Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Phylogenet Evol ; 130: 143-155, 2019 01.
Article in English | MEDLINE | ID: mdl-30321697

ABSTRACT

The grey-bellied pygmy mouse (Mus triton) from the endemic African subgenus Nannomys is a widespread rodent species inhabiting the highlands of eastern and central Africa. Although it has long been considered as a single species, recent data has suggested the existence of a species complex. In order to evaluate the geographical structure and current taxonomy of M. triton, we analysed one mitochondrial and six nuclear genes from individuals covering most of its distribution range. Our analysis revealed the existence of at least five distinct genetic lineages with only marginal overlaps among their distributional ranges. Morphological comparisons, however, showed large overlaps in external body measurements and only a weak differentiation in skull form. Therefore, we suggest maintaining M. triton as a single taxon with pronounced intraspecific genetic structure. Divergence dating analysis placed the most recent common ancestor of the extant lineages of M. triton to the early Pleistocene (about 2.0 Ma). The phylogeographic structure of the species was likely shaped by Pleistocene climatic oscillations and the highly diverse topography of eastern Africa.


Subject(s)
Genetic Variation , Phylogeny , Sigmodontinae/classification , Sigmodontinae/genetics , Africa, Eastern , Animals , Mice , Phylogeography , Sigmodontinae/anatomy & histology , Sigmodontinae/physiology
2.
Mol Ecol ; 24(20): 5248-66, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26340076

ABSTRACT

Understanding historical influences of climate and physiographic barriers in shaping patterns of biodiversity remains limited for many regions of the world. For mammals of continental Africa, phylogeographic studies, particularly for West African lineages, implicate both geographic barriers and climate oscillations in shaping small mammal diversity. In contrast, studies for southern African species have revealed conflicting phylogenetic patterns for how mammalian lineages respond to both climate change and geologic events such as river formation, especially during the Pleistocene. However, these studies were often biased by limited geographic sampling or exclusively focused on large-bodied taxa. We exploited the broad southern African distribution of a savanna-woodland-adapted African rodent, Gerbilliscus leucogaster (bushveld gerbil) and generated mitochondrial, autosomal and sex chromosome data to quantify regional signatures of climatic and vicariant biogeographic phenomena. Results indicate the most recent common ancestor for all G. leucogaster lineages occurred during the early Pleistocene. We documented six divergent mitochondrial lineages that diverged ~0.270-0.100 mya, each of which was geographically isolated during periods characterized by alterations to the course of the Zambezi River and its tributaries as well as regional 'megadroughts'. Results demonstrate the presence of a widespread lineage exhibiting demographic expansion ~0.065-0.035 mya, a time that coincides with savanna-woodland expansion across southern Africa. A multilocus autosomal perspective revealed the influence of the Kafue River as a current barrier to gene flow and regions of secondary contact among divergent mitochondrial lineages. Our results demonstrate the importance of both climatic fluctuations and physiographic vicariance in shaping the distribution of southern African biodiversity.


Subject(s)
Evolution, Molecular , Genetics, Population , Gerbillinae/genetics , Africa, Southern , Amplified Fragment Length Polymorphism Analysis , Animal Distribution , Animals , Climate Change , DNA, Mitochondrial/genetics , Female , Geography , Gerbillinae/classification , Haplotypes , Male , Models, Theoretical , Molecular Sequence Data , Phylogeny , Phylogeography , Sequence Analysis, DNA , Spatial Analysis
3.
BMC Evol Biol ; 14: 256, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25496476

ABSTRACT

BACKGROUND: Rodents of the genus Mus represent one of the most valuable biological models for biomedical and evolutionary research. Out of the four currently recognized subgenera, Nannomys (African pygmy mice, including the smallest rodents in the world) comprises the only original African lineage. Species of this subgenus became important models for the study of sex determination in mammals and they are also hosts of potentially dangerous pathogens. Nannomys ancestors colonized Africa from Asia at the end of Miocene and Eastern Africa should be considered as the place of their first radiation. In sharp contrast with this fact and despite the biological importance of Nannomys, the specimens from Eastern Africa were obviously under-represented in previous studies and the phylogenetic and distributional patterns were thus incomplete. RESULTS: We performed comprehensive genetic analysis of 657 individuals of Nannomys collected at approximately 300 localities across the whole sub-Saharan Africa. Phylogenetic reconstructions based on mitochondrial (CYTB) and nuclear (IRBP) genes identified five species groups and three monotypic ancestral lineages. We provide evidence for important cryptic diversity and we defined and mapped the distribution of 27 molecular operational taxonomic units (MOTUs) that may correspond to presumable species. Biogeographical reconstructions based on data spanning all of Africa modified the previous evolutionary scenarios. First divergences occurred in Eastern African mountains soon after the colonization of the continent and the remnants of these old divergences still occur there, represented by long basal branches of M. (previously Muriculus) imberbis and two undescribed species from Ethiopia and Malawi. The radiation in drier lowland habitats associated with the decrease of body size is much younger, occurred mainly in a single lineage (called the minutoides group, and especially within the species M. minutoides), and was probably linked to aridification and climatic fluctuations in middle Pliocene/Pleistocene. CONCLUSIONS: We discovered very high cryptic diversity in African pygmy mice making the genus Mus one of the richest genera of African mammals. Our taxon sampling allowed reliable phylogenetic and biogeographic reconstructions that (together with detailed distributional data of individual MOTUs) provide a solid basis for further evolutionary, ecological and epidemiological studies of this important group of rodents.


Subject(s)
Mice/classification , Mice/genetics , Phylogeny , Africa South of the Sahara , Animals , Biological Evolution , Phylogeography
4.
Behav Brain Res ; 421: 113713, 2022 03 12.
Article in English | MEDLINE | ID: mdl-34906607

ABSTRACT

Naphyrone, also known as NRG-1, is a novel psychoactive substance (NPS), a cathinone with stimulatory properties available on the grey/illicit drug market for almost a decade. It is structurally related to infamously known powerful stimulants with the pyrovalerone structure, such as alpha-pyrrolidinovalerophenone (α-PVP) or methylenedioxypyrovalerone (MDPV) that are labeled as a cheap replacement for cocaine and other stimulants. Despite the known addictive potential of α-PVP and MDPV, there are no studies directly evaluating naphyrone's addictive potential e.g., in conditioned place preference (CPP) test or using self-administration. Therefore, our study was designed to evaluate the addictive potential in a CPP test in male Wistar rats and compare its effect to another powerful stimulant with a high addictive potential - methamphetamine. Naphyrone increased time spent in the drug-paired compartment with 5 and 20 mg/kg s.c. being significant and 10 mg/kg s.c. reaching the threshold (p = 0.07); the effect was comparable to that of methamphetamine 1.5 mg/kg s.c. The lowest dose, naphyrone 1 mg/kg s.c., had no effect on CPP. Interestingly, no dose response effect was detected. Based on these data, we are able to conclude that naphyrone has an addictive potential and may possess a significant risk to users.


Subject(s)
Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Conditioning, Classical/drug effects , Methamphetamine/pharmacology , Pentanones/pharmacology , Pyrrolidines/pharmacology , Substance-Related Disorders , Alkaloids/pharmacology , Animals , Central Nervous System Stimulants/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Methamphetamine/administration & dosage , Pentanones/administration & dosage , Pyrrolidines/administration & dosage , Rats , Rats, Wistar
5.
Br J Pharmacol ; 179(1): 65-83, 2022 01.
Article in English | MEDLINE | ID: mdl-34519023

ABSTRACT

BACKGROUND AND PURPOSE: Deschloroketamine (DCK), a structural analogue of ketamine, has recently emerged on the illicit drug market as a recreational drug with a modestly long duration of action. Despite it being widely used by recreational users, no systematic research on its effects has been performed to date. EXPERIMENTAL APPROACH: Pharmacokinetics, acute effects, and addictive potential in a series of behavioural tests in Wistar rats were performed following subcutaneous (s.c.) administration of DCK (5, 10, and 30 mg·kg-1 ) and its enantiomers S-DCK (10 mg·kg-1 ) and R-DCK (10 mg·kg-1 ). Additionally, activity at human N-methyl-d-aspartate (NMDA) receptors was also evaluated. KEY RESULTS: DCK rapidly crossed the blood brain barrier, with maximum brain levels achieved at 30 min and remaining high at 2 h after administration. Its antagonist activity at NMDA receptors is comparable to that of ketamine with S-DCK being more potent. DCK had stimulatory effects on locomotion, induced place preference, and robustly disrupted PPI. Locomotor stimulant effects tended to disappear more quickly than disruptive effects on PPI. S-DCK had more pronounced stimulatory properties than its R-enantiomer. However, the potency in disrupting PPI was comparable in both enantiomers. CONCLUSION AND IMPLICATIONS: DCK showed similar behavioural and addictive profiles and pharmacodynamics to ketamine, with S-DCK being in general more active. It has a slightly slower pharmacokinetic profile than ketamine, which is consistent with its reported longer duration of action. These findings have implications and significance for understanding the risks associated with illicit use of DCK.


Subject(s)
Behavior, Animal , Illicit Drugs , Ketamine , Locomotion , Animals , Behavior, Animal/drug effects , Illicit Drugs/adverse effects , Illicit Drugs/pharmacokinetics , Illicit Drugs/pharmacology , Ketamine/administration & dosage , Ketamine/adverse effects , Ketamine/analogs & derivatives , Ketamine/pharmacokinetics , Ketamine/pharmacology , Locomotion/drug effects , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL