Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Cell ; 177(4): 896-909.e20, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31030999

ABSTRACT

In mammals, endogenous circadian clocks sense and respond to daily feeding and lighting cues, adjusting internal ∼24 h rhythms to resonate with, and anticipate, external cycles of day and night. The mechanism underlying circadian entrainment to feeding time is critical for understanding why mistimed feeding, as occurs during shift work, disrupts circadian physiology, a state that is associated with increased incidence of chronic diseases such as type 2 (T2) diabetes. We show that feeding-regulated hormones insulin and insulin-like growth factor 1 (IGF-1) reset circadian clocks in vivo and in vitro by induction of PERIOD proteins, and mistimed insulin signaling disrupts circadian organization of mouse behavior and clock gene expression. Insulin and IGF-1 receptor signaling is sufficient to determine essential circadian parameters, principally via increased PERIOD protein synthesis. This requires coincident mechanistic target of rapamycin (mTOR) activation, increased phosphoinositide signaling, and microRNA downregulation. Besides its well-known homeostatic functions, we propose insulin and IGF-1 are primary signals of feeding time to cellular clocks throughout the body.


Subject(s)
Circadian Clocks/physiology , Feeding Behavior/physiology , Period Circadian Proteins/metabolism , Animals , Circadian Rhythm/physiology , Female , Insulin/metabolism , Insulin-Like Growth Factor I/metabolism , Male , Mammals/metabolism , Mice , Mice, Inbred C57BL , Receptor, IGF Type 1/metabolism , Signal Transduction
2.
Cell ; 162(3): 607-21, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26232227

ABSTRACT

We identified a dominant missense mutation in the SCN transcription factor Zfhx3, termed short circuit (Zfhx3(Sci)), which accelerates circadian locomotor rhythms in mice. ZFHX3 regulates transcription via direct interaction with predicted AT motifs in target genes. The mutant protein has a decreased ability to activate consensus AT motifs in vitro. Using RNA sequencing, we found minimal effects on core clock genes in Zfhx3(Sci/+) SCN, whereas the expression of neuropeptides critical for SCN intercellular signaling was significantly disturbed. Moreover, mutant ZFHX3 had a decreased ability to activate AT motifs in the promoters of these neuropeptide genes. Lentiviral transduction of SCN slices showed that the ZFHX3-mediated activation of AT motifs is circadian, with decreased amplitude and robustness of these oscillations in Zfhx3(Sci/+) SCN slices. In conclusion, by cloning Zfhx3(Sci), we have uncovered a circadian transcriptional axis that determines the period and robustness of behavioral and SCN molecular rhythms.


Subject(s)
Circadian Rhythm , Gene Expression Regulation , Homeodomain Proteins/metabolism , Neuropeptides/genetics , Suprachiasmatic Nucleus/metabolism , Amino Acid Sequence , Animals , Down-Regulation , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , In Vitro Techniques , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Mutation , Nucleotide Motifs , Promoter Regions, Genetic , Sequence Alignment , Transcription, Genetic
3.
EMBO J ; 42(19): e114164, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37554073

ABSTRACT

Cellular circadian rhythms confer temporal organisation upon physiology that is fundamental to human health. Rhythms are present in red blood cells (RBCs), the most abundant cell type in the body, but their physiological function is poorly understood. Here, we present a novel biochemical assay for haemoglobin (Hb) oxidation status which relies on a redox-sensitive covalent haem-Hb linkage that forms during SDS-mediated cell lysis. Formation of this linkage is lowest when ferrous Hb is oxidised, in the form of ferric metHb. Daily haemoglobin oxidation rhythms are observed in mouse and human RBCs cultured in vitro, or taken from humans in vivo, and are unaffected by mutations that affect circadian rhythms in nucleated cells. These rhythms correlate with daily rhythms in core body temperature, with temperature lowest when metHb levels are highest. Raising metHb levels with dietary sodium nitrite can further decrease daytime core body temperature in mice via nitric oxide (NO) signalling. These results extend our molecular understanding of RBC circadian rhythms and suggest they contribute to the regulation of body temperature.


Subject(s)
Erythrocytes , Hemoglobins , Humans , Mice , Animals , Erythrocytes/metabolism , Hemoglobins/metabolism , Oxidation-Reduction , Heme/metabolism , Circadian Rhythm
4.
Proc Natl Acad Sci U S A ; 119(34): e2203563119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35976881

ABSTRACT

The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal clock driving circadian rhythms of physiology and behavior that adapt mammals to environmental cycles. Disruption of SCN-dependent rhythms compromises health, and so understanding SCN time keeping will inform management of diseases associated with modern lifestyles. SCN time keeping is a self-sustaining transcriptional/translational delayed feedback loop (TTFL), whereby negative regulators inhibit their own transcription. Formally, the SCN clock is viewed as a limit-cycle oscillator, the simplest being a trajectory of successive phases that progresses through two-dimensional space defined by two state variables mapped along their respective axes. The TTFL motif is readily compatible with limit-cycle models, and in Neurospora and Drosophila the negative regulators Frequency (FRQ) and Period (Per) have been identified as state variables of their respective TTFLs. The identity of state variables of the SCN oscillator is, however, less clear. Experimental identification of state variables requires reversible and temporally specific control over their abundance. Translational switching (ts) provides this, the expression of a protein of interest relying on the provision of a noncanonical amino acid. We show that the negative regulator Cryptochrome 1 (CRY1) fulfills criteria defining a state variable: ts-CRY1 dose-dependently and reversibly suppresses the baseline, amplitude, and period of SCN rhythms, and its acute withdrawal releases the TTFL to oscillate from a defined phase. Its effect also depends on its temporal pattern of expression, although constitutive ts-CRY1 sustained (albeit less stable) oscillations. We conclude that CRY1 has properties of a state variable, but may operate among several state variables within a multidimensional limit cycle.


Subject(s)
Circadian Clocks , Circadian Rhythm , Cryptochromes , Protein Transport , Suprachiasmatic Nucleus , Animals , Cryptochromes/metabolism , Drosophila melanogaster , Neurospora , Suprachiasmatic Nucleus/metabolism
5.
Nat Rev Neurosci ; 19(8): 453-469, 2018 08.
Article in English | MEDLINE | ID: mdl-29934559

ABSTRACT

The suprachiasmatic nucleus (SCN) of the hypothalamus is remarkable. Despite numbering only about 10,000 neurons on each side of the third ventricle, the SCN is our principal circadian clock, directing the daily cycles of behaviour and physiology that set the tempo of our lives. When this nucleus is isolated in organotypic culture, its autonomous timing mechanism can persist indefinitely, with precision and robustness. The discovery of the cell-autonomous transcriptional and post-translational feedback loops that drive circadian activity in the SCN provided a powerful exemplar of the genetic specification of complex mammalian behaviours. However, the analysis of circadian time-keeping is moving beyond single cells. Technical and conceptual advances, including intersectional genetics, multidimensional imaging and network theory, are beginning to uncover the circuit-level mechanisms and emergent properties that make the SCN a uniquely precise and robust clock. However, much remains unknown about the SCN, not least the intrinsic properties of SCN neurons, its circuit topology and the neuronal computations that these circuits support. Moreover, the convention that the SCN is a neuronal clock has been overturned by the discovery that astrocytes are an integral part of the timepiece. As a test bed for examining the relationships between genes, cells and circuits in sculpting complex behaviours, the SCN continues to offer powerful lessons and opportunities for contemporary neuroscience.


Subject(s)
Circadian Rhythm , Neurons/physiology , Suprachiasmatic Nucleus/physiology , Animals , Astrocytes/physiology , Circadian Clocks , Humans , Signal Transduction
6.
J Neurosci ; 41(41): 8562-8576, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34446572

ABSTRACT

The timing and quality of sleep-wake cycles are regulated by interacting circadian and homeostatic mechanisms. Although the suprachiasmatic nucleus (SCN) is the principal clock, circadian clocks are active across the brain and the respective sleep-regulatory roles of SCN and local clocks are unclear. To determine the specific contribution(s) of the SCN, we used virally mediated genetic complementation, expressing Cryptochrome1 (Cry1) to establish circadian molecular competence in the suprachiasmatic hypothalamus of globally clockless, arrhythmic male Cry1/Cry2-null mice. Under free-running conditions, the rest/activity behavior of Cry1/Cry2-null controls expressing EGFP (SCNCon) was arrhythmic, whereas Cry1-complemented mice (SCNCry1) had coherent circadian behavior, comparable to that of Cry1,2-competent wild types (WTs). In SCNCon mice, sleep-wakefulness, assessed by electroencephalography (EEG)/electromyography (EMG), lacked circadian organization. In SCNCry1 mice, however, it matched WTs, with consolidated vigilance states [wake, rapid eye movement sleep (REMS) and non-REMS (NREMS)] and rhythms in NREMS δ power and expression of REMS within total sleep (TS). Wakefulness in SCNCon mice was more fragmented than in WTs, with more wake-NREMS-wake transitions. This disruption was reversed in SCNCry1 mice. Following sleep deprivation (SD), all mice showed a homeostatic increase in NREMS δ power, although the SCNCon mice had reduced NREMS during the inactive (light) phase of recovery. In contrast, the dynamics of homeostatic responses in the SCNCry1 mice were comparable to WTs. Finally, SCNCon mice exhibited poor sleep-dependent memory but this was corrected in SCNCry1mice. In clockless mice, circadian molecular competence focused solely on the SCN rescued the architecture and consolidation of sleep-wake and sleep-dependent memory, highlighting its dominant role in timing sleep.SIGNIFICANCE STATEMENT The circadian timing system regulates sleep-wake cycles. The hypothalamic suprachiasmatic nucleus (SCN) is the principal circadian clock, but the presence of multiple local brain and peripheral clocks mean the respective roles of SCN and other clocks in regulating sleep are unclear. We therefore used virally mediated genetic complementation to restore molecular circadian functions in the suprachiasmatic hypothalamus, focusing on the SCN, in otherwise genetically clockless, arrhythmic mice. This initiated circadian activity-rest cycles, and circadian sleep-wake cycles, circadian patterning to the intensity of non-rapid eye movement sleep (NREMS) and circadian control of REMS as a proportion of total sleep (TS). Consolidation of sleep-wake established normal dynamics of sleep homeostasis and enhanced sleep-dependent memory. Thus, the suprachiasmatic hypothalamus, alone, can direct circadian regulation of sleep-wake.


Subject(s)
Circadian Rhythm/physiology , Cryptochromes/biosynthesis , Sleep/physiology , Suprachiasmatic Nucleus/metabolism , Wakefulness/physiology , Animals , Circadian Clocks/physiology , Cryptochromes/genetics , Electroencephalography/methods , Electromyography/methods , Male , Memory Disorders , Mice , Mice, Inbred C57BL , Mice, Knockout
7.
J Neurosci ; 41(3): 502-512, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33234609

ABSTRACT

Circadian (approximately daily) rhythms pervade mammalian behavior. They are generated by cell-autonomous, transcriptional/translational feedback loops (TTFLs), active in all tissues. This distributed clock network is coordinated by the principal circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN). Its robust and accurate time-keeping arises from circuit-level interactions that bind its individual cellular clocks into a coherent time-keeper. Cells that express the neuropeptide vasoactive intestinal peptide (VIP) mediate retinal entrainment of the SCN; and in the absence of VIP, or its cognate receptor VPAC2, circadian behavior is compromised because SCN cells cannot synchronize. The contributions to pace-making of other cell types, including VPAC2-expressing target cells of VIP, are, however, not understood. We therefore used intersectional genetics to manipulate the cell-autonomous TTFLs of VPAC2-expressing cells. Measuring circadian behavioral and SCN rhythmicity in these temporally chimeric male mice thus enabled us to determine the contribution of VPAC2-expressing cells (∼35% of SCN cells) to SCN time-keeping. Lengthening of the intrinsic TTFL period of VPAC2 cells by deletion of the CK1εTau allele concomitantly lengthened the period of circadian behavioral rhythms. It also increased the variability of the circadian period of bioluminescent TTFL rhythms in SCN slices recorded ex vivo Abrogation of circadian competence in VPAC2 cells by deletion of Bmal1 severely disrupted circadian behavioral rhythms and compromised TTFL time-keeping in the corresponding SCN slices. Thus, VPAC2-expressing cells are a distinct, functionally powerful subset of the SCN circuit, contributing to computation of ensemble period and maintenance of circadian robustness. These findings extend our understanding of SCN circuit topology.


Subject(s)
Behavior, Animal/physiology , Circadian Rhythm/physiology , Periodicity , Receptors, Vasoactive Intestinal Peptide, Type II/physiology , Receptors, Vasoactive Intestinal Peptide/physiology , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/physiology , Animals , Circadian Rhythm/genetics , Feedback, Physiological , Male , Mice , Mice, Knockout , Motor Activity/physiology , Mutant Chimeric Proteins/genetics , Receptors, Vasoactive Intestinal Peptide/genetics , Receptors, Vasoactive Intestinal Peptide, Type II/genetics , Suprachiasmatic Nucleus/physiology
8.
Proc Natl Acad Sci U S A ; 115(52): E12388-E12397, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30487216

ABSTRACT

The suprachiasmatic nucleus (SCN) is the principal circadian clock of mammals, coordinating daily rhythms of physiology and behavior. Circadian timing pivots around self-sustaining transcriptional-translational negative feedback loops (TTFLs), whereby CLOCK and BMAL1 drive the expression of the negative regulators Period and Cryptochrome (Cry). Global deletion of Cry1 and Cry2 disables the TTFL, resulting in arrhythmicity in downstream behaviors. We used this highly tractable biology to further develop genetic code expansion (GCE) as a translational switch to achieve reversible control of a biologically relevant protein, Cry1, in the SCN. This employed an orthogonal aminoacyl-tRNA synthetase/tRNACUA pair delivered to the SCN by adeno-associated virus (AAV) vectors, allowing incorporation of a noncanonical amino acid (ncAA) into AAV-encoded Cry1 protein carrying an ectopic amber stop codon. Thus, translational readthrough and Cry1 expression were conditional on the supply of ncAA via culture medium or drinking water and were restricted to neurons by synapsin-dependent expression of aminoacyl tRNA-synthetase. Activation of Cry1 translation by ncAA in neurons of arrhythmic Cry-null SCN slices immediately and dose-dependently initiated TTFL circadian rhythms, which dissipated rapidly after ncAA withdrawal. Moreover, genetic activation of the TTFL in SCN neurons rapidly and reversibly initiated circadian behavior in otherwise arrhythmic Cry-null mice, with rhythm amplitude being determined by the number of transduced SCN neurons. Thus, Cry1 does not specify the development of circadian circuitry and competence but is essential for its labile and rapidly reversible activation. This demonstrates reversible control of mammalian behavior using GCE-based translational switching, a method of potentially broad neurobiological interest.


Subject(s)
Chronobiology Disorders/genetics , Cryptochromes/genetics , Cryptochromes/metabolism , Animals , Chronobiology Disorders/physiopathology , Circadian Clocks/genetics , Circadian Clocks/physiology , Circadian Rhythm/physiology , Gene Expression Regulation/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Period Circadian Proteins/metabolism , Protein Biosynthesis/physiology , Protein Processing, Post-Translational , Suprachiasmatic Nucleus/metabolism , Transcription Factors/metabolism
9.
Eur J Neurosci ; 51(1): 229-240, 2020 01.
Article in English | MEDLINE | ID: mdl-30462867

ABSTRACT

The hypothalamic suprachiasmatic nucleus (SCN) is the principal circadian pacemaker in mammals. Cells in the SCN contain cell-autonomous transcriptional-translational feedback loops, which are synchronised to each other and thereby provide a coherent output to direct synchrony of peripheral clocks located in the brain and body. A major difference between these peripheral clocks and the SCN is the requirement for intercellular coupling mechanisms, which confer robustness, stability and amplitude to the system. There has been remarkable progress to our understanding of the intra- and inter-cellular mechanisms of the SCN circuitry over the last ~20 years, which has come hand-in-hand with the development of new technologies to measure and manipulate the clock.


Subject(s)
Circadian Clocks , Circadian Rhythm , Animals , Mammals , Protein Processing, Post-Translational , Suprachiasmatic Nucleus
10.
FASEB J ; 32(8): 4302-4314, 2018 08.
Article in English | MEDLINE | ID: mdl-29561690

ABSTRACT

Cryptochromes 1 and 2 (CRY1/2) are key components of the negative limb of the mammalian circadian clock. Like many peripheral tissues, Cry1 and -2 are expressed in the retina, where they are thought to play a role in regulating rhythmic physiology. However, studies differ in consensus as to their localization and function, and CRY1 immunostaining has not been convincingly demonstrated in the retina. Here we describe the expression and function of CRY1 and -2 in the mouse retina in both sexes. Unexpectedly, we show that CRY1 is expressed throughout all retinal layers, whereas CRY2 is restricted to the photoreceptor layer. Retinal period 2::luciferase recordings from CRY1-deficient mice show reduced clock robustness and stability, while those from CRY2-deficient mice show normal, albeit long-period, rhythms. In functional studies, we then investigated well-defined rhythms in retinal physiology. Rhythms in the photopic electroretinogram, contrast sensitivity, and pupillary light response were all severely attenuated or abolished in CRY1-deficient mice. In contrast, these physiological rhythms are largely unaffected in mice lacking CRY2, and only photopic electroretinogram rhythms are affected. Together, our data suggest that CRY1 is an essential component of the mammalian retinal clock, whereas CRY2 has a more limited role.-Wong, J. C. Y., Smyllie, N. J., Banks, G. T., Pothecary, C. A., Barnard, A. R., Maywood, E. S., Jagannath, A., Hughes, S., van der Horst, G. T. J., MacLaren, R. E., Hankins, M. W., Hastings, M. H., Nolan, P. M., Foster, R. G., Peirson, S. N. Differential roles for cryptochromes in the mammalian retinal clock.


Subject(s)
Cryptochromes/metabolism , Mammals/metabolism , Mammals/physiology , Retina/metabolism , Retina/physiology , Animals , Circadian Clocks/physiology , Circadian Rhythm/physiology , Electroretinography/methods , Female , Male , Mice , Mice, Inbred C57BL , Photoreceptor Cells/metabolism , Photoreceptor Cells/physiology
11.
Proc Natl Acad Sci U S A ; 113(13): 3657-62, 2016 03 29.
Article in English | MEDLINE | ID: mdl-26966234

ABSTRACT

The suprachiasmatic nucleus (SCN) is the master circadian clock controlling daily behavior in mammals. It consists of a heterogeneous network of neurons, in which cell-autonomous molecular feedback loops determine the period and amplitude of circadian oscillations of individual cells. In contrast, circuit-level properties of coherence, synchrony, and ensemble period are determined by intercellular signals and are embodied in a circadian wave of gene expression that progresses daily across the SCN. How cell-autonomous and circuit-level mechanisms interact in timekeeping is poorly understood. To explore this interaction, we used intersectional genetics to create temporally chimeric mice with SCN containing dopamine 1a receptor (Drd1a) cells with an intrinsic period of 24 h alongside non-Drd1a cells with 20-h clocks. Recording of circadian behavior in vivo alongside cellular molecular pacemaking in SCN slices in vitro demonstrated that such chimeric circuits form robust and resilient circadian clocks. It also showed that the computation of ensemble period is nonlinear. Moreover, the chimeric circuit sustained a wave of gene expression comparable to that of nonchimeric SCN, demonstrating that this circuit-level property is independent of differences in cell-intrinsic periods. The relative dominance of 24-h Drd1a and 20-h non-Drd1a neurons in setting ensemble period could be switched by exposure to resonant or nonresonant 24-h or 20-h lighting cycles. The chimeric circuit therefore reveals unanticipated principles of circuit-level operation underlying the emergent plasticity, resilience, and robustness of the SCN clock. The spontaneous and light-driven flexibility of period observed in chimeric mice provides a new perspective on the concept of SCN pacemaker cells.


Subject(s)
Circadian Rhythm/genetics , Circadian Rhythm/physiology , Suprachiasmatic Nucleus/physiology , Animals , Circadian Clocks/genetics , Circadian Clocks/physiology , Mice , Mice, Transgenic , Motor Activity/genetics , Motor Activity/physiology , Neuronal Plasticity , Neurons/physiology , Photoperiod , Receptors, Dopamine D1/deficiency , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/physiology , Signal Transduction , Suprachiasmatic Nucleus/cytology
12.
Proc Natl Acad Sci U S A ; 113(10): 2732-7, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26903624

ABSTRACT

Circadian rhythms in mammals are coordinated by the suprachiasmatic nucleus (SCN). SCN neurons define circadian time using transcriptional/posttranslational feedback loops (TTFL) in which expression of Cryptochrome (Cry) and Period (Per) genes is inhibited by their protein products. Loss of Cry1 and Cry2 stops the SCN clock, whereas individual deletions accelerate and decelerate it, respectively. At the circuit level, neuronal interactions synchronize cellular TTFLs, creating a spatiotemporal wave of gene expression across the SCN that is lost in Cry1/2-deficient SCN. To interrogate the properties of CRY proteins required for circadian function, we expressed CRY in SCN of Cry-deficient mice using adeno-associated virus (AAV). Expression of CRY1::EGFP or CRY2::EGFP under a minimal Cry1 promoter was circadian and rapidly induced PER2-dependent bioluminescence rhythms in previously arrhythmic Cry1/2-deficient SCN, with periods appropriate to each isoform. CRY1::EGFP appropriately lengthened the behavioral period in Cry1-deficient mice. Thus, determination of specific circadian periods reflects properties of the respective proteins, independently of their phase of expression. Phase of CRY1::EGFP expression was critical, however, because constitutive or phase-delayed promoters failed to sustain coherent rhythms. At the circuit level, CRY1::EGFP induced the spatiotemporal wave of PER2 expression in Cry1/2-deficient SCN. This was dependent on the neuropeptide arginine vasopressin (AVP) because it was prevented by pharmacological blockade of AVP receptors. Thus, our genetic complementation assay reveals acute, protein-specific induction of cell-autonomous and network-level circadian rhythmicity in SCN never previously exposed to CRY. Specifically, Cry expression must be circadian and appropriately phased to support rhythms, and AVP receptor signaling is required to impose circuit-level circadian function.


Subject(s)
Cryptochromes/metabolism , Receptors, Vasopressin/metabolism , Signal Transduction , Suprachiasmatic Nucleus/metabolism , Animals , Arrhythmias, Cardiac/physiopathology , Circadian Clocks/physiology , Circadian Rhythm/physiology , Cryptochromes/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Luminescent Measurements/instrumentation , Luminescent Measurements/methods , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Suprachiasmatic Nucleus/physiopathology , Time Factors
13.
Proc Natl Acad Sci U S A ; 113(10): 2756-61, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26903623

ABSTRACT

The suprachiasmatic nucleus (SCN) defines 24 h of time via a transcriptional/posttranslational feedback loop in which transactivation of Per (period) and Cry (cryptochrome) genes by BMAL1-CLOCK complexes is suppressed by PER-CRY complexes. The molecular/structural basis of how circadian protein complexes function is poorly understood. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced mutation, early doors (Edo), in the PER-ARNT-SIM (PAS) domain dimerization region of period 2 (PER2) (I324N) that accelerates the circadian clock of Per2(Edo/Edo) mice by 1.5 h. Structural and biophysical analyses revealed that Edo alters the packing of the highly conserved interdomain linker of the PER2 PAS core such that, although PER2(Edo) complexes with clock proteins, its vulnerability to degradation mediated by casein kinase 1ε (CSNK1E) is increased. The functional relevance of this mutation is revealed by the ultrashort (<19 h) but robust circadian rhythms in Per2(Edo/Edo); Csnk1e(Tau/Tau) mice and the SCN. These periods are unprecedented in mice. Thus, Per2(Edo) reveals a direct causal link between the molecular structure of the PER2 PAS core and the pace of SCN circadian timekeeping.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/genetics , Mutation, Missense , Period Circadian Proteins/genetics , Amino Acid Sequence , Animals , Blotting, Western , COS Cells , Casein Kinase 1 epsilon/genetics , Casein Kinase 1 epsilon/metabolism , Chlorocebus aethiops , Circadian Clocks/physiology , Circadian Rhythm/physiology , Female , HEK293 Cells , Humans , Male , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Molecular Sequence Data , Motor Activity/genetics , Motor Activity/physiology , Period Circadian Proteins/chemistry , Period Circadian Proteins/metabolism , Protein Multimerization , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiopathology
14.
Nat Chem Biol ; 12(10): 776-778, 2016 10.
Article in English | MEDLINE | ID: mdl-27571478

ABSTRACT

Site-specific incorporation of non-natural amino acids into proteins, via genetic code expansion with pyrrolysyl tRNA synthetase (PylRS) and tRNA(Pyl)CUA pairs (and their evolved derivatives) from Methanosarcina sp., forms the basis of powerful approaches to probe and control protein function in cells and invertebrate organisms. Here we demonstrate that adeno-associated viral delivery of these pairs enables efficient genetic code expansion in primary neuronal culture, organotypic brain slices and the brains of live mice.


Subject(s)
Amino Acids/chemistry , Amino Acids/genetics , Amino Acyl-tRNA Synthetases/metabolism , Brain/cytology , Brain/metabolism , Genetic Code/genetics , RNA, Transfer/genetics , Amino Acids/metabolism , Animals , Dependovirus/genetics , Methanosarcina/genetics , Mice , Molecular Structure , RNA, Transfer/metabolism
15.
Nature ; 485(7399): 459-64, 2012 May 16.
Article in English | MEDLINE | ID: mdl-22622569

ABSTRACT

Cellular life emerged ∼3.7 billion years ago. With scant exception, terrestrial organisms have evolved under predictable daily cycles owing to the Earth's rotation. The advantage conferred on organisms that anticipate such environmental cycles has driven the evolution of endogenous circadian rhythms that tune internal physiology to external conditions. The molecular phylogeny of mechanisms driving these rhythms has been difficult to dissect because identified clock genes and proteins are not conserved across the domains of life: Bacteria, Archaea and Eukaryota. Here we show that oxidation-reduction cycles of peroxiredoxin proteins constitute a universal marker for circadian rhythms in all domains of life, by characterizing their oscillations in a variety of model organisms. Furthermore, we explore the interconnectivity between these metabolic cycles and transcription-translation feedback loops of the clockwork in each system. Our results suggest an intimate co-evolution of cellular timekeeping with redox homeostatic mechanisms after the Great Oxidation Event ∼2.5 billion years ago.


Subject(s)
Circadian Rhythm/physiology , Conserved Sequence , Evolution, Molecular , Peroxiredoxins/metabolism , Amino Acid Sequence , Animals , Archaea/metabolism , Bacteria/metabolism , Biomarkers/metabolism , Catalytic Domain , Circadian Clocks/genetics , Circadian Clocks/physiology , Circadian Rhythm/genetics , Eukaryotic Cells/metabolism , Feedback, Physiological , Homeostasis , Humans , Models, Biological , Molecular Sequence Data , Oxidation-Reduction , Peroxiredoxins/chemistry , Phylogeny , Prokaryotic Cells/metabolism , Protein Biosynthesis , Transcription, Genetic
16.
Proc Natl Acad Sci U S A ; 110(23): 9547-52, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23690615

ABSTRACT

The suprachiasmatic nucleus (SCN) coordinates circadian rhythms that adapt the individual to solar time. SCN pacemaking revolves around feedback loops in which expression of Period (Per) and Cryptochrome (Cry) genes is periodically suppressed by their protein products. Specifically, PER/CRY complexes act at E-box sequences in Per and Cry to inhibit their transactivation by CLOCK/BMAL1 heterodimers. To function effectively, these closed intracellular loops need to be synchronized between SCN cells and to the light/dark cycle. For Per expression, this is mediated by neuropeptidergic and glutamatergic extracellular cues acting via cAMP/calcium-responsive elements (CREs) in Per genes. Cry genes, however, carry no CREs, and how CRY-dependent SCN pacemaking is synchronized remains unclear. Furthermore, whereas reporter lines are available to explore Per circadian expression in real time, no Cry equivalent exists. We therefore created a mouse, B6.Cg-Tg(Cry1-luc)01Ld, carrying a transgene (mCry1-luc) consisting of mCry1 elements containing an E-box and E'-box driving firefly luciferase. mCry1-luc organotypic SCN slices exhibited stable circadian bioluminescence rhythms with appropriate phase, period, profile, and spatial organization. In SCN lacking vasoactive intestinal peptide or its receptor, mCry1 expression was damped and desynchronized between cells. Despite the absence of CREs, mCry1-luc expression was nevertheless (indirectly) sensitive to manipulation of cAMP-dependent signaling. In mPer1/2-null SCN, mCry1-luc bioluminescence was arrhythmic and no longer suppressed by elevation of cAMP. Finally, an SCN graft procedure showed that PER-independent as well as PER-dependent mechanisms could sustain circadian expression of mCry1. The mCry1-luc mouse therefore reports circadian mCry1 expression and its interactions with vasoactive intestinal peptide, cAMP, and PER at the heart of the SCN pacemaker.


Subject(s)
Circadian Rhythm/physiology , Cryptochromes/metabolism , Feedback, Physiological/physiology , Period Circadian Proteins/metabolism , Suprachiasmatic Nucleus/physiology , Animals , Cyclic AMP/metabolism , DNA Primers/genetics , Luciferases , Mice , Mice, Inbred C57BL , Mice, Transgenic
17.
J Neurosci ; 33(17): 7145-53, 2013 Apr 24.
Article in English | MEDLINE | ID: mdl-23616524

ABSTRACT

The circadian clock of the suprachiasmatic nucleus (SCN) drives daily rhythms of behavior. Cryptochromes (CRYs) are powerful transcriptional repressors within the molecular negative feedback loops at the heart of the SCN clockwork, where they periodically suppress their own expression and that of clock-controlled genes. To determine the differential contributions of CRY1 and CRY2 within circadian timing in vivo, we exploited the N-ethyl-N-nitrosourea-induced afterhours mutant Fbxl3(Afh) to stabilize endogenous CRY. Importantly, this was conducted in CRY2- and CRY1-deficient mice to test each CRY in isolation. In both CRY-deficient backgrounds, circadian rhythms of wheel-running and SCN bioluminescence showed increased period length with increased Fbxl3(Afh) dosage. Although both CRY proteins slowed the clock, CRY1 was significantly more potent than CRY2, and in SCN slices, CRY1 but not CRY2 prolonged the interval of transcriptional suppression. Selective CRY-stabilization demonstrated that both CRYs are endogenous transcriptional repressors of clock-controlled genes, but again CRY1 was preeminent. Finally, although Cry1(-/-);Cry2(-/-) mice were behaviorally arrhythmic, their SCN expressed short period (~18 h) rhythms with variable stability. Fbxl3(Afh/Afh) had no effect on these CRY-independent rhythms, confirming its circadian action is mediated exclusively via CRYs. Thus, stabilization of both CRY1 and CRY2 are necessary and sufficient to explain circadian period lengthening by Fbxl3(Afh/Afh). Both CRY proteins dose-dependently lengthen the intrinsic, high-frequency SCN rhythm, and CRY2 also attenuates the more potent period-lengthening effects of CRY1. Incorporation of CRY-mediated transcriptional feedback thus confers stability to intrinsic SCN oscillations, establishing periods between 18 and 29 h, as determined by selective contributions of CRY1 and CRY2.


Subject(s)
Circadian Clocks/genetics , Cryptochromes/physiology , F-Box Proteins/physiology , Mutation/physiology , Suprachiasmatic Nucleus/physiology , Animals , Animals, Newborn , Circadian Rhythm/genetics , Cryptochromes/genetics , F-Box Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Culture Techniques
18.
Proc Natl Acad Sci U S A ; 108(34): 14306-11, 2011 Aug 23.
Article in English | MEDLINE | ID: mdl-21788520

ABSTRACT

The suprachiasmatic nucleus (SCN) is the principal circadian pacemaker of mammals, coordinating daily rhythms of behavior and metabolism. Circadian timekeeping in SCN neurons revolves around transcriptional/posttranslational feedback loops, in which Period (Per) and Cryptochrome (Cry) genes are negatively regulated by their protein products. Recent studies have revealed, however, that these "core loops" also rely upon cytosolic and circuit-level properties for sustained oscillation. To characterize interneuronal signals responsible for robust pacemaking in SCN cells and circuits, we have developed a unique coculture technique using wild-type (WT) "graft" SCN to drive pacemaking (reported by PER2::LUCIFERASE bioluminescence) in "host" SCN deficient either in elements of neuropeptidergic signaling or in elements of the core feedback loop. We demonstrate that paracrine signaling is sufficient to restore cellular synchrony and amplitude of pacemaking in SCN circuits lacking vasoactive intestinal peptide (VIP). By using grafts with mutant circadian periods we show that pacemaking in the host SCN is specified by the genotype of the graft, confirming graft-derived factors as determinants of the host rhythm. By combining pharmacological with genetic manipulations, we show that a hierarchy of neuropeptidergic signals underpins this paracrine regulation, with a preeminent role for VIP augmented by contributions from arginine vasopressin (AVP) and gastrin-releasing peptide (GRP). Finally, we show that interneuronal signaling is sufficiently powerful to maintain circadian pacemaking in arrhythmic Cry-null SCN, deficient in essential elements of the transcriptional negative feedback loops. Thus, a hierarchy of paracrine neuropeptidergic signals determines cell- and circuit-level circadian pacemaking in the SCN.


Subject(s)
Circadian Rhythm/physiology , Nerve Net/metabolism , Paracrine Communication , Signal Transduction , Suprachiasmatic Nucleus/metabolism , Animals , Circadian Rhythm/genetics , Coculture Techniques , Cryptochromes/deficiency , Cryptochromes/metabolism , Gene Expression Regulation , Mice , Paracrine Communication/genetics , Receptors, Vasoactive Intestinal Peptide, Type II/deficiency , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Signal Transduction/genetics , Suprachiasmatic Nucleus/cytology , Vasoactive Intestinal Peptide/deficiency , Vasoactive Intestinal Peptide/metabolism
19.
Handb Exp Pharmacol ; (217): 67-103, 2013.
Article in English | MEDLINE | ID: mdl-23604476

ABSTRACT

Circadian clocks drive the daily rhythms in our physiology and behaviour that adapt us to the 24-h solar and social worlds. Because they impinge upon every facet of metabolism, their acute or chronic disruption compromises performance (both physical and mental) and systemic health, respectively. Equally, the presence of such rhythms has significant implications for pharmacological dynamics and efficacy, because the fate of a drug and the state of its therapeutic target will vary as a function of time of day. Improved understanding of the cellular and molecular biology of circadian clocks therefore offers novel approaches for therapeutic development, for both clock-related and other conditions. At the cellular level, circadian clocks are pivoted around a transcriptional/post-translational delayed feedback loop (TTFL) in which the activation of Period and Cryptochrome genes is negatively regulated by their cognate protein products. Synchrony between these, literally countless, cellular clocks across the organism is maintained by the principal circadian pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus. Notwithstanding the success of the TTFL model, a diverse range of experimental studies has shown that it is insufficient to account for all properties of cellular pacemaking. Most strikingly, circadian cycles of metabolic status can continue in human red blood cells, devoid of nuclei and thus incompetent to sustain a TTFL. Recent interest has therefore focused on the role of oscillatory cytosolic mechanisms as partners to the TTFL. In particular, cAMP- and Ca²âº-dependent signalling are important components of the clock, whilst timekeeping activity is also sensitive to a series of highly conserved kinases and phosphatases. This has led to the view that the 'proto-clock' may have been a cytosolic, metabolic oscillation onto which evolution has bolted TTFLs to provide robustness and amplify circadian outputs in the form of rhythmic gene expression. This evolutionary ascent of the clock has culminated in the SCN, a true pacemaker to the innumerable clock cells distributed across the body. On the basis of findings from our own and other laboratories, we propose a model of the SCN pacemaker that synthesises the themes of TTFLs, intracellular signalling, metabolic flux and interneuronal coupling that can account for its unique circadian properties and pre-eminence.


Subject(s)
Circadian Clocks/physiology , Transcription, Genetic , Animals , Circadian Rhythm , Feedback, Physiological , High-Throughput Screening Assays , Humans , Phosphorylation , Proteasome Endopeptidase Complex/physiology , Protein Biosynthesis , Signal Transduction , Suprachiasmatic Nucleus/physiology
20.
Proc Natl Acad Sci U S A ; 107(34): 15240-5, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20696890

ABSTRACT

Circadian pacemaking requires the orderly synthesis, posttranslational modification, and degradation of clock proteins. In mammals, mutations in casein kinase 1 (CK1) epsilon or delta can alter the circadian period, but the particular functions of the WT isoforms within the pacemaker remain unclear. We selectively targeted WT CK1epsilon and CK1delta using pharmacological inhibitors (PF-4800567 and PF-670462, respectively) alongside genetic knockout and knockdown to reveal that CK1 activity is essential to molecular pacemaking. Moreover, CK1delta is the principal regulator of the clock period: pharmacological inhibition of CK1delta, but not CK1epsilon, significantly lengthened circadian rhythms in locomotor activity in vivo and molecular oscillations in the suprachiasmatic nucleus (SCN) and peripheral tissue slices in vitro. Period lengthening mediated by CK1delta inhibition was accompanied by nuclear retention of PER2 protein both in vitro and in vivo. Furthermore, phase mapping of the molecular clockwork in vitro showed that PF-670462 treatment lengthened the period in a phase-specific manner, selectively extending the duration of PER2-mediated transcriptional feedback. These findings suggested that CK1delta inhibition might be effective in increasing the amplitude and synchronization of disrupted circadian oscillators. This was tested using arrhythmic SCN slices derived from Vipr2(-/-) mice, in which PF-670462 treatment transiently restored robust circadian rhythms of PER2::Luc bioluminescence. Moreover, in mice rendered behaviorally arrhythmic by the Vipr2(-/-) mutation or by constant light, daily treatment with PF-670462 elicited robust 24-h activity cycles that persisted throughout treatment. Accordingly, selective pharmacological targeting of the endogenous circadian regulator CK1delta offers an avenue for therapeutic modulation of perturbed circadian behavior.


Subject(s)
Casein Kinase 1 epsilon/antagonists & inhibitors , Casein Kinase Idelta/antagonists & inhibitors , Circadian Rhythm/physiology , Animals , Base Sequence , Casein Kinase 1 epsilon/physiology , Casein Kinase Idelta/deficiency , Casein Kinase Idelta/genetics , Casein Kinase Idelta/physiology , Circadian Rhythm/drug effects , Gene Knockdown Techniques , In Vitro Techniques , Mice , Mice, Knockout , Mice, Transgenic , Period Circadian Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , RNA, Small Interfering/genetics , Receptors, Vasoactive Intestinal Peptide, Type II/deficiency , Receptors, Vasoactive Intestinal Peptide, Type II/genetics , Suprachiasmatic Nucleus/drug effects , Suprachiasmatic Nucleus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL