Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS Comput Biol ; 7(3): e1001105, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21423713

ABSTRACT

Tumor necrosis factor α (TNF-α) is a key regulator of inflammation and rheumatoid arthritis (RA). TNF-α blocker therapies can be very effective for a substantial number of patients, but fail to work in one third of patients who show no or minimal response. It is therefore necessary to discover new molecular intervention points involved in TNF-α blocker treatment of rheumatoid arthritis patients. We describe a data analysis strategy for predicting gene expression measures that are critical for rheumatoid arthritis using a combination of comprehensive genotyping, whole blood gene expression profiles and the component clinical measures of the arthritis Disease Activity Score 28 (DAS28) score. Two separate network ensembles, each comprised of 1024 networks, were built from molecular measures from subjects before and 14 weeks after treatment with TNF-α blocker. The network ensemble built from pre-treated data captures TNF-α dependent mechanistic information, while the ensemble built from data collected under TNF-α blocker treatment captures TNF-α independent mechanisms. In silico simulations of targeted, personalized perturbations of gene expression measures from both network ensembles identify transcripts in three broad categories. Firstly, 22 transcripts are identified to have new roles in modulating the DAS28 score; secondly, there are 6 transcripts that could be alternative targets to TNF-α blocker therapies, including CD86--a component of the signaling axis targeted by Abatacept (CTLA4-Ig), and finally, 59 transcripts that are predicted to modulate the count of tender or swollen joints but not sufficiently enough to have a significant impact on DAS28.


Subject(s)
Arthritis, Rheumatoid/genetics , Gene Expression , Abatacept , Antirheumatic Agents/therapeutic use , Computer Simulation , Gene Expression Profiling , Humans , Immunoconjugates/therapeutic use , Interleukins/genetics , Interleukins/metabolism , Sphingosine N-Acyltransferase/genetics , Sphingosine N-Acyltransferase/metabolism , Tumor Necrosis Factor-alpha/therapeutic use
2.
Sci Transl Med ; 11(489)2019 04 24.
Article in English | MEDLINE | ID: mdl-31019026

ABSTRACT

By informing timely targeted treatments, rapid whole-genome sequencing can improve the outcomes of seriously ill children with genetic diseases, particularly infants in neonatal and pediatric intensive care units (ICUs). The need for highly qualified professionals to decipher results, however, precludes widespread implementation. We describe a platform for population-scale, provisional diagnosis of genetic diseases with automated phenotyping and interpretation. Genome sequencing was expedited by bead-based genome library preparation directly from blood samples and sequencing of paired 100-nt reads in 15.5 hours. Clinical natural language processing (CNLP) automatically extracted children's deep phenomes from electronic health records with 80% precision and 93% recall. In 101 children with 105 genetic diseases, a mean of 4.3 CNLP-extracted phenotypic features matched the expected phenotypic features of those diseases, compared with a match of 0.9 phenotypic features used in manual interpretation. We automated provisional diagnosis by combining the ranking of the similarity of a patient's CNLP phenome with respect to the expected phenotypic features of all genetic diseases, together with the ranking of the pathogenicity of all of the patient's genomic variants. Automated, retrospective diagnoses concurred well with expert manual interpretation (97% recall and 99% precision in 95 children with 97 genetic diseases). Prospectively, our platform correctly diagnosed three of seven seriously ill ICU infants (100% precision and recall) with a mean time saving of 22:19 hours. In each case, the diagnosis affected treatment. Genome sequencing with automated phenotyping and interpretation in a median of 20:10 hours may increase adoption in ICUs and, thereby, timely implementation of precise treatments.


Subject(s)
Diabetic Ketoacidosis/genetics , Genomics/methods , Electronic Health Records , Female , Humans , Intensive Care Units/statistics & numerical data , Natural Language Processing , Retrospective Studies
3.
BMC Bioinformatics ; 4: 23, 2003 Jun 07.
Article in English | MEDLINE | ID: mdl-12793912

ABSTRACT

BACKGROUND: Seattle Biomedical Research Institute (SBRI) as part of the Leishmania Genome Network (LGN) is sequencing chromosomes of the trypanosomatid protozoan species Leishmania major. At SBRI, chromosomal sequence is annotated using a combination of trained and untrained non-consensus gene-prediction algorithms with ARTEMIS, an annotation platform with rich and user-friendly interfaces. RESULTS: Here we describe a methodology used to import results from three different protein-coding gene-prediction algorithms (GLIMMER, TESTCODE and GENESCAN) into the ARTEMIS sequence viewer and annotation tool. Comparison of these methods, along with the CODONUSAGE algorithm built into ARTEMIS, shows the importance of combining methods to more accurately annotate the L. major genomic sequence. CONCLUSION: An improvised and powerful tool for gene prediction has been developed by importing data from widely-used algorithms into an existing annotation platform. This approach is especially fruitful in the Leishmania genome project where there is large proportion of novel genes requiring manual annotation.


Subject(s)
Algorithms , Computational Biology/methods , Computational Biology/statistics & numerical data , Genes, Protozoan , Genome, Protozoan , Leishmania major/genetics , Models, Statistical , Protozoan Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , Computational Biology/trends , Molecular Sequence Data , Predictive Value of Tests , Programming Languages
SELECTION OF CITATIONS
SEARCH DETAIL