ABSTRACT
BACKGROUND: Puglia is the most important region in Italy for table grape production. Since consumers look for new products, the number of table grape varieties has greatly increased in recent years. RESULTS: In a survey in the Puglia region, we identified several years ago a potential mutation of the cv. Victoria. We described this accession in comparison with the standard Victoria for some amphelographic traits. All the characteristics were very similar to the standard Victoria except for the berry shape, which was significantly more elongated. Moreover, the berry of the mutated Victoria showed higher firmness, lightness and chroma than the standard one, with a more intense yellow colour of the skin (appreciated by consumers). The molecular characterisation with 25 SSR markers showed that normal and mutant Victoria were genetically identical at all the analysed loci, thus suggesting that the two accessions could be considered as clones with the difference in berry shape probably due to a somatic mutation. CONCLUSIONS: This mutation of the cv. Victoria may have interesting perspective for the market since consumers are always attracted by different shape and colour of the fruits (consumers buy with eyes). This accession can be an alternative clone of the already known standard Victoria. © 2017 Society of Chemical Industry.
Subject(s)
Consumer Behavior , Fruit/chemistry , Vitis/chemistry , Color , Fruit/genetics , Fruit/growth & development , Italy , Vitis/genetics , Vitis/growth & developmentABSTRACT
Poor air quality is the largest environmental health risk in England. In the West Midlands, UK, â¼2.9 million people are affected by air pollution with an average loss in life expectancy of up to 6 months. The 2021 Environment Act established a legal framework for local authorities in England to develop regional air quality plans, generating a policy need for predictive environmental impact assessment tools. In this context, we developed a novel Air Quality Lifecourse Assessment Tool (AQ-LAT) to estimate electoral ward-level impacts of PM2.5 and NO2 exposure on outcomes of interest to local authorities, namely morbidity (asthma, coronary heart disease (CHD), stroke, lung cancer), mortality, and associated healthcare costs. We apply the Tool to assess the health economic burden of air pollutant exposure and estimate benefits that would be generated by meeting WHO 2021 Global Air Quality Guidelines (AQGs) (annual average concentrations) for NO2 (10 µg/m3) and PM2.5 (5 µg/m3) in the West Midlands Combined Authority Area. All West Midlands residents live in areas which exceed WHO AQGs, with 2070 deaths, 2070 asthma diagnoses, 770 CHD diagnoses, 170 lung cancers and 650 strokes attributable to air pollution exposure annually. Reducing PM2.5 and NO2 concentrations to WHO AQGs would save 10,700 lives reducing regional mortality by 1.8%, gaining 92,000 quality-adjusted life years (QALYs), and preventing 20,500 asthma, 7400 CHD, 1400 lung cancer, and 5700 stroke diagnoses, with economic benefits of £3.2 billion over 20 years. Significantly, we estimate 30% of QALY gains relate to reduced disease burden. The AQ-LAT has major potential to be replicated across local authorities in England and applied to inform regional investment decisions.
Subject(s)
Air Pollutants , Air Pollution , Environmental Exposure , Particulate Matter , Air Pollution/statistics & numerical data , Air Pollutants/analysis , Humans , England , Particulate Matter/analysis , Environmental Exposure/statistics & numerical data , Lung Neoplasms , Asthma , Quality Improvement , Nitrogen Dioxide/analysis , Health Impact Assessment , Coronary Disease , StrokeABSTRACT
The capacity to predict NO2 and the total oxidant (Ox = NO2 + O3) within street canyons is critical for the assessment of air quality regulations aimed at enhancing human wellbeing in urban hotspots. However, such assessment requires the coupling of numerous processes at the street-scale, such as vehicular emissions and tightly coupled transport and photochemical processes. Photochemistry, in particular, is often ignored, heavily simplified, or parameterized. In this study, MBM-FleX - a process-based street canyon model that allows fast computation of various emission profiles and sun-lit conditions with tightly coupled physical (transport and mixing) and chemical processes and without loss of sufficient spatial resolution - was used to simulate shading effects on reactive species within urban canyons. Driven by pre-generated large-eddy simulation of flow, MBM-FleX results show that shading effects on volatile organic compound (VOC) free-radicals significantly affect the interconversion of odd-oxygen species that cannot be captured by the simple NOx-O3 chemistry, for example, reducing NO2 by limiting the formation of hydroperoxyl radicals. Consistent with previous results in simpler model systems, the inclusion of VOC free-radical chemistry did not appreciably alter the sensitivity of NO2 to shading intensity in regular canyons, but a non-linear relationship between NO2 and shading intensity is found in deep canyons when the air residence time grew. When solar incidence simultaneously passes through multiple vortices in street canyons, VOC chemistry and shade may considerably influence model results, which may therefore affect the development of urban planning strategies and personal exposure evaluation.
Subject(s)
Air Pollutants , Air Pollution , Volatile Organic Compounds , Humans , Air Pollutants/analysis , Nitrogen Dioxide , Models, Theoretical , Air Pollution/analysis , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis , Cities , Environmental MonitoringABSTRACT
Data presented are on mass, length, SPAD and some physiological parameters of leaves and stems in a table grape vineyard of Italia variety grafted onto 1103 Paulsen, covered with a plastic sheet to advance ripening and managed with two soil systems in the Puglia region, South-eastern Italy in 2015 and 2016. The two systems differed for the soil management since in one area of the vineyard a cover crop was used (Trifolium repens L.), whereas in the other area only soil tillage was adopted. The data of the two seasons include: (a) mass of leaves of primary shoot, secondary shoot and opposite the cluster; (b) length of secondary shoots; (c) number of both secondary shoots and leaves of secondary shoots; (d) SPAD values and area of leaves opposite both first and second cluster on the primary shoot; (e) mass of stems of both primary and secondary shoots; and (f) some physiological parameters (Ψstem, temperature, Fv/Fm). The data in this article support and augment information presented in the research article 'Cover crops in the inter-row of a table grape vineyard managed with irrigation sensors: effects on yield, quality and glutamine synthetase activity in leaves' (Sci. Hortic. 281, 2021 https://doi.org/10.1016/j.scienta.2021.109963).
ABSTRACT
Black carbon transport from the Santiago Metropolitan Area, Chile, up to the adjacent Andes Cordillera and its glaciers is of major concern. Its deposition accelerates the melting of the snowpack, which could lead to stress on water supply in addition to climate feedback. A proposed pathway for this transport is the channelling through the network of canyons that connect the urban basin to the elevated summits, as suggested by modelling studies, although no observations have validated this hypothesis so far. In this work, atmospheric measurements from a dedicated field campaign conducted in winter 2015, under severe urban pollution conditions, in Santiago and the Maipo canyon, southeast of Santiago, are analysed. Wind (speed and direction) and particulate matter concentrations measured at the surface and along vertical profiles, demonstrate intrusions of thick layers (up to 600 m above ground) of urban black carbon deep into the canyon on several occasions. Transport of PM down-valley occurs mostly through shallow layers at the surface except in connection with deep valley intrusions, when a secondary layer in altitude with return flow (down-valley) at night is observed. The transported particulate matter is mostly from the vicinity of the entrance to the canyon and uncorrelated to concentrations observed in downtown Santiago. Reanalyses data show that for 10% of the wintertime days, deep intrusions into the Maipo canyon are prevented by easterly winds advecting air pollutants away from the Andes. Also, in 23% of the cases, intrusions proceed towards a secondary north-eastward branch of the Maipo canyon, leaving 67% of the cases with favourable conditions for deep penetrations into the main Maipo canyon. Reanalyses show that the wind directions associated to the 33% anomalous cases are related to thick cloud cover and/or the development of coastal lows.
Subject(s)
Air Pollutants , Ice Cover , Air Pollutants/analysis , Carbon , Chile , Environmental Monitoring , Particulate Matter/analysis , WindABSTRACT
The mechanism behind the bud evolution towards breba or main crop in Ficus carica L. is uncertain. Anatomical and genetic studies may put a light on the possible similarities/differences between the two types of fruits. For this reason, we collected complimentary data from anatomical, X-ray imaging, and genetic techniques. The RNA seq together with structural genome annotation allowed the prediction of 34,629 known genes and 938 novel protein-coding genes. Transcriptome analysis of genes during bud differentiation revealed differentially expressed genes in two fig varieties (Dottato and Petrelli) and in breba and main crop. We chose Dottato and Petrelli because the first variety does not require pollination to set main crop and the latter does; moreover, Petrelli yields many brebas whereas Dottato few. Of the 1,615 and 1,904 loci expressed in Dottato and Petrelli, specifically in breba or main crop, respectively, only 256 genes appeared to be transcripts in both varieties. The buds of the two fig varieties were observed under optical microscope and using 3D X-ray tomography, highlighting differences mainly related to the stage of development. The X-ray images of buds showed a great structural similarity between breba and main crop during the initial stages of development. Analysis at the microscope indicated that inflorescence differentiation of breba was split in two seasons whereas that of main crop started at the end of winter of season 2 and was completed within 2 to 3 months. The higher expression of floral homeotic protein AGAMOUS in breba with respect to main crop, since this protein is required for normal development of stamens and carpels in the flower, may indicate an original role of these fruits for staminate flowers production for pollination of the main crop, as profichi in the caprifig. Several genes related to auxin (auxin efflux carrier, auxin response factor, auxin binding protein, auxin responsive protein) and to GA synthesis (GA20ox) were highly expressed in brebas with respect to main crop for the development of this parthenocarpic fruit.
ABSTRACT
Little information is available about nitrogen (N) content and its concentration in table grape vines. Knowledge of the quantity of N accumulated by the vine organs during the season could support sustainable fertilization programs for table grape vineyards. The aim of the present study was to determine the N content and its concentration in different annual organs, including summer and winter pruning materials, clusters at harvest, and fallen leaves at post-harvest. Specifically, biomass and N were analyzed at six phenological growth stages (flowering, berry-set, berry growth, veraison, ripening, and harvest) from 2012 to 2015. Nitrogen concentration was highest (>40 g/kg d.w.) in the leaves of the secondary shoots at flowering, whereas values >30 g/kg were measured in the leaves of the primary shoots. Nitrogen concentration in the clusters at harvest was 5.3-7.6 g/kg with an accumulation of 18.6-25.4 g/vine in the seasons. The decrease of N content in the primary leaves after flowering indicated a remobilization toward the clusters, which acted as a stronger sink. Later in the season (veraison-ripening), leaves translocated N to permanent organs and primary stems. Pruned wood and fallen leaves accounted for the largest N removal from the vine after clusters, 6.0-7.9 and 9.2-10.2 g/vine, respectively. With regard of the vine annual biomass, the growth followed a sigmoidal model reaching 7300-7500 g of d.w./vine at harvest. Vine leaf area, including both primary and secondary leaves, peaked at veraison (17-21 m2). Vines accumulated â 35 g/vine of N at harvest, not considering the N removed with the intense summer pruning practices (â 7 g/vine) and the fraction mobilized toward the storage organs (10-15 g/vine). The overall N required by the vine was around 50-55 g/vine, which corresponded to â 80 kg of N/ha in a vineyard with 1500 vines and a yield of 40 t/ha. Summer and winter pruning practices removed 29-31 g/vine of N which will be partly available (to be considered in the fertilization schedule) for the vine in the successive years if pruned residues were incorporated and mineralized in the soil.
ABSTRACT
Some plant growth regulators, including ethephon, can stimulate abscission of mature grape berries. The stimulation of grape berry abscission reduces fruit detachment force (FDF) and promotes the development of a dry stem scar, both of which could facilitate the production of high quality stemless fresh-cut table grapes. The objective of this research was to determine how two potential abscission treatments, 1445 and 2890 mg/L ethephon, affected FDF, pre-harvest abscission, fruit quality, and ethephon residue of Thompson Seedless and Crimson Seedless grapes. Both ethephon treatments strongly induced abscission of Thompson Seedless berries causing >90% pre-harvest abscission. Lower ethephon rates, a shorter post-harvest interval, or berry retention systems such as nets, would be needed to prevent excessive pre-harvest losses. The treatments also slightly affected Thompson Seedless berry skin color, with treated fruit being darker, less uniform in color, and with a more yellow hue than non-treated fruit. Ethephon residues on Thompson Seedless grapes treated with the lower concentration of ethephon were below legal limits at harvest. Ethephon treatments also promoted abscission of Crimson Seedless berries, but pre-harvest abscission was much lower (â 49%) in Crimson Seedless compared to Thompson Seedless. Treated fruits were slightly darker than non-treated fruits, but ethephon did not affect SSC, acidity, or firmness of Crimson Seedless, and ethephon residues were below legal limits.