Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Publication year range
1.
Cell ; 177(6): 1600-1618.e17, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31150625

ABSTRACT

Autism spectrum disorder (ASD) manifests as alterations in complex human behaviors including social communication and stereotypies. In addition to genetic risks, the gut microbiome differs between typically developing (TD) and ASD individuals, though it remains unclear whether the microbiome contributes to symptoms. We transplanted gut microbiota from human donors with ASD or TD controls into germ-free mice and reveal that colonization with ASD microbiota is sufficient to induce hallmark autistic behaviors. The brains of mice colonized with ASD microbiota display alternative splicing of ASD-relevant genes. Microbiome and metabolome profiles of mice harboring human microbiota predict that specific bacterial taxa and their metabolites modulate ASD behaviors. Indeed, treatment of an ASD mouse model with candidate microbial metabolites improves behavioral abnormalities and modulates neuronal excitability in the brain. We propose that the gut microbiota regulates behaviors in mice via production of neuroactive metabolites, suggesting that gut-brain connections contribute to the pathophysiology of ASD.


Subject(s)
Autism Spectrum Disorder/microbiology , Behavioral Symptoms/microbiology , Gastrointestinal Microbiome/physiology , Animals , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Bacteria , Behavior, Animal/physiology , Brain/metabolism , Disease Models, Animal , Humans , Mice , Microbiota , Risk Factors
2.
Cell ; 167(4): 915-932, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27814521

ABSTRACT

Neurodevelopment is a complex process governed by both intrinsic and extrinsic signals. While historically studied by researching the brain, inputs from the periphery impact many neurological conditions. Indeed, emerging data suggest communication between the gut and the brain in anxiety, depression, cognition, and autism spectrum disorder (ASD). The development of a healthy, functional brain depends on key pre- and post-natal events that integrate environmental cues, such as molecular signals from the gut. These cues largely originate from the microbiome, the consortium of symbiotic bacteria that reside within all animals. Research over the past few years reveals that the gut microbiome plays a role in basic neurogenerative processes such as the formation of the blood-brain barrier, myelination, neurogenesis, and microglia maturation and also modulates many aspects of animal behavior. Herein, we discuss the biological intersection of neurodevelopment and the microbiome and explore the hypothesis that gut bacteria are integral contributors to development and function of the nervous system and to the balance between mental health and disease.


Subject(s)
Brain/physiology , Gastrointestinal Microbiome , Animals , Behavior , Brain/growth & development , Female , Humans , Neurodevelopmental Disorders/microbiology , Pregnancy , Vagina/microbiology
3.
Cell ; 167(6): 1469-1480.e12, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27912057

ABSTRACT

The intestinal microbiota influence neurodevelopment, modulate behavior, and contribute to neurological disorders. However, a functional link between gut bacteria and neurodegenerative diseases remains unexplored. Synucleinopathies are characterized by aggregation of the protein α-synuclein (αSyn), often resulting in motor dysfunction as exemplified by Parkinson's disease (PD). Using mice that overexpress αSyn, we report herein that gut microbiota are required for motor deficits, microglia activation, and αSyn pathology. Antibiotic treatment ameliorates, while microbial re-colonization promotes, pathophysiology in adult animals, suggesting that postnatal signaling between the gut and the brain modulates disease. Indeed, oral administration of specific microbial metabolites to germ-free mice promotes neuroinflammation and motor symptoms. Remarkably, colonization of αSyn-overexpressing mice with microbiota from PD-affected patients enhances physical impairments compared to microbiota transplants from healthy human donors. These findings reveal that gut bacteria regulate movement disorders in mice and suggest that alterations in the human microbiome represent a risk factor for PD.


Subject(s)
Parkinson Disease/microbiology , Parkinson Disease/pathology , Animals , Brain/pathology , Dysbiosis/pathology , Fatty Acids/metabolism , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/physiopathology , Humans , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Mice , Microglia/pathology , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , alpha-Synuclein/metabolism
4.
Cell ; 163(2): 271-2, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26451475

ABSTRACT

An effective immune response leads to rapid elimination of infectious agents, with seemingly little long-term impairment to the host. New findings by Morais da Fonseca et al. reveal that acute infections may result in permanent disruption of tissue homeostasis and immune dysfunction, long after clearance of a pathogen.


Subject(s)
Gastrointestinal Microbiome , Immune System Diseases/microbiology , Immune System Diseases/pathology , Lymphatic Diseases/pathology , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis/physiology , Female , Humans , Male
5.
Cell ; 161(2): 264-76, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25860609

ABSTRACT

The gastrointestinal (GI) tract contains much of the body's serotonin (5-hydroxytryptamine, 5-HT), but mechanisms controlling the metabolism of gut-derived 5-HT remain unclear. Here, we demonstrate that the microbiota plays a critical role in regulating host 5-HT. Indigenous spore-forming bacteria (Sp) from the mouse and human microbiota promote 5-HT biosynthesis from colonic enterochromaffin cells (ECs), which supply 5-HT to the mucosa, lumen, and circulating platelets. Importantly, microbiota-dependent effects on gut 5-HT significantly impact host physiology, modulating GI motility and platelet function. We identify select fecal metabolites that are increased by Sp and that elevate 5-HT in chromaffin cell cultures, suggesting direct metabolic signaling of gut microbes to ECs. Furthermore, elevating luminal concentrations of particular microbial metabolites increases colonic and blood 5-HT in germ-free mice. Altogether, these findings demonstrate that Sp are important modulators of host 5-HT and further highlight a key role for host-microbiota interactions in regulating fundamental 5-HT-related biological processes.


Subject(s)
Bacteria/metabolism , Gastrointestinal Tract/microbiology , Microbiota , Serotonin/biosynthesis , Animals , Bacteria/classification , Blood Platelets/metabolism , Chromaffin Cells , Gastrointestinal Motility , Humans , Mice , Phylogeny
6.
Cell ; 155(7): 1451-63, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24315484

ABSTRACT

Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders.


Subject(s)
Child Development Disorders, Pervasive/microbiology , Gastrointestinal Tract/microbiology , Animals , Anxiety/metabolism , Anxiety/microbiology , Bacteroides fragilis , Behavior, Animal , Brain/physiology , Child , Child Development Disorders, Pervasive/metabolism , Disease Models, Animal , Female , Gastrointestinal Tract/metabolism , Humans , Mice , Mice, Inbred C57BL , Microbiota , Probiotics/administration & dosage
7.
Nature ; 602(7898): 647-653, 2022 02.
Article in English | MEDLINE | ID: mdl-35165440

ABSTRACT

Integration of sensory and molecular inputs from the environment shapes animal behaviour. A major site of exposure to environmental molecules is the gastrointestinal tract, in which dietary components are chemically transformed by the microbiota1 and gut-derived metabolites are disseminated to all organs, including the brain2. In mice, the gut microbiota impacts behaviour3, modulates neurotransmitter production in the gut and brain4,5, and influences brain development and myelination patterns6,7. The mechanisms that mediate the gut-brain interactions remain poorly defined, although they broadly involve humoral or neuronal connections. We previously reported that the levels of the microbial metabolite 4-ethylphenyl sulfate (4EPS) were increased in a mouse model of atypical neurodevelopment8. Here we identified biosynthetic genes from the gut microbiome that mediate the conversion of dietary tyrosine to 4-ethylphenol (4EP), and bioengineered gut bacteria to selectively produce 4EPS in mice. 4EPS entered the brain and was associated with changes in region-specific activity and functional connectivity. Gene expression signatures revealed altered oligodendrocyte function in the brain, and 4EPS impaired oligodendrocyte maturation in mice and decreased oligodendrocyte-neuron interactions in ex vivo brain cultures. Mice colonized with 4EP-producing bacteria exhibited reduced myelination of neuronal axons. Altered myelination dynamics in the brain have been associated with behavioural outcomes7,9-14. Accordingly, we observed that mice exposed to 4EPS displayed anxiety-like behaviours, and pharmacological treatments that promote oligodendrocyte differentiation prevented the behavioural effects of 4EPS. These findings reveal that a gut-derived molecule influences complex behaviours in mice through effects on oligodendrocyte function and myelin patterning in the brain.


Subject(s)
Anxiety , Gastrointestinal Microbiome , Microbiota , Animals , Anxiety/metabolism , Bacteria , Brain/metabolism , Gastrointestinal Microbiome/physiology , Mice , Mice, Inbred C57BL , Microbiota/physiology , Myelin Sheath , Phenols/metabolism
8.
Nature ; 595(7867): 409-414, 2021 07.
Article in English | MEDLINE | ID: mdl-34194038

ABSTRACT

Social interactions among animals mediate essential behaviours, including mating, nurturing, and defence1,2. The gut microbiota contribute to social activity in mice3,4, but the gut-brain connections that regulate this complex behaviour and its underlying neural basis are unclear5,6. Here we show that the microbiome modulates neuronal activity in specific brain regions of male mice to regulate canonical stress responses and social behaviours. Social deviation in germ-free and antibiotic-treated mice is associated with elevated levels of the stress hormone corticosterone, which is primarily produced by activation of the hypothalamus-pituitary-adrenal (HPA) axis. Adrenalectomy, antagonism of glucocorticoid receptors, or pharmacological inhibition of corticosterone synthesis effectively corrects social deficits following microbiome depletion. Genetic ablation of glucocorticoid receptors in specific brain regions or chemogenetic inactivation of neurons in the paraventricular nucleus of the hypothalamus that produce corticotrophin-releasing hormone (CRH) reverse social impairments in antibiotic-treated mice. Conversely, specific activation of CRH-expressing neurons in the paraventricular nucleus induces social deficits in mice with a normal microbiome. Via microbiome profiling and in vivo selection, we identify a bacterial species, Enterococcus faecalis, that promotes social activity and reduces corticosterone levels in mice following social stress. These studies suggest that specific gut bacteria can restrain the activation of the HPA axis, and show that the microbiome can affect social behaviours through discrete neuronal circuits that mediate stress responses in the brain.


Subject(s)
Brain/cytology , Brain/physiology , Gastrointestinal Microbiome/physiology , Neurons/metabolism , Social Behavior , Stress, Psychological , Animals , Corticosterone/blood , Corticotropin-Releasing Hormone/metabolism , Enterococcus faecalis/metabolism , Germ-Free Life , Glucocorticoids/metabolism , Hypothalamus/metabolism , Male , Mice , Mice, Inbred C57BL , Receptors, Glucocorticoid/metabolism , Signal Transduction
9.
Immunity ; 46(6): 910-926, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28636959

ABSTRACT

Interactions between the nervous and immune systems enable the gut to respond to the variety of dietary products that it absorbs, the broad spectrum of pathogens that it encounters, and the diverse microbiome that it harbors. The enteric nervous system (ENS) senses and reacts to the dynamic ecosystem of the gastrointestinal (GI) tract by translating chemical cues from the environment into neuronal impulses that propagate throughout the gut and into other organs in the body, including the central nervous system (CNS). This review will describe the current understanding of the anatomy and physiology of the GI tract by focusing on the ENS and the mucosal immune system. We highlight emerging literature that the ENS is essential for important aspects of microbe-induced immune responses in the gut. Although most basic and applied research in neuroscience has focused on the brain, the proximity of the ENS to the immune system and its interface with the external environment suggest that novel paradigms for nervous system function await discovery.


Subject(s)
Central Nervous System/immunology , Enteric Nervous System , Gastrointestinal Microbiome , Gastrointestinal Tract/physiology , Immune System/immunology , Immunity, Mucosal , Intestines/immunology , Animals , Environmental Exposure , Gastrointestinal Tract/anatomy & histology , Host-Pathogen Interactions , Humans , Neuroimmunomodulation
10.
Immunity ; 46(3): 350-363, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28329702

ABSTRACT

Infections in the first year of life are common and often severe. The newborn host demonstrates both quantitative and qualitative differences to the adult in nearly all aspects of immunity, which at least partially explain the increased susceptibility to infection. Here we discuss how differences in susceptibility to infection result not out of a state of immaturity, but rather reflect adaptation to the particular demands placed on the immune system in early life. We review the mechanisms underlying host defense in the very young, and discuss how specific developmental demands increase the risk of particular infectious diseases. In this context, we discuss how this plasticity, i.e. the capacity to adapt to demands encountered in early life, also provides the potential to leverage protection of the young against infection and disease through a number of interventions.


Subject(s)
Communicable Diseases/immunology , Disease Susceptibility/immunology , Immune System/growth & development , Infant, Newborn/immunology , Infant , Animals , Humans , Immune System/immunology
11.
Nat Immunol ; 14(7): 668-75, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23778794

ABSTRACT

Pattern-recognition receptors (PRRs) are traditionally known to sense microbial molecules during infection to initiate inflammatory responses. However, ligands for PRRs are not exclusive to pathogens and are abundantly produced by the resident microbiota during normal colonization. Mechanism(s) that underlie this paradox have remained unclear. Recent studies reveal that gut bacterial ligands from the microbiota signal through PRRs to promote development of host tissue and the immune system, and protection from disease. Evidence from both invertebrate and vertebrate models reveals that innate immune receptors are required to promote long-term colonization by the microbiota. This emerging perspective challenges current models in immunology and suggests that PRRs may have evolved, in part, to mediate the bidirectional cross-talk between microbial symbionts and their hosts.


Subject(s)
Gastrointestinal Tract/microbiology , Immunity, Innate/immunology , Metagenome/immunology , Receptors, Pattern Recognition/immunology , Symbiosis/immunology , Animals , Gastrointestinal Tract/immunology , Host-Pathogen Interactions/immunology , Humans
12.
Nat Rev Neurosci ; 21(12): 717-731, 2020 12.
Article in English | MEDLINE | ID: mdl-33067567

ABSTRACT

Mounting evidence suggests that the gut microbiome impacts brain development and function. Gut-brain connections may be mediated by an assortment of microbial molecules that are produced in the gastrointestinal tract, which can subsequently permeate many organs, including sometimes the brain. Studies in animal models have identified molecular cues propagated from intestinal bacteria to the brain that can affect neurological function and/or neurodevelopmental and neurodegenerative conditions. Herein, we describe bacterial metabolites with known or suspected neuromodulatory activity, define mechanisms of signalling pathways from the gut microbiota to the brain and discuss direct effects that gut bacterial molecules are likely exerting on specific brain cells. Many discoveries are recent, and the findings described in this Perspective are largely novel and yet to be extensively validated. However, expanding research into the dynamic molecular communications between gut microorganisms and the CNS continues to uncover critical and previously unappreciated clues in understanding the pathophysiology of behavioural, psychiatric and neurodegenerative diseases.


Subject(s)
Bacteria/metabolism , Gastrointestinal Microbiome , Mental Disorders/microbiology , Neurodegenerative Diseases/microbiology , Animals , Brain/physiopathology , Humans , Mental Disorders/psychology , Neurodegenerative Diseases/psychology
13.
Nature ; 563(7731): 402-406, 2018 11.
Article in English | MEDLINE | ID: mdl-30356215

ABSTRACT

While research into the biology of animal behaviour has primarily focused on the central nervous system, cues from peripheral tissues and the environment have been implicated in brain development and function1. There is emerging evidence that bidirectional communication between the gut and the brain affects behaviours including anxiety, cognition, nociception and social interaction1-9. Coordinated locomotor behaviour is critical for the survival and propagation of animals, and is regulated by internal and external sensory inputs10,11. However, little is known about how the gut microbiome influences host locomotion, or the molecular and cellular mechanisms involved. Here we report that germ-free status or antibiotic treatment results in hyperactive locomotor behaviour in the fruit fly Drosophila melanogaster. Increased walking speed and daily activity in the absence of a gut microbiome are rescued by mono-colonization with specific bacteria, including the fly commensal Lactobacillus brevis. The bacterial enzyme xylose isomerase from L. brevis recapitulates the locomotor effects of microbial colonization by modulating sugar metabolism in flies. Notably, thermogenetic activation of octopaminergic neurons or exogenous administration of octopamine, the invertebrate counterpart of noradrenaline, abrogates the effects of xylose isomerase on Drosophila locomotion. These findings reveal a previously unappreciated role for the gut microbiome in modulating locomotion, and identify octopaminergic neurons as mediators of peripheral microbial cues that regulate motor behaviour in animals.


Subject(s)
Carbohydrate Metabolism , Drosophila melanogaster/microbiology , Drosophila melanogaster/physiology , Gastrointestinal Microbiome/physiology , Levilactobacillus brevis/enzymology , Levilactobacillus brevis/metabolism , Locomotion/physiology , Aldose-Ketose Isomerases/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Carbohydrate Metabolism/drug effects , Drosophila melanogaster/drug effects , Drosophila melanogaster/metabolism , Female , Gastrointestinal Microbiome/drug effects , Germ-Free Life , Levilactobacillus brevis/isolation & purification , Locomotion/drug effects , Motor Activity/drug effects , Motor Activity/physiology , Neural Pathways , Neurons/drug effects , Neurons/metabolism , Octopamine/metabolism , Octopamine/pharmacology , Symbiosis
14.
Mov Disord ; 38(3): 399-409, 2023 03.
Article in English | MEDLINE | ID: mdl-36691982

ABSTRACT

BACKGROUND: The gut microbiome is altered in several neurologic disorders, including Parkinson's disease (PD). OBJECTIVES: The aim is to profile the fecal gut metagenome in PD for alterations in microbial composition, taxon abundance, metabolic pathways, and microbial gene products, and their relationship with disease progression. METHODS: Shotgun metagenomic sequencing was conducted on 244 stool donors from two independent cohorts in the United States, including individuals with PD (n = 48, n = 47, respectively), environmental household controls (HC, n = 29, n = 30), and community population controls (PC, n = 41, n = 49). Microbial features consistently altered in PD compared to HC and PC subjects were identified. Data were cross-referenced to public metagenomic data sets from two previous studies in Germany and China to determine generalizable microbiome features. RESULTS: We find several significantly altered taxa between PD and controls within the two cohorts sequenced in this study. Analysis across global cohorts returns consistent changes only in Intestinimonas butyriciproducens. Pathway enrichment analysis reveals disruptions in microbial carbohydrate and lipid metabolism and increased amino acid and nucleotide metabolism in PD. Global gene-level signatures indicate an increased response to oxidative stress, decreased cellular growth and microbial motility, and disrupted intercommunity signaling. CONCLUSIONS: A metagenomic meta-analysis of PD shows consistent and novel alterations in functional metabolic potential and microbial gene abundance across four independent studies from three continents. These data reveal that stereotypic changes in the functional potential of the gut microbiome are a consistent feature of PD, highlighting potential diagnostic and therapeutic avenues for future research. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease , Humans , Parkinson Disease/diagnosis , Metagenome/genetics , Cohort Studies , Gastrointestinal Microbiome/genetics , Feces
15.
Mol Psychiatry ; 27(12): 4959-4973, 2022 12.
Article in English | MEDLINE | ID: mdl-36028571

ABSTRACT

Epidemiological evidence implicates severe maternal infections as risk factors for neurodevelopmental disorders, such as ASD and schizophrenia. Accordingly, animal models mimicking infection during pregnancy, including the maternal immune activation (MIA) model, result in offspring with neurobiological, behavioral, and metabolic phenotypes relevant to human neurodevelopmental disorders. Most of these studies have been performed in rodents. We sought to better understand the molecular signatures characterizing the MIA model in an organism more closely related to humans, rhesus monkeys (Macaca mulatta), by evaluating changes in global metabolic profiles in MIA-exposed offspring. Herein, we present the global metabolome in six peripheral tissues (plasma, cerebrospinal fluid, three regions of intestinal mucosa scrapings, and feces) from 13 MIA and 10 control offspring that were confirmed to display atypical neurodevelopment, elevated immune profiles, and neuropathology. Differences in lipid, amino acid, and nucleotide metabolism discriminated these MIA and control samples, with correlations of specific metabolites to behavior scores as well as to cytokine levels in plasma, intestinal, and brain tissues. We also observed modest changes in fecal and intestinal microbial profiles, and identify differential metabolomic profiles within males and females. These findings support a connection between maternal immune activation and the metabolism, microbiota, and behavioral traits of offspring, and may further the translational applications of the MIA model and the advancement of biomarkers for neurodevelopmental disorders such as ASD or schizophrenia.


Subject(s)
Neurodevelopmental Disorders , Prenatal Exposure Delayed Effects , Pregnancy , Male , Animals , Female , Humans , Behavior, Animal/physiology , Disease Models, Animal , Primates , Metabolome
16.
Immunity ; 40(4): 457-9, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24745329

ABSTRACT

Segmented filamentous bacteria (SFB) contribute to immune-system maturation. In this issue of Immunity, Goto et al. (2014) and Lécuyer et al. (2014) provide evidence for how SFB induce antigen-specific T helper 17 cells and promote development of adaptive immunity at discrete mucosal sites.


Subject(s)
Antigens, Bacterial/immunology , Clostridium Infections/immunology , Clostridium/immunology , Dendritic Cells/immunology , Escherichia coli Infections/immunology , Escherichia coli/immunology , Histocompatibility Antigens Class II/metabolism , Immunoglobulin A/metabolism , Intestines/immunology , Lymphocytes/immunology , Plasma Cells/immunology , Th17 Cells/immunology , Animals
17.
Immunity ; 40(6): 824-32, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24950202

ABSTRACT

The unexpected diversity of the human microbiome and metabolome far exceeds the complexity of the human genome. Although we now understand microbial taxonomic and genetic repertoires in some populations, we are just beginning to assemble the necessary computational and experimental tools to understand the metabolome in comparable detail. However, even with the limited current state of knowledge, individual connections between microbes and metabolites, between microbes and immune function, and between metabolites and immune function are being established. Here, we provide our perspective on these connections and outline a systematic research program that could turn these individual links into a broader network that allows us to understand how these components interact. This program will enable us to exploit connections among the microbiome, metabolome, and host immune system to maintain health and perhaps help us understand how to reverse the processes that lead to a wide range of immune and other diseases.


Subject(s)
Metabolome , Metagenome , Microbiota/genetics , Microbiota/immunology , Bacterial Proteins/immunology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Humans
19.
Proc Natl Acad Sci U S A ; 114(40): 10713-10718, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28893978

ABSTRACT

The gut microbiota regulates T cell functions throughout the body. We hypothesized that intestinal bacteria impact the pathogenesis of multiple sclerosis (MS), an autoimmune disorder of the CNS and thus analyzed the microbiomes of 71 MS patients not undergoing treatment and 71 healthy controls. Although no major shifts in microbial community structure were found, we identified specific bacterial taxa that were significantly associated with MS. Akkermansia muciniphila and Acinetobacter calcoaceticus, both increased in MS patients, induced proinflammatory responses in human peripheral blood mononuclear cells and in monocolonized mice. In contrast, Parabacteroides distasonis, which was reduced in MS patients, stimulated antiinflammatory IL-10-expressing human CD4+CD25+ T cells and IL-10+FoxP3+ Tregs in mice. Finally, microbiota transplants from MS patients into germ-free mice resulted in more severe symptoms of experimental autoimmune encephalomyelitis and reduced proportions of IL-10+ Tregs compared with mice "humanized" with microbiota from healthy controls. This study identifies specific human gut bacteria that regulate adaptive autoimmune responses, suggesting therapeutic targeting of the microbiota as a treatment for MS.


Subject(s)
Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Gastrointestinal Microbiome , Leukocytes, Mononuclear/immunology , Multiple Sclerosis/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes/immunology , Animals , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/microbiology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Leukocytes, Mononuclear/microbiology , Leukocytes, Mononuclear/pathology , Male , Mice , Multiple Sclerosis/microbiology , Multiple Sclerosis/pathology , T-Lymphocytes/microbiology , T-Lymphocytes/pathology
20.
Development ; 143(19): 3632-3637, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27702788

ABSTRACT

In situ hybridization methods are used across the biological sciences to map mRNA expression within intact specimens. Multiplexed experiments, in which multiple target mRNAs are mapped in a single sample, are essential for studying regulatory interactions, but remain cumbersome in most model organisms. Programmable in situ amplifiers based on the mechanism of hybridization chain reaction (HCR) overcome this longstanding challenge by operating independently within a sample, enabling multiplexed experiments to be performed with an experimental timeline independent of the number of target mRNAs. To assist biologists working across a broad spectrum of organisms, we demonstrate multiplexed in situ HCR in diverse imaging settings: bacteria, whole-mount nematode larvae, whole-mount fruit fly embryos, whole-mount sea urchin embryos, whole-mount zebrafish larvae, whole-mount chicken embryos, whole-mount mouse embryos and formalin-fixed paraffin-embedded human tissue sections. In addition to straightforward multiplexing, in situ HCR enables deep sample penetration, high contrast and subcellular resolution, providing an incisive tool for the study of interlaced and overlapping expression patterns, with implications for research communities across the biological sciences.


Subject(s)
In Situ Hybridization/methods , RNA, Messenger/metabolism , Animals , Drosophila , Embryo, Nonmammalian/metabolism , Humans , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL