Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
PLoS Genet ; 14(12): e1007872, 2018 12.
Article in English | MEDLINE | ID: mdl-30586358

ABSTRACT

Chromosome organization is crucial for genome function. Here, we present a method for visualizing chromosomal DNA at super-resolution and then integrating Hi-C data to produce three-dimensional models of chromosome organization. Using the super-resolution microscopy methods of OligoSTORM and OligoDNA-PAINT, we trace 8 megabases of human chromosome 19, visualizing structures ranging in size from a few kilobases to over a megabase. Focusing on chromosomal regions that contribute to compartments, we discover distinct structures that, in spite of considerable variability, can predict whether such regions correspond to active (A-type) or inactive (B-type) compartments. Imaging through the depths of entire nuclei, we capture pairs of homologous regions in diploid cells, obtaining evidence that maternal and paternal homologous regions can be differentially organized. Finally, using restraint-based modeling to integrate imaging and Hi-C data, we implement a method-integrative modeling of genomic regions (IMGR)-to increase the genomic resolution of our traces to 10 kb.


Subject(s)
Chromosome Walking/methods , Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Pair 19/ultrastructure , Models, Genetic , Cells, Cultured , Chromosome Painting/methods , Chromosome Structures/chemistry , Chromosome Structures/genetics , Chromosome Structures/ultrastructure , Chromosomes, Human, Pair 19/chemistry , Female , Fluorescent Dyes , Humans , Imaging, Three-Dimensional , In Situ Hybridization, Fluorescence/methods , Male , Oligonucleotide Probes , Pedigree
2.
PLoS Genet ; 10(10): e1004646, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25340765

ABSTRACT

Ultraconserved elements (UCEs) are strongly depleted from segmental duplications and copy number variations (CNVs) in the human genome, suggesting that deletion or duplication of a UCE can be deleterious to the mammalian cell. Here we address the process by which CNVs become depleted of UCEs. We begin by showing that depletion for UCEs characterizes the most recent large-scale human CNV datasets and then find that even newly formed de novo CNVs, which have passed through meiosis at most once, are significantly depleted for UCEs. In striking contrast, CNVs arising specifically in cancer cells are, as a rule, not depleted for UCEs and can even become significantly enriched. This observation raises the possibility that CNVs that arise somatically and are relatively newly formed are less likely to have established a CNV profile that is depleted for UCEs. Alternatively, lack of depletion for UCEs from cancer CNVs may reflect the diseased state. In support of this latter explanation, somatic CNVs that are not associated with disease are depleted for UCEs. Finally, we show that it is possible to observe the CNVs of induced pluripotent stem (iPS) cells become depleted of UCEs over time, suggesting that depletion may be established through selection against UCE-disrupting CNVs without the requirement for meiotic divisions.


Subject(s)
Conserved Sequence/genetics , DNA Copy Number Variations/genetics , Evolution, Molecular , Neoplasms/genetics , Animals , Chromosome Walking , Gene Dosage , Genome, Human , Humans , Induced Pluripotent Stem Cells , Mammals , Neoplasms/pathology , Pluripotent Stem Cells/cytology , Sequence Deletion
3.
Genome Res ; 23(10): 1624-35, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23804403

ABSTRACT

DNA binding factors are essential for regulating gene expression. CTCF and cohesin are DNA binding factors with central roles in chromatin organization and gene expression. We determined the sites of CTCF and cohesin binding to DNA in mouse brain, genome wide and in an allele-specific manner with high read-depth ChIP-seq. By comparing our results with existing data for mouse liver and embryonic stem (ES) cells, we investigated the tissue specificity of CTCF binding sites. ES cells have fewer unique CTCF binding sites occupied than liver and brain, consistent with a ground-state pattern of CTCF binding that is elaborated during differentiation. CTCF binding sites without the canonical consensus motif were highly tissue specific. In brain, a third of CTCF and cohesin binding sites coincide, consistent with the potential for many interactions between cohesin and CTCF but also many instances of independent action. In the context of genomic imprinting, CTCF and/or cohesin bind to a majority but not all differentially methylated regions, with preferential binding to the unmethylated parental allele. Whether the parental allele-specific methylation was established in the parental germlines or post-fertilization in the embryo is not a determinant in CTCF or cohesin binding. These findings link CTCF and cohesin with the control regions of a subset of imprinted genes, supporting the notion that imprinting control is mechanistically diverse.


Subject(s)
Brain/metabolism , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Methylation , DNA/metabolism , Genomic Imprinting , Repressor Proteins/metabolism , Alleles , Animals , Binding Sites , CCCTC-Binding Factor , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , Chromosomes, Mammalian , Computational Biology , Gene Expression Regulation , Genetic Loci , Genome , High-Throughput Nucleotide Sequencing , Mice , Organ Specificity , Protein Binding , Repressor Proteins/chemistry , Repressor Proteins/genetics , Sequence Alignment , Sequence Analysis, DNA , Cohesins
4.
Proc Natl Acad Sci U S A ; 109(52): 21301-6, 2012 Dec 26.
Article in English | MEDLINE | ID: mdl-23236188

ABSTRACT

A host of observations demonstrating the relationship between nuclear architecture and processes such as gene expression have led to a number of new technologies for interrogating chromosome positioning. Whereas some of these technologies reconstruct intermolecular interactions, others have enhanced our ability to visualize chromosomes in situ. Here, we describe an oligonucleotide- and PCR-based strategy for fluorescence in situ hybridization (FISH) and a bioinformatic platform that enables this technology to be extended to any organism whose genome has been sequenced. The oligonucleotide probes are renewable, highly efficient, and able to robustly label chromosomes in cell culture, fixed tissues, and metaphase spreads. Our method gives researchers precise control over the sequences they target and allows for single and multicolor imaging of regions ranging from tens of kilobases to megabases with the same basic protocol. We anticipate this technology will lead to an enhanced ability to visualize interphase and metaphase chromosomes.


Subject(s)
Chromosome Painting/methods , Genome/genetics , In Situ Hybridization, Fluorescence/methods , Oligonucleotide Probes/metabolism , Animals , Caenorhabditis elegans/genetics , Cell Nucleus/metabolism , Chromosomes/genetics , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Female , Gene Library , Humans , Interphase/genetics , Metaphase/genetics , Mice , Ovary/cytology , Ovary/metabolism , Staining and Labeling
5.
Hum Mol Genet ; 18(1): 118-27, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-18836209

ABSTRACT

The Bladder Cancer-Associated Protein gene (BLCAP; previously BC10) is a tumour suppressor that limits cell proliferation and stimulates apoptosis. BLCAP protein or message are downregulated or absent in a variety of human cancers. In mouse and human, the first intron of Blcap/BLCAP contains the distinct Neuronatin (Nnat/NNAT) gene. Nnat is an imprinted gene that is exclusively expressed from the paternally inherited allele. Previous studies found no evidence for imprinting of Blcap in mouse or human. Here we show that Blcap is imprinted in mouse and human brain, but not in other mouse tissues. Moreover, Blcap produces multiple distinct transcripts that exhibit reciprocal allele-specific expression in both mouse and human. We propose that the tissue-specific imprinting of Blcap is due to the particularly high transcriptional activity of Nnat in brain, as has been suggested previously for the similarly organized and imprinted murine Commd1/U2af1-rs1 locus. For Commd1/U2af1-rs1, we show that it too produces distinct transcript variants with reciprocal allele-specific expression. The imprinted expression of BLCAP and its interplay with NNAT at the transcriptional level may be relevant to human carcinogenesis.


Subject(s)
Brain/metabolism , Genomic Imprinting , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Transcription, Genetic , Tumor Suppressor Proteins/genetics , Animals , Base Sequence , DNA Methylation , Fetus/metabolism , Humans , Membrane Proteins/metabolism , Mice , Molecular Sequence Data , Neoplasm Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Organ Specificity , Promoter Regions, Genetic , Tumor Suppressor Proteins/metabolism
6.
Nat Commun ; 10(1): 4485, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31582763

ABSTRACT

Trans-homolog interactions have been studied extensively in Drosophila, where homologs are paired in somatic cells and transvection is prevalent. Nevertheless, the detailed structure of pairing and its functional impact have not been thoroughly investigated. Accordingly, we generated a diploid cell line from divergent parents and applied haplotype-resolved Hi-C, showing that homologs pair with varying precision genome-wide, in addition to establishing trans-homolog domains and compartments. We also elucidate the structure of pairing with unprecedented detail, observing significant variation across the genome and revealing at least two forms of pairing: tight pairing, spanning contiguous small domains, and loose pairing, consisting of single larger domains. Strikingly, active genomic regions (A-type compartments, active chromatin, expressed genes) correlated with tight pairing, suggesting that pairing has a functional implication genome-wide. Finally, using RNAi and haplotype-resolved Hi-C, we show that disruption of pairing-promoting factors results in global changes in pairing, including the disruption of some interaction peaks.


Subject(s)
Chromosome Pairing , Chromosomes, Insect/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Genome, Insect , Animals , Cell Culture Techniques , Cell Line , Chromatin/metabolism , Female , High-Throughput Nucleotide Sequencing , Male , Sequence Homology, Nucleic Acid
7.
Nat Commun ; 10(1): 4486, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31582744

ABSTRACT

Genome organization involves cis and trans chromosomal interactions, both implicated in gene regulation, development, and disease. Here, we focus on trans interactions in Drosophila, where homologous chromosomes are paired in somatic cells from embryogenesis through adulthood. We first address long-standing questions regarding the structure of embryonic homolog pairing and, to this end, develop a haplotype-resolved Hi-C approach to minimize homolog misassignment and thus robustly distinguish trans-homolog from cis contacts. This computational approach, which we call Ohm, reveals pairing to be surprisingly structured genome-wide, with trans-homolog domains, compartments, and interaction peaks, many coinciding with analogous cis features. We also find a significant genome-wide correlation between pairing, transcription during zygotic genome activation, and binding of the pioneer factor Zelda. Our findings reveal a complex, highly structured organization underlying homolog pairing, first discovered a century ago in Drosophila. Finally, we demonstrate the versatility of our haplotype-resolved approach by applying it to mammalian embryos.


Subject(s)
Chromosome Pairing , Chromosomes, Insect/genetics , Drosophila melanogaster/genetics , Genome, Insect , Animals , Cell Culture Techniques , Cell Line , Chromatin/metabolism , Computational Biology , Datasets as Topic , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Embryo, Mammalian , Embryo, Nonmammalian , Female , Genomics/methods , High-Throughput Nucleotide Sequencing , Male , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA, Small Interfering/metabolism , Sequence Homology, Nucleic Acid , Transcription, Genetic , Zygote
8.
J Exp Zool B Mol Dev Evol ; 310(4): 370-83, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-17638322

ABSTRACT

Two embryonic cell populations, the neural crest and cranial ectodermal placodes, between them give rise to many of the unique characters of vertebrates. Neurogenic placode derivatives are vital for sensing both external and internal stimuli. In this speculative review, we discuss potential developmental and evolutionary relationships between two placode series that are usually considered to be entirely independent: lateral line placodes, which form the mechanosensory and electroreceptive hair cells of the anamniote lateral line system as well as their afferent neurons, and epibranchial placodes (geniculate, petrosal and nodose), which form Phox2b(+) visceral sensory neurons with input from both the external and internal environment. We illustrate their development using molecular data we recently obtained in shark embryos, and we describe their derivatives, including the possible geniculate placode origin of a mechanosensory sense organ associated with the first pharyngeal pouch/cleft (the anamniote spiracular organ/amniote paratympanic organ). We discuss how both lateral line and epibranchial placodes can be related in different ways to the otic placode (which forms the inner ear and its afferent neurons), and how both are important for protective somatic reflexes. Finally, we put forward a highly speculative proposal about the original function of the cells whose evolutionary descendants today include the derivatives of the lateral line, otic and epibranchial placodes, namely that they produced sensory receptors and neurons for Phox2b-dependent protective reflex circuits. We hope this review will stimulate both debate and a fresh look at possible developmental and evolutionary relationships between these seemingly disparate and independent placodes.


Subject(s)
Biological Evolution , Ear, Inner/embryology , Lateral Line System/embryology , Neurons/physiology , Sensory Receptor Cells/embryology , Sharks/embryology , Animals , Homeodomain Proteins/metabolism , Species Specificity , Transcription Factors/metabolism
9.
Cell Rep ; 24(2): 479-488, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29996107

ABSTRACT

This study explores the relationship between three-dimensional genome organization and ultraconserved elements (UCEs), an enigmatic set of DNA elements that are perfectly conserved between the reference genomes of distantly related species. Examining both human and mouse genomes, we interrogate the relationship of UCEs to three features of chromosome organization derived from Hi-C studies. We find that UCEs are enriched within contact domains and, further, that the subset of UCEs within domains shared across diverse cell types are linked to kidney-related and neuronal processes. In boundaries, UCEs are generally depleted, with those that do overlap boundaries being overrepresented in exonic UCEs. Regarding loop anchors, UCEs are neither overrepresented nor underrepresented, but those present in loop anchors are enriched for splice sites. Finally, as the relationships between UCEs and human Hi-C features are conserved in mouse, our findings suggest that UCEs contribute to interspecies conservation of genome organization and, thus, genome stability.


Subject(s)
Conserved Sequence/genetics , Genome , Mammals/genetics , Animals , Chromosomes, Mammalian/genetics , DNA, Intergenic/genetics , Exons/genetics , Humans , Introns/genetics , Kidney/metabolism , Mice , RNA Processing, Post-Transcriptional/genetics , Transcription Initiation Site
10.
Nat Genet ; 48(3): 231-237, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26808112

ABSTRACT

An unexpectedly large number of human autosomal genes are subject to monoallelic expression (MAE). Our analysis of 4,227 such genes uncovers surprisingly high genetic variation across human populations. This increased diversity is unlikely to reflect relaxed purifying selection. Remarkably, MAE genes exhibit an elevated recombination rate and an increased density of hypermutable sequence contexts. However, these factors do not fully account for the increased diversity. We find that the elevated nucleotide diversity of MAE genes is also associated with greater allelic age: variants in these genes tend to be older and are enriched in polymorphisms shared by Neanderthals and chimpanzees. Both synonymous and nonsynonymous alleles of MAE genes have elevated average population frequencies. We also observed strong enrichment of the MAE signature among genes reported to evolve under balancing selection. We propose that an important biological function of widespread MAE might be the generation of cell-to-cell heterogeneity; the increased genetic variation contributes to this heterogeneity.


Subject(s)
Gene Expression Regulation , Genetic Variation , Alleles , Animals , Genetics, Population , Humans , Neanderthals/genetics , Pan troglodytes/genetics
11.
Nat Commun ; 6: 7147, 2015 May 12.
Article in English | MEDLINE | ID: mdl-25962338

ABSTRACT

Fluorescence in situ hybridization (FISH) is a powerful single-cell technique for studying nuclear structure and organization. Here we report two advances in FISH-based imaging. We first describe the in situ visualization of single-copy regions of the genome using two single-molecule super-resolution methodologies. We then introduce a robust and reliable system that harnesses single-nucleotide polymorphisms (SNPs) to visually distinguish the maternal and paternal homologous chromosomes in mammalian and insect systems. Both of these new technologies are enabled by renewable, bioinformatically designed, oligonucleotide-based Oligopaint probes, which we augment with a strategy that uses secondary oligonucleotides (oligos) to produce and enhance fluorescent signals. These advances should substantially expand the capability to query parent-of-origin-specific chromosome positioning and gene expression on a cell-by-cell basis.


Subject(s)
Chromosome Painting/methods , Chromosomes/genetics , Haplotypes , In Situ Hybridization, Fluorescence/methods , Oligonucleotide Array Sequence Analysis/methods , Animals , Cell Line , Drosophila , Gene Library , Oligonucleotide Probes/metabolism , Staining and Labeling
12.
PLoS One ; 6(4): e18953, 2011 Apr 20.
Article in English | MEDLINE | ID: mdl-21533089

ABSTRACT

Genomic imprinting is a form of gene dosage regulation in which a gene is expressed from only one of the alleles, in a manner dependent on the parent of origin. The mechanisms governing imprinted gene expression have been investigated in detail and have greatly contributed to our understanding of genome regulation in general. Both DNA sequence features, such as CpG islands, and epigenetic features, such as DNA methylation and non-coding RNAs, play important roles in achieving imprinted expression. However, the relative importance of these factors varies depending on the locus in question. Defining the minimal features that are absolutely required for imprinting would help us to understand how imprinting has evolved mechanistically. Imprinted retrogenes are a subset of imprinted loci that are relatively simple in their genomic organisation, being distinct from large imprinting clusters, and have the potential to be used as tools to address this question. Here, we compare the repeat element content of imprinted retrogene loci with non-imprinted controls that have a similar locus organisation. We observe no significant differences that are conserved between mouse and human, suggesting that the paucity of SINEs and relative abundance of LINEs at imprinted loci reported by others is not a sequence feature universally required for imprinting.


Subject(s)
Genomic Imprinting , Long Interspersed Nucleotide Elements/genetics , Short Interspersed Nucleotide Elements/genetics , Alleles , Animals , DNA Methylation , Humans , Mice , Mice, Inbred C57BL
13.
Evolution ; 65(5): 1413-27, 2011 May.
Article in English | MEDLINE | ID: mdl-21166792

ABSTRACT

Retroposition is a widespread phenomenon resulting in the generation of new genes that are initially related to a parent gene via very high coding sequence similarity. We examine the evolutionary fate of four retrogenes generated by such an event; mouse Inpp5f_v2, Mcts2, Nap1l5, and U2af1-rs1. These genes are all subject to the epigenetic phenomenon of parental imprinting. We first provide new data on the age of these retrogene insertions. Using codon-based models of sequence evolution, we show these retrogenes have diverse evolutionary trajectories, including divergence from the parent coding sequence under positive selection pressure, purifying selection pressure maintaining parent-retrogene similarity, and neutral evolution. Examination of the expression pattern of retrogenes shows an atypical, broad pattern across multiple tissues. Protein 3D structure modeling reveals that a positively selected residue in U2af1-rs1, not shared by its parent, may influence protein conformation. Our case-by-case analysis of the evolution of four imprinted retrogenes reveals that this interesting class of imprinted genes, while similar in regulation and sequence characteristics, follow very varied evolutionary paths.


Subject(s)
Evolution, Molecular , Genomic Imprinting , Retroelements/genetics , Animals , Epistasis, Genetic , Inositol Polyphosphate 5-Phosphatases , Mice , Models, Genetic , Models, Structural , Monocarboxylic Acid Transporters/genetics , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Phosphoric Monoester Hydrolases/genetics , Phylogeny , Ribonucleoproteins/genetics , Splicing Factor U2AF
SELECTION OF CITATIONS
SEARCH DETAIL