that GCs stabilize HIF protein in intact human liver tissue and isolated hepatocytes. We find that GCs limit the expression of Von Hippel Lindau protein (pVHL), a negative regulator of HIF, and that treatment with the c-src inhibitor PP2 rescued this effect, suggesting a role for GCs in promoting c-src-mediated proteosomal degradation of pVHL. Our data support a model for GCs to stabilize HIF through activation of c-src and subsequent destabilization of pVHL.


Subject(s)
Glucocorticoids/pharmacology , Glucocorticoids/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Animals , Cell Hypoxia/physiology , Humans , Hypoxia , Ligases/metabolism , Liver/metabolism , Protein Binding , Signal Transduction/physiology , Trans-Activators/metabolism , Ubiquitin-Protein Ligases/metabolism , Zebrafish , von Hippel-Lindau Disease/metabolism
6.
Proc Natl Acad Sci U S A ; 112(17): 5479-84, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25847991

ABSTRACT

The glucocorticoid receptor (GR) is a member of the nuclear receptor superfamily, which controls programs regulating cell proliferation, differentiation, and apoptosis. We have identified an unexpected role for GR in mitosis. We discovered that specifically modified GR species accumulate at the mitotic spindle during mitosis in a distribution that overlaps with Aurora kinases. We found that Aurora A was required to mediate mitosis-driven GR phosphorylation, but not recruitment of GR to the spindle. GR was necessary for mitotic progression, with increased time to complete mitosis, frequency of mitotic aberrations, and death in mitosis observed following GR knockdown. Complementation studies revealed an essential role for the GR ligand-binding domain, but no clear requirement for ligand binding in regulating chromosome segregation. The GR N-terminal domain, and specifically phosphosites S203 and S211, were not required. Reduced GR expression results in a cell cycle phenotype, with isolated cells from mouse and human subjects showing changes in chromosome content over prolonged passage. Furthermore, GR haploinsufficient mice have an increased incidence of tumor formation, and, strikingly, these tumors are further depleted for GR, implying additional GR loss as a consequence of cell transformation. We identified reduced GR expression in a panel of human liver, lung, prostate, colon, and breast cancers. We therefore reveal an unexpected role for the GR in promoting accurate chromosome segregation during mitosis, which is causally linked to tumorigenesis, making GR an authentic tumor suppressor gene.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Chromosome Segregation , Gene Expression Regulation, Neoplastic , Neoplasms/metabolism , Receptors, Glucocorticoid/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Humans , Mice , Mice, Mutant Strains , Mitosis/genetics , Neoplasms/genetics , Neoplasms/pathology , Protein Structure, Tertiary , Receptors, Glucocorticoid/genetics , Tumor Cells, Cultured , Tumor Suppressor Proteins/genetics
7.
J Cell Sci ; 128(4): 804-14, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25609710

ABSTRACT

Successful implantation requires the synchronization of viable embryonic development with endometrial receptivity. The mechanisms allowing for the initiation of crosstalk between the embryo and the endometrium remain elusive; however, recent studies have revealed that there are alterations in endometrial microRNAs (miRs) in women suffering repeated implantation failure and that one of the altered miRs is miR-145. We assessed the role of miR-145 and its target IGF1R, in early implantation. miR-145 overexpression and IGF1R knockdown were achieved in Ishikawa endometrial cells. Quantitative PCR, western blotting and 3'UTR luciferase reporter assays confirmed that IGF1R is a direct target of miR-145 in the endometrium. Attachment of mouse embryos or IGF1-coated beads to endometrial epithelial cells was used to study the effects of altered miR-145 and/or IGF1R expression on early implantation events. miR-145 overexpression or specific reduction of IGF1R impaired attachment in both cases. An IGF1R target protector prevented the miR-145-mediated reduction in IGF1R and reversed the effect of miR-145 overexpression on attachment. The data demonstrate that miR-145 influences embryo attachment by reducing the level of IGF1R in endometrium.


Subject(s)
Embryo Implantation/physiology , Endometrium/physiology , MicroRNAs/metabolism , Receptors, Somatomedin/metabolism , Animals , Cell Communication , Cell Line, Tumor , Embryo Culture Techniques , Embryo Implantation/genetics , Endometrium/metabolism , Female , Gene Expression Regulation, Developmental , Humans , Mice , Mice, Inbred C57BL , MicroRNAs/biosynthesis , MicroRNAs/genetics , Microspheres , RNA Interference , RNA, Small Interfering , Receptor, IGF Type 1 , Receptors, Somatomedin/biosynthesis , Receptors, Somatomedin/genetics
8.
J Cell Sci ; 126(Pt 14): 3159-69, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23687373

ABSTRACT

The ubiquitously expressed glucocorticoid receptor (GR) is a major drug target for inflammatory disease, but issues of specificity and target tissue sensitivity remain. We now identify high potency, non-steroidal GR ligands, GSK47867A and GSK47869A, which induce a novel conformation of the GR ligand-binding domain (LBD) and augment the efficacy of cellular action. Despite their high potency, GSK47867A and GSK47869A both induce surprisingly slow GR nuclear translocation, followed by prolonged nuclear GR retention, and transcriptional activity following washout. We reveal that GSK47867A and GSK47869A specifically alter the GR LBD structure at the HSP90-binding site. The alteration in the HSP90-binding site was accompanied by resistance to HSP90 antagonism, with persisting transactivation seen after geldanamycin treatment. Taken together, our studies reveal a new mechanism governing GR intracellular trafficking regulated by ligand binding that relies on a specific surface charge patch within the LBD. This conformational change permits extended GR action, probably because of altered GR-HSP90 interaction. This chemical series may offer anti-inflammatory drugs with prolonged duration of action due to altered pharmacodynamics rather than altered pharmacokinetics.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Benzamides/pharmacology , HSP90 Heat-Shock Proteins/metabolism , Indazoles/pharmacology , Receptors, Glucocorticoid/metabolism , Androstadienes/chemistry , Androstadienes/pharmacology , Anti-Inflammatory Agents/chemistry , Benzamides/chemistry , Benzoquinones/pharmacology , Dexamethasone/chemistry , Dexamethasone/pharmacology , Fluticasone , HeLa Cells , Humans , Immune System Diseases , Indazoles/chemistry , Lactams, Macrocyclic/pharmacology , Ligands , Molecular Targeted Therapy , Protein Conformation , Protein Interaction Domains and Motifs/genetics , Protein Transport , Receptors, Glucocorticoid/agonists , Transcriptional Activation/drug effects
9.
Front Cell Dev Biol ; 11: 1129015, 2023.
Article in English | MEDLINE | ID: mdl-37138793

ABSTRACT

CD146, also known as melanoma cell adhesion molecule (MCAM), is expressed in numerous cancers and has been implicated in the regulation of metastasis. We show that CD146 negatively regulates transendothelial migration (TEM) in breast cancer. This inhibitory activity is reflected by a reduction in MCAM gene expression and increased promoter methylation in tumour tissue compared to normal breast tissue. However, increased CD146/MCAM expression is associated with poor prognosis in breast cancer, a characteristic that is difficult to reconcile with inhibition of TEM by CD146 and its epigenetic silencing. Single cell transcriptome data revealed MCAM expression in multiple cell types, including the malignant cells, tumour vasculature and normal epithelium. MCAM expressing malignant cells were in the minority and expression was associated with epithelial to mesenchymal transition (EMT). Furthermore, gene expression signatures defining invasiveness and a stem cell-like phenotype were most strongly associated with mesenchymal-like tumour cells with low levels of MCAM mRNA, likely to represent a hybrid epithelial/mesenchymal (E/M) state. Our results show that high levels of MCAM gene expression are associated with poor prognosis in breast cancer because they reflect tumour vascularisation and high levels of EMT. We suggest that high levels of mesenchymal-like malignant cells reflect large populations of hybrid E/M cells and that low CD146 expression on these hybrid cells is permissive for TEM, aiding metastasis.

10.
Elife ; 92020 01 15.
Article in English | MEDLINE | ID: mdl-31939735

ABSTRACT

Efficient mitochondrial function is required in tissues with high energy demand such as the heart, and mitochondrial dysfunction is associated with cardiovascular disease. Expression of mitochondrial proteins is tightly regulated in response to internal and external stimuli. Here we identify a novel mechanism regulating mitochondrial content and function, through BUD23-dependent ribosome generation. BUD23 was required for ribosome maturation, normal 18S/28S stoichiometry and modulated the translation of mitochondrial transcripts in human A549 cells. Deletion of Bud23 in murine cardiomyocytes reduced mitochondrial content and function, leading to severe cardiomyopathy and death. We discovered that BUD23 selectively promotes ribosomal interaction with low GC-content 5'UTRs. Taken together we identify a critical role for BUD23 in bioenergetics gene expression, by promoting efficient translation of mRNA transcripts with low 5'UTR GC content. BUD23 emerges as essential to mouse development, and to postnatal cardiac function.


Cells need to make proteins to survive, so they have protein-making machines called ribosomes. Ribosomes are themselves made out of proteins and RNA (a molecule similar to DNA), and they are assembled by other proteins that bring ribosomal components together and modify them until the ribosomes are functional.Mitochondria are compartments in the cell that are in charge of providing it with energy. To do this they require several proteins produced by the ribosomes. If not enough mitochondrial proteins are made, mitochondria cannot provide enough energy for the cell to survive.One of the proteins involved in modifying ribosomes so they are functional is called BUD23. People with certain diseases, such as Williams-Beuren syndrome, do not make enough BUD23; but it was unknown what specific effects resulted from a loss of BUD23.To answer this question, Baxter et al. first genetically removed BUD23 from human cells, and then checked what happened to protein production. They found that ribosomes in human cells with no BUD23 were different than in normal cells, and that cells without BUD23 produced different proteins, which did not always perform their roles correctly. Proteins in the mitochondria are one of the main groups affected by the absence of BUD23. To determine what effects these modified mitochondrial proteins would have in an animal, Baxter et al. genetically modified mice so that they no longer produced BUD23. These mice developed heart problems caused by their mitochondria not working correctly and being unable to provide the energy the heart cells needed, eventually leading to heart failure. Heart problems are common in people with Williams-Beuren syndrome.Many diseases arise when a person's mitochondria do not work properly, but it is often unclear why. These experiments suggest that low levels of BUD23 or faulty ribosomes may be causing mitochondria to work poorly in some of these diseases, which could lead to the development of new therapies.


Subject(s)
Methyltransferases , Mitochondria , Myocytes, Cardiac/metabolism , Ribosomes/metabolism , 5' Untranslated Regions/genetics , A549 Cells , Animals , Base Composition/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Embryo, Mammalian , Female , Humans , Male , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Mitochondria/metabolism , Mitochondria/physiology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Myocytes, Cardiac/cytology , Protein Interaction Maps/genetics , Protein Interaction Maps/physiology , Ribosomes/genetics
11.
Endocrinology ; 149(10): 5199-208, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18583416

ABSTRACT

The IGFs mediate their effects on cell function through the type I IGF receptor and numerous intracellular signalling molecules, including the phosphatidylinositol 3-kinase (PI-3K)/Akt pathway. The type I IGF receptor also binds to the caveolae protein caveolin-1, but the impact of caveolae on IGF/PI-3K/Akt signalling remains controversial. We have examined the effect of complete (knockout) and partial (knockdown) caveolin-1 deficiency on cellular IGF effects mediated via the PI-3K/Akt pathway. Under basal conditions, caveolin-1-deficient mouse embryonic fibroblast cells [MF(-/-)] incorporated significantly more [3H]thymidine than wild-type mouse embryonic fibroblast cells [MF(+/+)]; however, small hairpin RNA-mediated knockdown of caveolin-1 (80% reduction) in 3T3L1 fibroblasts had no effect on basal proliferation. Interestingly, IGF-I induced proliferation was similar in MF(-/-) and MF(+/+) cells, whereas caveolin-1 knockdown promoted a hyperproliferative response to IGF-I [pkDCav3T3L1(80) 12.4+/-0.4-fold; pkDShuffle3T3L1 4.3+/-0.2-fold induction; P<0.01]. Immunoblot analysis showed that caveolin-1 knockdown had no affect on Akt expression or activation. However, in MF(-/-) cells, IGF-I-stimulated phosphorylation of Akt was reduced despite up-regulated Akt levels. Further investigation demonstrated that caveolin knockout up-regulated Akt-2 and Akt-3 isoform expression, but Akt-1 expression was down-regulated; interestingly, coimmunoprecipitation studies revealed Akt-1 as the predominant isoform to be phosphorylated in response to IGF-I. In summary, caveolin-1 deficiency promotes a hyperproliferative response to IGF-I that is unrelated to Akt expression/activation. However, cells that lack caveolin are able to respond appropriately to IGF-I through compensatory changes in Akt isoform expression. These data posit caveolin-1 as a component of the IGF/PI-3K/Akt signalling modulus regulating cellular proliferation with implications for diseases, including cancers, which have altered caveolin expression.


Subject(s)
Caveolin 1/metabolism , Insulin-Like Growth Factor I/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , 3T3-L1 Cells , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis/drug effects , Apoptosis/physiology , Caveolin 1/genetics , Cell Division/drug effects , Cell Division/physiology , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression/physiology , Insulin Receptor Substrate Proteins , Insulin-Like Growth Factor I/pharmacology , Mice , Mice, Knockout , Proto-Oncogene Proteins c-akt/genetics , RNA, Small Interfering , Receptor, IGF Type 1/genetics , Signal Transduction/drug effects , Up-Regulation/drug effects , Up-Regulation/physiology
12.
J Clin Invest ; 128(10): 4454-4471, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30179226

ABSTRACT

The glucocorticoid receptor (GR) is a major drug target in inflammatory disease. However, chronic glucocorticoid (GC) treatment leads to disordered energy metabolism, including increased weight gain, adiposity, and hepatosteatosis - all programs modulated by the circadian clock. We demonstrated that while antiinflammatory GC actions were maintained irrespective of dosing time, the liver was significantly more GC sensitive during the day. Temporal segregation of GC action was underpinned by a physical interaction of GR with the circadian transcription factor REVERBa and co-binding with liver-specific hepatocyte nuclear transcription factors (HNFs) on chromatin. REVERBa promoted efficient GR recruitment to chromatin during the day, acting in part by maintaining histone acetylation, with REVERBa-dependent GC responses providing segregation of carbohydrate and lipid metabolism. Importantly, deletion of Reverba inverted circadian liver GC sensitivity and protected mice from hepatosteatosis induced by chronic GC administration. Our results reveal a mechanism by which the circadian clock acts through REVERBa in liver on elements bound by HNF4A/HNF6 to direct GR action on energy metabolism.


Subject(s)
Chromatin/metabolism , Circadian Clocks/drug effects , Fatty Liver/metabolism , Glucocorticoids/adverse effects , Liver/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Animals , Chromatin/genetics , Chromatin/pathology , Circadian Clocks/genetics , Energy Metabolism/drug effects , Energy Metabolism/genetics , Fatty Liver/chemically induced , Fatty Liver/genetics , Fatty Liver/pathology , Glucocorticoids/pharmacology , HEK293 Cells , Humans , Liver/pathology , Mice , Mice, Knockout , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
13.
Sci Rep ; 6: 26419, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27226058

ABSTRACT

The glucocorticoid receptor (GR), a nuclear receptor and major drug target, has a highly conserved minor splice variant, GRγ, which differs by a single arginine within the DNA binding domain. GRγ, which comprises 10% of all GR transcripts, is constitutively expressed and tightly conserved through mammalian evolution, suggesting an important non-redundant role. However, to date no specific role for GRγ has been reported. We discovered significant differences in subcellular localisation, and nuclear-cytoplasmic shuttling in response to ligand. In addition the GRγ transcriptome and protein interactome was distinct, and with a gene ontology signal for mitochondrial regulation which was confirmed using Seahorse technology. We propose that evolutionary conservation of the single additional arginine in GRγ is driven by a distinct, non-redundant functional profile, including regulation of mitochondrial function.


Subject(s)
Adenosine Triphosphate/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Receptors, Glucocorticoid/metabolism , A549 Cells , Cell Nucleus/metabolism , Cytoplasm , Evolution, Molecular , Gene Expression Profiling , Gene Regulatory Networks , HEK293 Cells , Humans , Models, Molecular , Protein Binding , Proteomics , Receptors, Glucocorticoid/chemistry
14.
Endocrinology ; 146(12): 5463-73, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16166225

ABSTRACT

The type 1 IGF receptor (IGF-IR) is thought to localize to a subset of lipid rafts, known as caveolae, but the impact on IGF signaling remains controversial. We investigated this potential regulatory mechanism by assessing IGF function in caveolae-positive (3T3L1 and NWTb3) and -negative (HepG2) cells. Coimmunoprecipitation studies demonstrated that IGF-IR and insulin receptor substrate 1 associated with caveolin, a caveolar marker, in 3T3L1 and NWTb3 cells. Subcellular fractionation showed that methyl-cyclodextrin, which disrupts lipid rafts by sequestration of cholesterol, disrupted the colocalization of caveolin and the IGF-IR at the plasma membrane. Methyl-cyclodextrin did not alter IGF-I-induced 3T3L1 or NWTb3 proliferation but significantly impaired the ability of IGF-I to protect these cells from apoptosis. Immunoblotting revealed that methyl-cyclodextrin had no effect on IGF-I-induced activation of the IGF-IR or insulin receptor substrate 1 but increased and decreased the phosphorylation of MAPK and protein kinase B, respectively. In caveolae-negative HepG2 cells, the effect of methyl-cyclodextrin on IGF signaling and cellular function was similar to that observed in caveolae-positive 3T3L1 and NWTb3 cells. Furthermore, transfecting caveolin into HepG2 cells to give morphologically identifiable caveolae made no difference to IGF action, despite a demonstrable interaction between caveolin and the IGF-IR. This suggests that although IGF-IR localizes to caveolin-rich subcellular fractions and coimmunoprecipitates with caveolin, caveolae may not be obligatory for IGF signaling.


Subject(s)
Caveolae/physiology , Cell Physiological Phenomena , Cells/cytology , Cholesterol/deficiency , Mitosis/physiology , Somatomedins/physiology , Animals , Caveolins/deficiency , Caveolins/metabolism , Cell Line , Cell Survival/physiology , Cells/metabolism , Humans , Insulin Receptor Substrate Proteins , Mice , Phosphoproteins/metabolism , Protein Structure, Tertiary/physiology , Receptor, IGF Type 1/metabolism , Signal Transduction/drug effects , Somatomedins/genetics , Somatomedins/metabolism , Tissue Distribution , beta-Cyclodextrins/pharmacology
15.
J Endocrinol ; 223(2): 155-66, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25161081

ABSTRACT

Glucocorticoids (Gc) are potent anti-inflammatory agents with wide clinical application. We have previously shown that increased serum concentration significantly attenuates regulation of a simple Gc-responsive reporter. We now find that glucocorticoid receptor (GR) regulation of some endogenous transactivated but not transrepressed genes is impaired, suggesting template specificity. Serum did not directly affect GR expression, activity or trafficking, implicating GR crosstalk with other signalling pathways. Indeed, a JNK inhibitor completely abolished the serum effect. We identified the Gc modulating serum component as cholesterol. Cholesterol loading mimicked the serum effect, which was readily reversed by JNK inhibition. Chelation of serum cholesterol with methyl-ß-cyclodextrin or inhibition of cellular cholesterol synthesis with simvastatin potentiated the Gc response. To explore the effect in vivo we used ApoE(-/-) mice, a model of hypercholesterolaemia. Consistent with our in vitro studies, we find no impact of elevated cholesterol on the expression of GR, or on the hypothalamic-pituitary-adrenal axis, measured by dexamethasone suppression test. Instead we find selective Gc resistance on some hepatic target genes in ApoE(-/-) mice. Therefore, we have discovered an unexpected role for cholesterol as a selective modulator of Gc action in vivo. Taken together these findings reveal a new environmental constraint on Gc action with relevance to both inflammation and cancer.


Subject(s)
Cholesterol/blood , Drug Resistance , Glucocorticoids/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , Animals , Apolipoproteins E/genetics , Enzyme Activation/drug effects , Female , HeLa Cells , Humans , Metabolism, Inborn Errors/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Glucocorticoid/deficiency , Receptors, Glucocorticoid/genetics
16.
Steroids ; 77(11): 1041-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22728894

ABSTRACT

Glucocorticoids (GCs) are the most potent anti-inflammatory agents known. A major factor limiting their clinical use is the wide variation in responsiveness to therapy. The high doses of GC required for less responsive patients means a high risk of developing very serious side effects. Variation in sensitivity between individuals can be due to a number of factors. Congenital, generalized GC resistance is very rare, and is due to mutations in the glucocorticoid receptor (GR) gene, the receptor that mediates the cellular effects of GC. A more common problem is acquired GC resistance. This localized, disease-associated GC resistance is a serious therapeutic concern and limits therapeutic response in patients with chronic inflammatory disease. It is now believed that localized resistance can be attributed to changes in the cellular microenvironment, as a consequence of chronic inflammation. Multiple factors have been identified, including alterations in both GR-dependent and -independent signaling downstream of cytokine action, oxidative stress, hypoxia and serum derived factors. The underlying mechanisms are now being elucidated, and are discussed here. Attempts to augment tissue GC sensitivity are predicted to permit safe and effective use of low-dose GC therapy in inflammatory disease.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Glucocorticoids/pharmacology , Receptors, Glucocorticoid/genetics , Anti-Inflammatory Agents/therapeutic use , Cellular Microenvironment , Chronic Disease , Cytokines , Drug Resistance , Glucocorticoids/therapeutic use , Humans , Hypoxia/metabolism , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Mutation , Oxidative Stress , Polymorphism, Genetic , Receptors, Glucocorticoid/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL