Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569447

ABSTRACT

High-risk neuroblastoma remains a profound clinical challenge that requires eradication of neuroblastoma cells from a variety of organ sites, including bone marrow, liver, and CNS, to achieve a cure. While preclinical modeling is a powerful tool for the development of novel cancer therapies, the lack of widely available models of metastatic neuroblastoma represents a significant barrier to the development of effective treatment strategies. To address this need, we report a novel luciferase-expressing derivative of the widely used Th-MYCN mouse. While our model recapitulates the non-metastatic neuroblastoma development seen in the parental transgenic strain, transplantation of primary tumor cells from disease-bearing mice enables longitudinal monitoring of neuroblastoma growth at distinct sites in immune-deficient or immune-competent recipients. The transplanted tumors retain GD2 expression through many rounds of serial transplantation and are sensitive to GD2-targeted immune therapy. With more diverse tissue localization than is seen with human cell line-derived xenografts, this novel model for high-risk neuroblastoma could contribute to the optimization of immune-based treatments for this deadly disease.


Subject(s)
Neuroblastoma , Mice , Humans , Animals , N-Myc Proto-Oncogene Protein , Mice, Transgenic , Neuroblastoma/therapy , Neuroblastoma/drug therapy , Adaptation, Physiological , Acclimatization
2.
Cytometry A ; 101(1): 57-71, 2022 01.
Article in English | MEDLINE | ID: mdl-34128309

ABSTRACT

With the continued poor outcome of relapsed acute lymphoblastic leukemia (ALL), new patient-specific approaches for disease progression monitoring and therapeutic intervention are urgently needed. Patient-derived xenografts (PDX) of primary ALL in immune-deficient mice have become a powerful tool for studying leukemia biology and therapy response. In PDX mice, the immunophenotype of the patient's leukemia is commonly believed to be stably propagated. In patients, however, the surface marker expression profile of the leukemic population often displays poorly understood immunophenotypic shifts during chemotherapy and ALL progression. We therefore developed a translational flow cytometry platform to study whether the patient-specific immunophenotype is faithfully recapitulated in PDX mice. To enable valid assessment of immunophenotypic stability and subpopulation complexity of the patient's leukemia after xenotransplantation, we comprehensively immunophenotyped diagnostic B-ALL from children and their matched PDX using identical, clinically standardized flow protocols and instrument settings. This cross-standardized approach ensured longitudinal stability and cross-platform comparability of marker expression intensity at high phenotyping depth. This analysis revealed readily detectable changes to the patient leukemia-associated immunophenotype (LAIP) after xenotransplantation. To further investigate the mechanism underlying these complex immunophenotypic shifts, we applied an integrated analytical approach that combined clinical phenotyping depth and high analytical sensitivity with unbiased high-dimensional algorithm-based analysis. This high-resolution analysis revealed that xenotransplantation achieves patient-specific propagation of phenotypically stable B-ALL subpopulations and that the immunophenotypic shifts observed at the level of bulk leukemia were consistent with changes in underlying subpopulation abundance. By incorporating the immunophenotypic complexity of leukemic populations, this novel cross-standardized analytical platform could greatly expand the utility of PDX for investigating ALL progression biology and assessing therapies directed at eliminating relapse-driving leukemic subpopulations.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cells, B-Lymphoid , Animals , Flow Cytometry , Heterografts , Humans , Immunophenotyping , Mice , Transplantation, Heterologous
3.
EMBO Rep ; 20(9): e47495, 2019 09.
Article in English | MEDLINE | ID: mdl-31338967

ABSTRACT

The concerted action of many protein kinases helps orchestrate the error-free progression through mitosis of mammalian cells. The roles and regulation of some prominent mitotic kinases, such as cyclin-dependent kinases, are well established. However, these and other known mitotic kinases alone cannot account for the extent of protein phosphorylation that has been reported during mammalian mitosis. Here we demonstrate that CK1α, of the casein kinase 1 family of protein kinases, localises to the spindle and is required for proper spindle positioning and timely cell division. CK1α is recruited to the spindle by FAM83D, and cells devoid of FAM83D, or those harbouring CK1α-binding-deficient FAM83DF283A/F283A knockin mutations, display pronounced spindle positioning defects, and a prolonged mitosis. Restoring FAM83D at the endogenous locus in FAM83D-/- cells, or artificially delivering CK1α to the spindle in FAM83DF283A/F283A cells, rescues these defects. These findings implicate CK1α as new mitotic kinase that orchestrates the kinetics and orientation of cell division.


Subject(s)
Casein Kinase I/metabolism , Cell Cycle Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Spindle Apparatus/metabolism , Animals , Casein Kinase I/genetics , Cell Cycle/genetics , Cell Cycle/physiology , Cell Cycle Proteins/genetics , Cell Line, Tumor , Flow Cytometry , HeLa Cells , Humans , Mice , Mice, Knockout , Microtubule-Associated Proteins/genetics , Mitosis/genetics , Mitosis/physiology
4.
Eur J Immunol ; 48(5): 803-814, 2018 05.
Article in English | MEDLINE | ID: mdl-29315518

ABSTRACT

Expansion and death of effector CD8 T cells are regulated to limit immunopathology and cells that escape contraction go on to generate immunological memory. CD44, a receptor for the extracellular matrix component hyaluronan, is a marker of activated and memory T cells. Here, we show with a murine model that the increase in CD44 expression and hyaluronan binding induced upon CD8 T cell activation was proportional to the strength of TCR engagement, thereby identifying the most strongly activated T cells. When CD44-/- and CD44+/+ OT-I CD8 T cells were adoptively transferred into mice challenged with Listeria-OVA, there was a slight increase in the percentage of CD44+/+ cells at the effector site. However, CD44+/+ cells were out-competed by CD44-/- cells after the contraction phase in the lymphoid tissues, and the CD44-/- cells preferentially formed more memory cells. The hyaluronan-binding CD44+/+ CD8 effector T cells showed increased pAkt expression, higher glucose uptake, and were more susceptible to cell death during the contraction phase compared to non-binding CD44+/+ and CD44-/- OT-I CD8 T cells, suggesting that CD44 and its engagement with hyaluronan skews CD8 T cells toward a terminal effector differentiation state that reduces their ability to form memory cells.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Hyaluronan Receptors/metabolism , Hyaluronic Acid/metabolism , Immunologic Memory/immunology , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/transplantation , Cell Differentiation/immunology , Hyaluronan Receptors/genetics , Listeria monocytogenes/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Ovalbumin/immunology , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Antigen, T-Cell/immunology
5.
Semin Cancer Biol ; 35 Suppl: S5-S24, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25869442

ABSTRACT

Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology.


Subject(s)
Genomic Instability/drug effects , Neoplasms/diet therapy , Neoplasms/genetics , Centrosome/metabolism , DNA Damage/genetics , DNA Repair/genetics , Diet , Genomic Instability/genetics , Humans , Neoplasms/pathology , Prognosis , Telomerase/antagonists & inhibitors , Telomerase/genetics
6.
J Pathol ; 233(3): 247-57, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24604753

ABSTRACT

Most patients with tuberous sclerosis complex (TSC) develop cortical tubers that cause severe neurological disabilities. It has been suggested that defects in neuronal differentiation and/or migration underlie the appearance of tubers. However, the precise molecular alterations remain largely unknown. Here, by combining cytological and immunohistochemical analyses of tubers from nine TSC patients (four of them diagnosed with TSC2 germline mutations), we show that alteration of microtubule biology through ROCK2 signalling contributes to TSC neuropathology. All tubers showed a larger number of binucleated neurons than expected relative to control cortex. An excess of normal and altered cytokinetic figures was also commonly observed. Analysis of centrosomal markers suggested increased microtubule nucleation capacity, which was supported by the analysis of an expression dataset from cortical tubers and control cortex, and subsequently linked to under-expression of Rho-associated coiled-coil containing kinase 2 (ROCK2). Thus, augmented microtubule nucleation capacity was observed in mouse embryonic fibroblasts and human fibroblasts deficient in the Tsc2/TSC2 gene product, tuberin. Consistent with ROCK2 under-expression, microtubule acetylation was found to be increased with tuberin deficiency; this alteration was abrogated by rapamycin treatment and mimicked by HDAC6 inhibition. Together, the results of this study support the hypothesis that loss of TSC2 expression can alter microtubule organization and dynamics, which, in turn, deregulate cell division and potentially impair neuronal differentiation.


Subject(s)
Cerebral Cortex/enzymology , Microtubules/enzymology , Neurons/enzymology , Signal Transduction , Tuberous Sclerosis/enzymology , rho-Associated Kinases/metabolism , Animals , Case-Control Studies , Cells, Cultured , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Cytokinesis , Fibroblasts/enzymology , Fibroblasts/pathology , Genetic Predisposition to Disease , Germ-Line Mutation , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Microtubules/drug effects , Microtubules/pathology , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/metabolism , Nerve Tissue Proteins/metabolism , Neurogenesis , Neurons/drug effects , Neurons/pathology , Phenotype , Protein Kinase Inhibitors/pharmacology , RNA Interference , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Transfection , Tuberous Sclerosis/genetics , Tuberous Sclerosis/pathology , Tuberous Sclerosis Complex 2 Protein , Tubulin/metabolism , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , rho-Associated Kinases/genetics
7.
PLoS Biol ; 9(11): e1001199, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22110403

ABSTRACT

Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((w)HR) = 1.09 (95% CI 1.02-1.16), p(trend) = 0.017; and n = 3,965, (w)HR = 1.04 (95% CI 0.94-1.16), p(trend) = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.


Subject(s)
BRCA1 Protein/metabolism , Breast Neoplasms/metabolism , Cell Polarity , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Aurora Kinase A , Aurora Kinases , BRCA1 Protein/genetics , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Breast/cytology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Polarity/genetics , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Genes, BRCA1 , Genes, BRCA2 , Genetic Predisposition to Disease , Genetic Variation , Genotype , HeLa Cells , Heterozygote , Humans , Microtubules/physiology , Microtubules/ultrastructure , Protein Serine-Threonine Kinases/metabolism , Receptors, Estrogen/analysis
8.
Cell Rep ; 43(8): 114473, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39024102

ABSTRACT

Mitochondria require the constant import of nuclear-encoded proteins for proper functioning. Impaired protein import not only depletes mitochondria of essential factors but also leads to toxic accumulation of un-imported proteins outside the organelle. Here, we investigate the consequences of impaired mitochondrial protein import in human cells. We demonstrate that un-imported proteins can clog the mitochondrial translocase of the outer membrane (TOM). ATAD1, a mitochondrial ATPase, removes clogged proteins from TOM to clear the entry gate into the mitochondria. ATAD1 interacts with both TOM and stalled proteins, and its knockout results in extensive accumulation of mitochondrial precursors as well as decreased protein import. Increased ATAD1 expression contributes to improved fitness of cells with inefficient mitochondrial protein import. Overall, we demonstrate the importance of the ATAD1 quality control pathway in surveilling protein import and its contribution to cellular health.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Mitochondria , Mitochondrial Proteins , Protein Transport , Humans , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Mitochondria/metabolism , HeLa Cells , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Adenosine Triphosphatases/metabolism , HEK293 Cells , Mitochondrial Membranes/metabolism
9.
Leukemia ; 38(5): 969-980, 2024 May.
Article in English | MEDLINE | ID: mdl-38519798

ABSTRACT

The presence of supernumerary chromosomes is the only abnormality shared by all patients diagnosed with high-hyperdiploid B cell acute lymphoblastic leukemia (HD-ALL). Despite being the most frequently diagnosed pediatric leukemia, the lack of clonal molecular lesions and complete absence of appropriate experimental models have impeded the elucidation of HD-ALL leukemogenesis. Here, we report that for 23 leukemia samples isolated from moribund Eµ-Ret mice, all were characterized by non-random chromosomal gains, involving combinations of trisomy 9, 12, 14, 15, and 17. With a median gain of three chromosomes, leukemia emerged after a prolonged latency from a preleukemic B cell precursor cell population displaying more diverse aneuploidy. Transition from preleukemia to overt disease in Eµ-Ret mice is associated with acquisition of heterogeneous genomic abnormalities affecting the expression of genes implicated in pediatric B-ALL. The development of abnormal centrosomes in parallel with aneuploidy renders both preleukemic and leukemic cells sensitive to inhibitors of centrosome clustering, enabling targeted in vivo depletion of leukemia-propagating cells. This study reveals the Eµ-Ret mouse to be a novel tool for investigating HD-ALL leukemogenesis, including supervision and selection of preleukemic aneuploid clones by the immune system and identification of vulnerabilities that could be targeted to prevent relapse.


Subject(s)
Disease Models, Animal , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Animals , Mice , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Aneuploidy , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Centrosome/pathology , Diploidy
10.
Nat Commun ; 14(1): 7161, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989729

ABSTRACT

Childhood acute lymphoblastic leukemia (ALL) genomes show that relapses often arise from subclonal outgrowths. However, the impact of clonal evolution on the actionable proteome and response to targeted therapy is not known. Here, we present a comprehensive retrospective analysis of paired ALL diagnosis and relapsed specimen. Targeted next generation sequencing and proteome analysis indicate persistence of actionable genome variants and stable proteomes through disease progression. Paired viably-frozen biopsies show high correlation of drug response to variant-targeted therapies but in vitro selectivity is low. Proteome analysis prioritizes PARP1 as a pan-ALL target candidate needed for survival following cellular stress; diagnostic and relapsed ALL samples demonstrate robust sensitivity to treatment with two PARP1/2 inhibitors. Together, these findings support initiating prospective precision oncology approaches at ALL diagnosis and emphasize the need to incorporate proteome analysis to prospectively determine tumor sensitivities, which are likely to be retained at disease relapse.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Proteome , Child , Humans , Proteome/genetics , Mutation , Retrospective Studies , Prospective Studies , Precision Medicine , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Recurrence
11.
Cancers (Basel) ; 15(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36612150

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common form of cancer in children, with most cases arising from fetal B cell precursor, termed B-ALL. Here, we use immunofluorescence analysis of B-ALL cells to identify centrosome amplification events that require the centrosome clustering pathway to successfully complete mitosis. Our data reveals that primary human B-ALL cells and immortal B-ALL cell lines from both human and mouse sources show defective bipolar spindle formation, abnormal mitotic progression, and cell death following treatment with centrosome clustering inhibitors (CCI). We demonstrate that CCI-refractory B-ALL cells exhibit markers for increased genomic instability, including DNA damage and micronuclei, as well as activation of the cyclic GMP-AMP synthase (cGAS)-nuclear factor kappa B (NF-κB) signalling pathway. Our analysis of cGAS knock-down B-ALL clones implicates cGAS in the sensitivity of B-ALL cells to CCI treatment. Due to its integral function and specificity to cancer cells, the centrosome clustering pathway presents a powerful molecular target for cancer treatment while mitigating the risk to healthy cells.

12.
Nat Commun ; 13(1): 2200, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35459234

ABSTRACT

Preneoplastic mammary tissues from human female BRCA1 mutation carriers, or Brca1-mutant mice, display unexplained abnormalities in luminal differentiation. We now study the division characteristics of human mammary cells purified from female BRCA1 mutation carriers or non-carrier donors. We show primary BRCA1 mutant/+ cells exhibit defective BRCA1 localization, high radiosensitivity and an accelerated entry into cell division, but fail to orient their cell division axis. We also analyse 15 genetically-edited BRCA1 mutant/+ human mammary cell-lines and find that cells carrying pathogenic BRCA1 mutations acquire an analogous defect in their division axis accompanied by deficient expression of features of mature luminal cells. Importantly, these alterations are independent of accumulated DNA damage, and specifically dependent on elevated PLK1 activity induced by reduced BRCA1 function. This essential PLK1-mediated role of BRCA1 in controlling the cell division axis provides insight into the phenotypes expressed during BRCA1 tumorigenesis.


Subject(s)
BRCA1 Protein , Breast Neoplasms , Animals , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Breast/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Division/genetics , Cell Transformation, Neoplastic/genetics , DNA Damage , Female , Humans , Mice , Mutation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Polo-Like Kinase 1
13.
Nat Commun ; 13(1): 1895, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35393420

ABSTRACT

Breast cancer risk for carriers of BRCA1 pathological variants is modified by genetic factors. Genetic variation in HMMR may contribute to this effect. However, the impact of risk modifiers on cancer biology remains undetermined and the biological basis of increased risk is poorly understood. Here, we depict an interplay of molecular, cellular, and tissue microenvironment alterations that increase BRCA1-associated breast cancer risk. Analysis of genome-wide association results suggests that diverse biological processes, including links to BRCA1-HMMR profiles, influence risk. HMMR overexpression in mouse mammary epithelium increases Brca1-mutant tumorigenesis by modulating the cancer cell phenotype and tumor microenvironment. Elevated HMMR activates AURKA and reduces ARPC2 localization in the mitotic cell cortex, which is correlated with micronucleation and activation of cGAS-STING and non-canonical NF-κB signaling. The initial tumorigenic events are genomic instability, epithelial-to-mesenchymal transition, and tissue infiltration of tumor-associated macrophages. The findings reveal a biological foundation for increased risk of BRCA1-associated breast cancer.


Subject(s)
BRCA1 Protein , Breast Neoplasms , Extracellular Matrix Proteins , Hyaluronan Receptors , Actin-Related Protein 2-3 Complex/genetics , Animals , BRCA1 Protein/genetics , Breast Neoplasms/pathology , Carcinogenesis/genetics , Extracellular Matrix Proteins/genetics , Female , Genome-Wide Association Study , Heterozygote , Humans , Hyaluronan Receptors/genetics , Mice , Tumor Microenvironment/genetics
14.
Cancers (Basel) ; 13(3)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499176

ABSTRACT

Pediatric leukemias are the most prevalent cancers affecting children in developed societies, with childhood acute lymphoblastic leukemia (ALL) being the most common subtype. As diet is a likely modulator of many diseases, this review focuses on the potential for diet to influence the incidence and progression of childhood ALL. In particular, the potential effect of diets on genome stability and immunity during the prenatal and postnatal stages of early childhood development are discussed. Maternal diet plays an integral role in shaping the bodily composition of the newborn, and thus may influence fetal genome stability and immune system development. Indeed, higher birth weights of newborns are associated with increased risk of ALL, which suggests in-utero biology may shape the evolution of preleukemic clones. Postnatally, the ingestion of maternal breastmilk both nourishes the infant, and provides essential components that strengthen and educate the developing immune system. Consistently, breast-feeding associates with decreased risk of ALL development. For children already suffering from ALL, certain dietary regimens have been proposed. These regimens, which have been validated in both animals and humans, alter the internal hormonal environment. Thus, hormonal regulation by diet may shape childhood metabolism and immunity in a manner that is detrimental to the evolution or expansion of preleukemic and leukemic ALL clones.

15.
J Exp Clin Cancer Res ; 40(1): 96, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33722259

ABSTRACT

BACKGROUND: Murine xenografts of pediatric leukemia accurately recapitulate genomic aberrations. How this translates to the functional capacity of cells remains unclear. Here, we studied global protein abundance, phosphorylation, and protein maturation by proteolytic processing in 11 pediatric B- and T- cell ALL patients and 19 corresponding xenografts. METHODS: Xenograft models were generated for each pediatric patient leukemia. Mass spectrometry-based methods were used to investigate global protein abundance, protein phosphorylation, and limited proteolysis in paired patient and xenografted pediatric acute B- and T- cell lymphocytic leukemia, as well as in pediatric leukemia cell lines. Targeted next-generation sequencing was utilized to examine genetic abnormalities in patients and in corresponding xenografts. Bioinformatic and statistical analysis were performed to identify functional mechanisms associated with proteins and protein post-translational modifications. RESULTS: Overall, we found xenograft proteomes to be most equivalent with their patient of origin. Protein level differences that stratified disease subtypes at diagnostic and relapse stages were largely recapitulated in xenografts. As expected, PDXs lacked multiple human leukocyte antigens and complement proteins. We found increased expression of cell cycle proteins indicating a high proliferative capacity of xenografted cells. Structural genomic changes and mutations were reflected at the protein level in patients. In contrast, the post-translational modification landscape was shaped by leukemia type and host and only to a limited degree by the patient of origin. Of 201 known pediatric oncogenic drivers and drug-targetable proteins, the KMT2 protein family showed consistently high variability between patient and corresponding xenografts. Comprehensive N terminomics revealed deregulated proteolytic processing in leukemic cells, in particular from caspase-driven cleavages found in patient cells. CONCLUSION: Genomic and host factors shape protein and post-translational modification landscapes differently. This study highlights select areas of diverging biology while confirming murine patient-derived xenografts as a generally accurate model system.


Subject(s)
Homeodomain Proteins/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proteome/metabolism , Trans-Activators/metabolism , Animals , Disease Models, Animal , Humans , Mice , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Xenograft Model Antitumor Assays
16.
ScientificWorldJournal ; 10: 1244-57, 2010 Jun 29.
Article in English | MEDLINE | ID: mdl-20602082

ABSTRACT

While most secreted proteins contain defined signal peptides that direct their extracellular transport through the ER-Golgi pathway, nonclassical transport of leaderless peptides/proteins was first described 20 years ago and the mechanisms responsible for unconventional export of such proteins have been thoroughly reviewed. In addition to directed nonclassical secretion, a number of leaderless secreted proteins have been classified as damage-associated molecular-pattern (DAMP) molecules, which are nuclear or cytoplasmic proteins that, under necrotic or apoptotic conditions, are released outside the cell and function as proinflammatory signals. A strong association between persistent release of DAMPs, chronic inflammation, and the hypoxic tumor microenvironment has been proposed. Thus, protein localization and function can change fundamentally from intracellular to extracellular compartments, often under conditions of inflammation, cancer, and arthritis. If we are truly to understand, model, and treat such biological states, it will be important to investigate these multifunctional proteins and their contribution to degenerative diseases. Here, we will focus our discussion on intracellular proteins, both cytoplasmic and nuclear, that play critical extracellular roles. In particular, the multifunctional nature of HMMR/RHAMM and survivin will be highlighted and compared, as these molecules are the subject of extensive biological and therapeutic investigations within hematology and oncology fields. For these and other genes/proteins, we will highlight points of structural and functional intersection during cellular division and differentiation, as well as states associated with cancer, such as tumor-initiation and epithelial-to-mesenchymal transition (EMT). Finally, we will discuss the potential targeting of these proteins for improved therapeutic outcomes within these degenerative disorders. Our goal is to highlight a number of commonalities among these multifunctional proteins for better understanding of their putative roles in tumor initiation, inflammation, arthritis, and cancer.


Subject(s)
Arthritis/physiopathology , Inflammation/physiopathology , Mitosis/physiology , Proteins/physiology , Humans
17.
Cells ; 9(4)2020 03 28.
Article in English | MEDLINE | ID: mdl-32231069

ABSTRACT

Hyaluronan is an extracellular matrix component that absorbs water in tissues and engages cell surface receptors, like Cluster of Differentiation 44 (CD44), to promote cellular growth and movement. Consequently, CD44 demarks stem cells in normal tissues and tumor-initiating cells isolated from neoplastic tissues. Hyaluronan mediated motility receptor (HMMR, also known as RHAMM) is another one of few defined hyaluronan receptors. HMMR is also associated with neoplastic processes and its role in cancer progression is often attributed to hyaluronan-mediated signaling. But, HMMR is an intracellular, microtubule-associated, spindle assembly factor that localizes protein complexes to augment the activities of mitotic kinases, like polo-like kinase 1 and Aurora kinase A, and control dynein and kinesin motor activities. Expression of HMMR is elevated in cells prior to and during mitosis and tissues with detectable HMMR expression tend to be highly proliferative, including neoplastic tissues. Moreover, HMMR is a breast cancer susceptibility gene product. Here, we briefly review the associations between HMMR and tumorigenesis as well as the structure and evolution of HMMR, which identifies Hmmr-like gene products in several insect species that do not produce hyaluronan. This review supports the designation of HMMR as a homeostasis, mitosis, and meiosis regulator, and clarifies how its dysfunction may promote the tumorigenic process and cancer progression.


Subject(s)
Extracellular Matrix Proteins/metabolism , Homeostasis , Hyaluronan Receptors/metabolism , Meiosis , Mitosis , Amino Acid Sequence , Animals , Extracellular Matrix Proteins/chemistry , Humans , Hyaluronan Receptors/chemistry , Neoplasms/metabolism , Neoplasms/pathology
18.
Cell Rep ; 30(11): 3605-3615.e5, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32187533

ABSTRACT

Multiple cancer-related genes both promote and paradoxically suppress growth initiation, depending on the cell context. We discover an explanation for how this occurs for one such protein, Stat3, based on asymmetric cell division. Here, we show that Stat3, by Stathmin/PLK-1, regulates mitotic spindle orientation, and we use it to create and test a model for differential growth initiation. We demonstrate that Integrin-α6 is polarized and required for mammary growth initiation. Spindles orient relative to polar Integrin-α6, dividing perpendicularly in normal cells and parallel in tumor-derived cells, resulting in asymmetric or symmetric Integrin-α6 inheritance, respectively. Stat3 inhibition randomizes spindle orientation, which promotes normal growth initiation while reducing tumor-derived growth initiation. Lipid raft disruption depolarizes Integrin-α6, inducing spindle-orientation-independent Integrin-α6 inheritance. Stat3 inhibition no longer affects the growth of these cells, suggesting Stat3 acts through the regulation of spindle orientation to control growth initiation.


Subject(s)
Inheritance Patterns/genetics , Integrin alpha6/genetics , Mammary Glands, Human/growth & development , Mammary Glands, Human/metabolism , Models, Biological , STAT3 Transcription Factor/metabolism , Animals , Cell Adhesion , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Polarity , Cell Proliferation , Female , Humans , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Spindle Apparatus/metabolism , Stathmin/metabolism , Polo-Like Kinase 1
19.
BMC Genomics ; 9: 12, 2008 Jan 11.
Article in English | MEDLINE | ID: mdl-18190704

ABSTRACT

BACKGROUND: Germline genetic variation is associated with the differential expression of many human genes. The phenotypic effects of this type of variation may be important when considering susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively close to known genes, with c-MYC mapping a few hundred kilobases distally. RESULTS: This study identifies cis-regulators of germline c-MYC expression in immortalized lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate tissues suggests an association between overexpression and variants in Region 1 of prostate cancer risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression profiling analysis and modeling of transcriptional regulatory networks predicts a functional association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven cell transformation and tumorigenesis substantiates a model in which MYC overexpression promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-cadherin down-regulation causes further transactivation of c-MYC. CONCLUSION: This study proposes that variation at putative 8q24 cis-regulator(s) of transcription can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.


Subject(s)
Gene Expression Regulation, Neoplastic , Genes, myc/genetics , Kruppel-Like Transcription Factors/metabolism , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins/metabolism , Down-Regulation , Gene Expression , Genetic Predisposition to Disease/genetics , Germ Cells/metabolism , Humans , Kruppel-Like Factor 6 , Lymphocytes/metabolism , Male , Risk Factors
20.
Mol Cancer ; 7: 4, 2008 Jan 10.
Article in English | MEDLINE | ID: mdl-18186929

ABSTRACT

It is increasingly clear that complex networks of relationships between genes and/or proteins govern neoplastic processes. Our understanding of these networks is expanded by the use of functional genomic and proteomic approaches in addition to computational modeling. Concurrently, whole-genome association scans and mutational screens of cancer genomes identify novel cancer genes. Together, these analyses have vastly increased our knowledge of cancer, in terms of both "part lists" and their functional associations. However, genetic interactions have hitherto only been studied in depth in model organisms and remain largely unknown for human systems. Here, we discuss the importance and potential benefits of identifying genetic interactions at the human genome level for creating a better understanding of cancer susceptibility and progression and developing novel effective anticancer therapies. We examine gene expression profiles in the presence and absence of co-amplification of the 8q24 and 20q13 chromosomal regions in breast tumors to illustrate the molecular consequences and complexity of genetic interactions and their role in tumorigenesis. Finally, we highlight current strategies for targeting tumor dependencies and outline potential matrix screening designs for uncovering molecular vulnerabilities in cancer cells.


Subject(s)
Breast Neoplasms/genetics , Gene Regulatory Networks , Genetic Predisposition to Disease , Genome, Human/genetics , Chromosomes, Human, Pair 20/genetics , Chromosomes, Human, Pair 8/genetics , Disease Progression , Gene Expression Profiling , Humans , Protein Interaction Mapping
SELECTION OF CITATIONS
SEARCH DETAIL