Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Cell ; 162(4): 738-50, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26276630

ABSTRACT

The 2013-2015 West African epidemic of Ebola virus disease (EVD) reminds us of how little is known about biosafety level 4 viruses. Like Ebola virus, Lassa virus (LASV) can cause hemorrhagic fever with high case fatality rates. We generated a genomic catalog of almost 200 LASV sequences from clinical and rodent reservoir samples. We show that whereas the 2013-2015 EVD epidemic is fueled by human-to-human transmissions, LASV infections mainly result from reservoir-to-human infections. We elucidated the spread of LASV across West Africa and show that this migration was accompanied by changes in LASV genome abundance, fatality rates, codon adaptation, and translational efficiency. By investigating intrahost evolution, we found that mutations accumulate in epitopes of viral surface proteins, suggesting selection for immune escape. This catalog will serve as a foundation for the development of vaccines and diagnostics. VIDEO ABSTRACT.


Subject(s)
Genome, Viral , Lassa Fever/virology , Lassa virus/genetics , RNA, Viral/genetics , Africa, Western/epidemiology , Animals , Biological Evolution , Disease Reservoirs , Ebolavirus/genetics , Genetic Variation , Glycoproteins/genetics , Hemorrhagic Fever, Ebola/virology , Humans , Lassa Fever/epidemiology , Lassa Fever/transmission , Lassa virus/classification , Lassa virus/physiology , Murinae/genetics , Mutation , Nigeria/epidemiology , Viral Proteins/genetics , Zoonoses/epidemiology , Zoonoses/virology
2.
Proc Natl Acad Sci U S A ; 109(8): 3065-70, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22315421

ABSTRACT

The degree to which molecular epidemiology reveals information about the sources and transmission patterns of an outbreak depends on the resolution of the technology used and the samples studied. Isolates of Escherichia coli O104:H4 from the outbreak centered in Germany in May-July 2011, and the much smaller outbreak in southwest France in June 2011, were indistinguishable by standard tests. We report a molecular epidemiological analysis using multiplatform whole-genome sequencing and analysis of multiple isolates from the German and French outbreaks. Isolates from the German outbreak showed remarkably little diversity, with only two single nucleotide polymorphisms (SNPs) found in isolates from four individuals. Surprisingly, we found much greater diversity (19 SNPs) in isolates from seven individuals infected in the French outbreak. The German isolates form a clade within the more diverse French outbreak strains. Moreover, five isolates derived from a single infected individual from the French outbreak had extremely limited diversity. The striking difference in diversity between the German and French outbreak samples is consistent with several hypotheses, including a bottleneck that purged diversity in the German isolates, variation in mutation rates in the two E. coli outbreak populations, or uneven distribution of diversity in the seed populations that led to each outbreak.


Subject(s)
Disease Outbreaks/statistics & numerical data , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli Infections/genetics , Europe/epidemiology , Humans , Models, Genetic , Phylogeny , Polymorphism, Single Nucleotide/genetics
4.
Gene ; 536(2): 366-75, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24316130

ABSTRACT

Venoms have attracted enormous attention because of their potent physiological effects and dynamic evolution, including the convergent recruitment of homologous genes for venom expression. Here we provide novel evidence for the recruitment of genes from the Crustacean Hyperglycemic Hormone (CHH) and arthropod Ion Transport Peptide (ITP) superfamily for venom expression in black widow spiders. We characterized latrodectin peptides from venom gland cDNAs from the Western black widow spider (Latrodectus hesperus), the brown widow (Latrodectus geometricus) and cupboard spider (Steatoda grossa). Phylogenetic analyses of these sequences with homologs from other spider, scorpion and wasp venom cDNAs, as well as CHH/ITP neuropeptides, show latrodectins as derived members of the CHH/ITP superfamily. These analyses suggest that CHH/ITP homologs are more widespread in spider venoms, and were recruited for venom expression in two additional arthropod lineages. We also found that the latrodectin 2 gene and nearly all CHH/ITP genes include a phase 2 intron in the same position, supporting latrodectin's placement within the CHH/ITP superfamily. Evolutionary analyses of latrodectins suggest episodes of positive selection along some sequence lineages, and positive and purifying selection on specific codons, supporting its functional importance in widow venom. We consider how this improved understanding of latrodectin evolution informs functional hypotheses regarding its role in black widow venom as well as its potential convergent recruitment for venom expression across arthropods.


Subject(s)
Black Widow Spider/genetics , Insect Proteins/genetics , Neuropeptides/genetics , Spider Venoms/genetics , Amino Acid Sequence , Animals , Molecular Sequence Data , Phylogeny , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL