Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Cell Biochem ; 432(1-2): 7-24, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28303408

ABSTRACT

Diabetic cardiomyopathy is preceded by mitochondrial alterations, and progresses to heart failure. We studied whether treatment with methylene blue (MB), a compound that was reported to serve as an alternate electron carrier within the mitochondrial electron transport chain (ETC), improves mitochondrial metabolism and cardiac function in type 1 diabetes. MB was administered at 10 mg/kg/day to control and diabetic rats. Both echocardiography and hemodynamic studies were performed to assess cardiac function. Mitochondrial studies comprised the measurement of oxidative phosphorylation and specific activities of fatty acid oxidation enzymes. Proteomic studies were employed to compare the level of lysine acetylation on cardiac mitochondrial proteins between the experimental groups. We found that MB facilitates NADH oxidation, increases NAD+, and the activity of deacetylase Sirtuin 3, and reduces protein lysine acetylation in diabetic cardiac mitochondria. We identified that lysine acetylation on 83 sites in 34 proteins is lower in the MB-treated diabetic group compared to the same sites in the untreated diabetic group. These changes occur across critical mitochondrial metabolic pathways including fatty acid transport and oxidation, amino acid metabolism, tricarboxylic acid cycle, ETC, transport, and regulatory proteins. While the MB treatment has no effect on the activities of acyl-CoA dehydrogenases, it decreases 3-hydroxyacyl-CoA dehydrogenase activity and long-chain fatty acid oxidation, and improves cardiac function. Providing an alternative route for mitochondrial electron transport is a novel therapeutic approach to decrease lysine acetylation, alleviate cardiac metabolic inflexibility, and improve cardiac function in diabetes.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetic Cardiomyopathies/metabolism , Lysine/metabolism , Methylene Blue/pharmacology , Mitochondria, Heart/metabolism , Acetylation/drug effects , Animals , Male , Rats , Rats, Inbred Lew
2.
Virology ; 541: 141-149, 2020 02.
Article in English | MEDLINE | ID: mdl-32056712

ABSTRACT

Aedes aegypti is the primary vector of dengue virus (DENV), and acquires this virus from a vertebrate host during blood feeding. Previous literature has shown that vertebrate blood factors such as complement protein C5a and low-density lipoprotein (LDL) influence DENV acquisition in the mosquito. Here, we show that extracellular vesicles in cell culture medium inhibit DENV infection in mosquito cells. Specifically, extracellular vesicles enter into mosquito cells and inhibit an early stage of infection. Extracellular vesicles had no effect on virus cell attachment or entry. Instead, extracellular vesicles restricted virus membrane fusion. Extracellular vesicles only inhibited DENV infection in mosquito cells and not vertebrate cells. These data highlight a novel virus-vector-host interaction that limits virus infection in mosquito cells by restricting virus membrane fusion.


Subject(s)
Aedes/virology , Dengue Virus/physiology , Extracellular Vesicles/physiology , Virus Internalization , Animals , Cells, Cultured , Host Microbial Interactions
SELECTION OF CITATIONS
SEARCH DETAIL