Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G120-G132, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38014444

ABSTRACT

Seladelpar, a selective peroxisome proliferator-activated receptor δ (PPARδ) agonist, improves markers of hepatic injury in human liver diseases, but histological improvement of nonalcoholic steatohepatitis (NASH) and liver fibrosis has been challenging with any single agent. To discover how complementary agents could work with seladelpar to achieve optimal outcomes, this study evaluated a variety of therapeutics (alone and in combination) in a mouse model of NASH. Mice on a high-fat amylin liver NASH (AMLN) diet were treated for 12 wk with seladelpar, GLP-1-R (glucagon-like peptide-1 receptor) agonist liraglutide, apoptosis signal-regulating kinase 1 (ASK1) inhibitor selonsertib, farnesoid X receptor (FXR) agonist obeticholic acid, and with seladelpar in combination with liraglutide or selonsertib. Seladelpar treatment markedly improved plasma markers of liver function. Seladelpar alone or in combination resulted in stark reductions in liver fibrosis (hydroxyproline, new collagen synthesis rate, mRNA indices of fibrosis, and fibrosis staining) compared with vehicle and the other single agents. Robust reductions in liver steatosis were also observed. Seladelpar produced a reorganization of metabolic gene expression, particularly for those genes promoting peroxisomal and mitochondrial lipid oxidation. In summary, substantial improvements in NASH and NASH-induced fibrosis were observed with seladelpar alone and in combination with liraglutide in this model. Broad gene expression analysis suggests seladelpar should be effective in concert with diverse mechanisms of action.NEW & NOTEWORTHY NASH is a chronic, progressive, and increasingly problematic liver disease that has been resistant to treatment with individual therapeutics. In this study using a diet-induced mouse model of NASH, we found that the PPARδ agonist seladelpar reduced fibrosis and NASH pathology alone and in combinations with a GLP-1-R agonist (liraglutide) or an ASK1 inhibitor (selonsertib). Liver transcriptome analysis comparing each agent and coadministration suggests seladelpar should be effective in combination with a variety of therapeutics.


Subject(s)
Acetates , Benzamides , Complementary Therapies , Imidazoles , Non-alcoholic Fatty Liver Disease , PPAR delta , Pyridines , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Liraglutide/pharmacology , Liraglutide/therapeutic use , PPAR delta/metabolism , PPAR delta/pharmacology , Liver/metabolism , Liver Cirrhosis/metabolism , Inflammation/metabolism , Mice, Inbred C57BL
2.
Hepatology ; 74(3): 1287-1299, 2021 09.
Article in English | MEDLINE | ID: mdl-33743554

ABSTRACT

BACKGROUND AND AIMS: It is proposed that impaired expansion of subcutaneous adipose tissue (SAT) and an increase in adipose tissue (AT) fibrosis causes ectopic lipid accumulation, insulin resistance (IR), and metabolically unhealthy obesity. We therefore evaluated whether a decrease in SAT expandability, assessed by measuring SAT lipogenesis (triglyceride [TG] production), and an increase in SAT fibrogenesis (collagen production) are associated with NAFLD and IR in persons with obesity. APPROACH AND RESULTS: In vivo abdominal SAT lipogenesis and fibrogenesis, expression of SAT genes involved in extracellular matrix (ECM) formation, and insulin sensitivity were assessed in three groups of participants stratified by adiposity and intrahepatic TG (IHTG) content: (1) healthy lean with normal IHTG content (Lean-NL; n = 12); (2) obese with normal IHTG content and normal glucose tolerance (Ob-NL; n = 25); and (3) obese with NAFLD and abnormal glucose metabolism (Ob-NAFLD; n = 25). Abdominal SAT TG synthesis rates were greater (P < 0.05) in both the Ob-NL (65.9 ± 4.6 g/wk) and Ob-NAFLD groups (71.1 ± 6.7 g/wk) than the Lean-NL group (16.2 ± 2.8 g/wk) without a difference between the Ob-NL and Ob-NAFLD groups. Abdominal SAT collagen synthesis rate and the composite expression of genes encoding collagens progressively increased from the Lean-NL to the Ob-NL to the Ob-NAFLD groups and were greater in the Ob-NAFLD than the Ob-NL group (P < 0.05). Composite expression of collagen genes was inversely correlated with both hepatic and whole-body insulin sensitivity (P < 0.001). CONCLUSIONS: AT expandability is not impaired in persons with obesity and NAFLD. However, SAT fibrogenesis is greater in persons with obesity and NAFLD than in those with obesity and normal IHTG content, and is inversely correlated with both hepatic and whole-body insulin sensitivity.


Subject(s)
Collagen/metabolism , Glucose Intolerance/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Subcutaneous Fat, Abdominal/metabolism , Triglycerides/metabolism , Adipose Tissue/metabolism , Adult , Extracellular Matrix/metabolism , Female , Fibrosis , Glucose Intolerance/complications , Humans , Insulin Resistance , Lipogenesis , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Non-alcoholic Fatty Liver Disease/complications , Obesity/complications , Subcutaneous Fat/metabolism
3.
J Physiol ; 599(23): 5215-5227, 2021 12.
Article in English | MEDLINE | ID: mdl-34569076

ABSTRACT

Boys with Duchenne muscular dystrophy (DMD) experience a progressive loss of functional muscle mass, with fibrosis and lipid accumulation. Accurate evaluation of whole-body functional muscle mass (MM) in DMD patients has not previously been possible and the rate of synthesis of muscle proteins remains unexplored. We used non-invasive, stable isotope-based methods from plasma and urine to measure the fractional rate of muscle protein synthesis (FSR) functional muscle mass (MM), and fat free mass (FFM) in 10 DMD (6-17 years) and 9 age-matched healthy subjects. An oral dose of D3 creatine in 70% 2 H2 O was administered to determine MM and FFM followed by daily 70% 2 H2 O to measure protein FSR. Functional MM was profoundly reduced in DMD subjects compared to controls (17% vs. 41% of body weight, P < 0.0001), particularly in older, non-ambulant patients in whom functional MM was extraordinarily low (<13% body weight). We explored the urine proteome to measure FSR of skeletal muscle-derived proteins. Titin, myosin light chain and gelsolin FSRs were substantially lower in DMD subjects compared to controls (27%, 11% and 40% of control, respectively, P < 0.0001) and were strongly correlated. There were no differences in muscle-derived sarcoplasmic proteins FSRs (creatine kinase M-type and carbonic anhydrase-3) measured in plasma. These data demonstrate that both functional MM, body composition and muscle protein synthesis rates can be quantified non-invasively and are markedly different between DMD and control subjects and suggest that the rate of contractile but not sarcoplasmic protein synthesis is affected by a lack of dystrophin. KEY POINTS: Duchenne muscular dystrophy (DMD) results in a progressive loss of functional skeletal muscle but total body functional muscle mass or rates of muscle protein synthesis have not previously been assessed in these patients. D3 -creatine dilution was used to measure total functional muscle mass and oral 2 H2 O was used to examine the rates of muscle protein synthesis non-invasively in boys with DMD and healthy controls using urine samples. Muscle mass was profoundly lower in DMD compared to control subjects, particularly in older, non-ambulant patients. The rates of contractile protein synthesis but not sarcoplasmic proteins were substantially lower in DMD. These results may provide non-invasive biomarkers for disease progression and therapeutic efficacy in DMD and other neuromuscular diseases.


Subject(s)
Contractile Proteins/biosynthesis , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne , Adolescent , Child , Humans , Male , Muscle Contraction , Muscular Dystrophy, Duchenne/physiopathology , Proteome
4.
Clin Infect Dis ; 69(3): 542-545, 2019 07 18.
Article in English | MEDLINE | ID: mdl-30590481

ABSTRACT

In a pilot study, heavy water labeling was used to determine hepatitis B surface antigen (HBsAg) turnover rates in chronic hepatitis B (CHB) patients. The mean (standard deviation) half-life of HBsAg in blood was 6.7 (5.5) days, which reflects recent production in the liver and supports strategies aimed at reducing HBsAg production in CHB patients.


Subject(s)
Deuterium Oxide/administration & dosage , Hepatitis B Surface Antigens/blood , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/virology , Administration, Oral , Adult , Aged , DNA, Viral/blood , Female , Half-Life , Hepatitis B e Antigens/blood , Humans , Liver/virology , Male , Middle Aged , Pilot Projects , Saliva/virology
5.
Obesity (Silver Spring) ; 32(3): 593-602, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38410080

ABSTRACT

OBJECTIVE: The objective of this study was to examine the hypothesis that abdominal and gluteal adipocyte turnover, lipid dynamics, and fibrogenesis are dysregulated among insulin-resistant (IR) compared with insulin-sensitive (IS) adolescents with obesity. METHODS: Seven IS and seven IR adolescents with obesity participated in a 3-h oral glucose tolerance test and a multi-section magnetic resonance imaging scan of the abdominal region to examine body fat distribution patterns and liver fat content. An 8-week 70% deuterated water (2 H2 O) labeling protocol examined adipocyte turnover, lipid dynamics, and fibrogenesis in vivo from biopsied abdominal and gluteal fat. RESULTS: Abdominal and gluteal subcutaneous adipose tissue (SAT) turnover rates of lipid components were similar among IS and IR adolescents with obesity. However, the insoluble collagen (type I, subunit α2) isoform measured from abdominal, but not gluteal, SAT was elevated in IR compared with IS individuals. In addition, abdominal insoluble collagen Iα2 was associated with ratios of visceral-to-total (visceral adipose tissue + SAT) abdominal fat and whole-body and adipose tissue insulin signaling, and it trended toward a positive association with liver fat content. CONCLUSIONS: Altered extracellular matrix dynamics, but not expandability, potentially decreases abdominal SAT lipid storage capacity, contributing to the pathophysiological pathways linking adipose tissue and whole-body IR with altered ectopic storage of lipids within the liver among IR adolescents with obesity.


Subject(s)
Insulin Resistance , Pediatric Obesity , Child , Humans , Adolescent , Insulin Resistance/physiology , Pediatric Obesity/metabolism , Insulin/metabolism , Subcutaneous Fat/diagnostic imaging , Subcutaneous Fat/metabolism , Intra-Abdominal Fat/metabolism , Lipids , Extracellular Matrix , Collagen/metabolism
6.
J Clin Endocrinol Metab ; 107(8): e3254-e3263, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35532889

ABSTRACT

CONTEXT: Effects of testosterone on integrated muscle protein metabolism and muscle mass during energy deficit are undetermined. OBJECTIVE: The objective was to determine the effects of testosterone on mixed-muscle protein synthesis (MPS), proteome-wide fractional synthesis rates (FSR), and skeletal muscle mass during energy deficit. DESIGN: This was a randomized, double-blind, placebo-controlled trial. SETTING: The study was conducted at Pennington Biomedical Research Center. PARTICIPANTS: Fifty healthy men. INTERVENTION: The study consisted of 14 days of weight maintenance, followed by a 28-day 55% energy deficit with 200 mg testosterone enanthate (TEST, n = 24) or placebo (PLA, n = 26) weekly, and up to 42 days of ad libitum recovery feeding. MAIN OUTCOME MEASURES: Mixed-MPS and proteome-wide FSR before (Pre), during (Mid), and after (Post) the energy deficit were determined using heavy water (days 1-42) and muscle biopsies. Muscle mass was determined using the D3-creatine dilution method. RESULTS: Mixed-MPS was lower than Pre at Mid and Post (P < 0.0005), with no difference between TEST and PLA. The proportion of individual proteins with numerically higher FSR in TEST than PLA was significant by 2-tailed binomial test at Post (52/67; P < 0.05), but not Mid (32/67; P > 0.05). Muscle mass was unchanged during energy deficit but was greater in TEST than PLA during recovery (P < 0.05). CONCLUSIONS: The high proportion of individual proteins with greater FSR in TEST than PLA at Post suggests exogenous testosterone exerted a delayed but broad stimulatory effect on synthesis rates across the muscle proteome during energy deficit, resulting in muscle mass accretion during subsequent recovery.


Subject(s)
Energy Metabolism , Muscle Proteins , Muscle, Skeletal , Proteome , Testosterone/analogs & derivatives , Double-Blind Method , Energy Metabolism/drug effects , Humans , Male , Muscle Proteins/biosynthesis , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Polyesters/metabolism , Polyesters/pharmacology , Proteome/metabolism , Testosterone/administration & dosage , Testosterone/pharmacology
7.
Nat Metab ; 2(10): 1163-1178, 2020 10.
Article in English | MEDLINE | ID: mdl-32929234

ABSTRACT

Acetyl-CoA carboxylase (ACC) catalyses the first step of de novo lipogenesis (DNL). Pharmacologic inhibition of ACC has been of interest for therapeutic intervention in a wide range of diseases. We demonstrate here that ACC and DNL are essential for platelet production in humans and monkeys, but in not rodents or dogs. During clinical evaluation of a systemically distributed ACC inhibitor, unexpected dose-dependent reductions in platelet count were observed. While platelet count reductions were not observed in rat and dog toxicology studies, subsequent studies in cynomolgus monkeys recapitulated these platelet count reductions with a similar concentration response to that in humans. These studies, along with ex vivo human megakaryocyte maturation studies, demonstrate that platelet lowering is a consequence of DNL inhibition likely to result in impaired megakaryocyte demarcation membrane formation. These observations demonstrate that while DNL is a minor quantitative contributor to global lipid balance in humans, DNL is essential to specific lipid pools of physiological importance.


Subject(s)
Blood Platelets , Lipogenesis/physiology , Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/metabolism , Animals , Diabetes Mellitus, Type 2/drug therapy , Dogs , Dose-Response Relationship, Drug , Double-Blind Method , Enzyme Inhibitors/pharmacology , Gene Expression/drug effects , Humans , Lipid Metabolism , Macaca fascicularis , Megakaryocytes/physiology , Platelet Count , Rats
SELECTION OF CITATIONS
SEARCH DETAIL