Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
PLoS Biol ; 17(2): e3000132, 2019 02.
Article in English | MEDLINE | ID: mdl-30789897

ABSTRACT

Feathers are arranged in a precise pattern in avian skin. They first arise during development in a row along the dorsal midline, with rows of new feather buds added sequentially in a spreading wave. We show that the patterning of feathers relies on coupled fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) signalling together with mesenchymal cell movement, acting in a coordinated reaction-diffusion-taxis system. This periodic patterning system is partly mechanochemical, with mechanical-chemical integration occurring through a positive feedback loop centred on FGF20, which induces cell aggregation, mechanically compressing the epidermis to rapidly intensify FGF20 expression. The travelling wave of feather formation is imposed by expanding expression of Ectodysplasin A (EDA), which initiates the expression of FGF20. The EDA wave spreads across a mesenchymal cell density gradient, triggering pattern formation by lowering the threshold of mesenchymal cells required to begin to form a feather bud. These waves, and the precise arrangement of feather primordia, are lost in the flightless emu and ostrich, though via different developmental routes. The ostrich retains the tract arrangement characteristic of birds in general but lays down feather primordia without a wave, akin to the process of hair follicle formation in mammalian embryos. The embryonic emu skin lacks sufficient cells to enact feather formation, causing failure of tract formation, and instead the entire skin gains feather primordia through a later process. This work shows that a reaction-diffusion-taxis system, integrated with mechanical processes, generates the feather array. In flighted birds, the key role of the EDA/Ectodysplasin A receptor (EDAR) pathway in vertebrate skin patterning has been recast to activate this process in a quasi-1-dimensional manner, imposing highly ordered pattern formation.


Subject(s)
Body Patterning , Feathers/cytology , Feathers/embryology , Signal Transduction , Animals , Biomechanical Phenomena , Birds/embryology , Cell Aggregation , Cell Count , Cell Movement , Cell Shape , Ectodysplasins/metabolism , Edar Receptor/metabolism , Fibroblast Growth Factors/metabolism , Flight, Animal/physiology , Mesoderm/cytology , Mesoderm/embryology , Skin/cytology , Skin/embryology , beta Catenin/metabolism
2.
Proc Natl Acad Sci U S A ; 116(42): 20930-20937, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31575742

ABSTRACT

In macrolecithal species, cryopreservation of the oocyte and zygote is not possible due to the large size and quantity of lipid deposited within the egg. For birds, this signifies that cryopreserving and regenerating a species from frozen cellular material are currently technically unfeasible. Diploid primordial germ cells (PGCs) are a potential means to freeze down the entire genome and reconstitute an avian species from frozen material. Here, we examine the use of genetically engineered (GE) sterile female layer chicken as surrogate hosts for the transplantation of cryopreserved avian PGCs from rare heritage breeds of chicken. We first amplified PGC numbers in culture before cryopreservation and subsequent transplantation into host GE embryos. We found that all hatched offspring from the chimera GE hens were derived from the donor rare heritage breed broiler PGCs, and using cryopreserved semen, we were able to produce pure offspring. Measurement of the mutation rate of PGCs in culture revealed that 2.7 × 10-10 de novo single-nucleotide variants (SNVs) were generated per cell division, which is comparable with other stem cell lineages. We also found that endogenous avian leukosis virus (ALV) retroviral insertions were not mobilized during in vitro propagation. Taken together, these results show that mutation rates are no higher than normal stem cells, essential if we are to conserve avian breeds. Thus, GE sterile avian surrogate hosts provide a viable platform to conserve and regenerate avian species using cryopreserved PGCs.


Subject(s)
Animals, Genetically Modified/genetics , Breeding/methods , Chickens/genetics , Germ Cells/cytology , Infertility/veterinary , Animals , Animals, Genetically Modified/physiology , Chickens/physiology , Cryopreservation , Diploidy , Embryo Transfer , Female , Gene Editing , Genetic Engineering , Male
3.
Development ; 144(5): 928-934, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28174243

ABSTRACT

In this work we use TALE nucleases (TALENs) to target a reporter construct to the DDX4 (vasa) locus in chicken primordial germ cells (PGCs). Vasa is a key germ cell determinant in many animal species and is posited to control avian germ cell formation. We show that TALENs mediate homology-directed repair of the DDX4 locus on the Z sex chromosome at high (8.1%) efficiencies. Large genetic deletions of 30 kb encompassing the entire DDX4 locus were also created using a single TALEN pair. The targeted PGCs were germline competent and were used to produce DDX4 null offspring. In DDX4 knockout chickens, PGCs are initially formed but are lost during meiosis in the developing ovary, leading to adult female sterility. TALEN-mediated gene targeting in avian PGCs is therefore an efficient process.


Subject(s)
DEAD-box RNA Helicases/metabolism , Gene Targeting , Germ Cells/cytology , Transcription Activator-Like Effector Nucleases , Alleles , Animals , Animals, Genetically Modified , Chickens/genetics , Crosses, Genetic , Female , Gene Deletion , Gene Knockout Techniques , Green Fluorescent Proteins/metabolism , Male , Meiosis , Transgenes
4.
Mamm Genome ; 28(7-8): 315-323, 2017 08.
Article in English | MEDLINE | ID: mdl-28612238

ABSTRACT

The application of gene editing (GE) technology to create precise changes to the genome of bird species will provide new and exciting opportunities for the biomedical, agricultural and biotechnology industries, as well as providing new approaches for producing research models. Recent advances in modifying both the somatic and germ cell lineages in chicken indicate that this species, and conceivably soon other avian species, has joined a growing number of model organisms in the gene editing revolution.


Subject(s)
Birds/genetics , Gene Editing , Genome , Animals , CRISPR-Cas Systems , Gene Editing/methods , Genetic Engineering , Germ Cells/metabolism , Models, Animal , Organ Specificity
5.
Biol Reprod ; 96(3): 686-693, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28339605

ABSTRACT

Cloning (somatic cell nuclear transfer) in avian species has proven unachievable due to the physical structure of the avian oocyte. Here, the sexual differentiation of primordial germ cells with genetic sex ZZ (ZZ PGCs) was investigated in female germline chimeric chicken hosts with the aim to produce uniparental offspring. ZZ PGCs were expanded in culture and transplanted into the same and opposite sex chicken embryos which were partially sterilized using irradiation. All tested chimeric roosters (ZZ/ZZ) showed germline transmission with transmission rates of 3.2%-91.4%. Unexpectedly, functional oogenesis of chicken ZZ PGCs was found in three chimeric hens, resulting in a transmission rate of 2.3%-27.8%. Matings were conducted between the germline chimeras (ZZ/ZZ and ZZ/ZW) which derived from the same ZZ PGCs line. Paternal uniparental chicken offspring were obtained with a transmission rate up to 28.4% and as expected, all uniparental offspring were phenotypic male (ZZ). Genotype analysis of uniparental offsprings was performed using 13 microsatellite markers. The genotype profile showed that uniparental offspring were 100% genetically identical to the donor ZZ PGC line, shared 69.2%-88.5% identity with the donor bird. Homozygosity of the tested birds varied from 61.5% to 84.6%, which was higher than the donor bird (38.5%). These results demonstrate that male avian ZZ PGCs can differentiate into functional ova in an ovary, and uniparental avian clones are possible. This technology suggests novel approaches for generating genetically similar flocks of birds and for the conservation of avian genetic resources.


Subject(s)
Germ Cells/transplantation , Oogenesis , Radiation Chimera , Animals , Chick Embryo , Chickens , Female , Germ Cells/physiology , Male
6.
Proc Natl Acad Sci U S A ; 109(23): E1466-72, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22586100

ABSTRACT

The derivation of germ-line competent avian primordial germ cells establishes a cell-based model system for the investigation of germ cell differentiation and the production of genetically modified animals. Current methods to modify primordial germ cells using DNA or retroviral vectors are inefficient and prone to epigenetic silencing. Here, we validate the use of transposable elements for the genetic manipulation of primordial germ cells. We demonstrate that chicken primordial germ cells can be modified in vitro using transposable elements. Both piggyBac and Tol2 transposons efficiently transpose primordial germ cells. Tol2 transposon integration sites were spread throughout both the macro- and microchromosomes of the chicken genome and were more prevalent in gene transcriptional units and intronic regions, consistent with transposon integrations observed in other species. We determined that the presence of insulator elements was not required for reporter gene expression from the integrated transposon. We further demonstrate that a gene-trap cassette carried in the Tol2 transposon can trap and mutate endogenous transcripts in primordial germ cells. Finally, we observed that modified primordial germ cells form functional gametes as demonstrated by the generation of transgenic offspring that correctly expressed a reporter gene carried in the transposon. Transposable elements are therefore efficient vectors for the genetic manipulation of primordial germ cells and the chicken genome.


Subject(s)
Animals, Genetically Modified/genetics , DNA Transposable Elements/genetics , Gene Transfer Techniques , Genetic Vectors/genetics , Germ Cells/metabolism , Animals , Blotting, Southern , Cell Culture Techniques , Chick Embryo , DNA Primers/genetics , Genes, Reporter/genetics , Polymerase Chain Reaction/methods
7.
Methods Mol Biol ; 2631: 419-441, 2023.
Article in English | MEDLINE | ID: mdl-36995681

ABSTRACT

Genome editing technology facilitates the creation of specific and precise genetic changes to unravel gene function and rapidly transfer unique alleles between chicken breeds in contrast to lengthy traditional crossbreeding methods for the study of poultry genetics. Innovations in genome sequencing technology have made it possible to map polymorphisms associated with both monogenic and multigenic traits in livestock species. We, and many others, have demonstrated the use of genome editing to introduce specific monogenic traits in chicken through targeting of cultured primordial germ cells. In this chapter, we describe materials and protocols for performing heritable genome editing in the chicken through targeting of in vitro propagated chicken primordial germ cells.


Subject(s)
Chickens , Germ Cells , Animals , Chickens/genetics , Gene Editing/methods , Poultry , Genome
8.
Front Immunol ; 14: 1273661, 2023.
Article in English | MEDLINE | ID: mdl-37954617

ABSTRACT

Conventional dendritic cells (cDCs) are antigen-presenting cells (APCs) that play a central role in linking innate and adaptive immunity. cDCs have been well described in a number of different mammalian species, but remain poorly characterised in the chicken. In this study, we use previously described chicken cDC specific reagents, a novel gene-edited chicken line and single-cell RNA sequencing (scRNAseq) to characterise chicken splenic cDCs. In contrast to mammals, scRNAseq analysis indicates that the chicken spleen contains a single, chemokine receptor XCR1 expressing, cDC subset. By sexual maturity the XCR1+ cDC population is the most abundant mononuclear phagocyte cell subset in the chicken spleen. scRNAseq analysis revealed substantial heterogeneity within the chicken splenic XCR1+ cDC population. Immature MHC class II (MHCII)LOW XCR1+ cDCs expressed a range of viral resistance genes. Maturation to MHCIIHIGH XCR1+ cDCs was associated with reduced expression of anti-viral gene expression and increased expression of genes related to antigen presentation via the MHCII and cross-presentation pathways. To visualise and transiently ablate chicken XCR1+ cDCs in situ, we generated XCR1-iCaspase9-RFP chickens using a CRISPR-Cas9 knockin transgenesis approach to precisely edit the XCR1 locus, replacing the XCR1 coding region with genes for a fluorescent protein (TagRFP), and inducible Caspase 9. After inducible ablation, the chicken spleen is initially repopulated by immature CD1.1+ XCR1+ cDCs. XCR1+ cDCs are abundant in the splenic red pulp, in close association with CD8+ T-cells. Knockout of XCR1 prevented this clustering of cDCs with CD8+ T-cells. Taken together these data indicate a conserved role for chicken and mammalian XCR1+ cDCs in driving CD8+ T-cells responses.


Subject(s)
CD8-Positive T-Lymphocytes , Chickens , Animals , Antigen Presentation , Dendritic Cells , Cross-Priming , Mammals
9.
Elife ; 112022 01 25.
Article in English | MEDLINE | ID: mdl-35074046

ABSTRACT

Chickens are an important resource for smallholder farmers who raise locally adapted, genetically distinct breeds for eggs and meat. The development of efficient reproductive technologies to conserve and regenerate chicken breeds safeguards existing biodiversity and secures poultry genetic resources for climate resilience, biosecurity, and future food production. The majority of the over 1600 breeds of chicken are raised in low and lower to middle income countries under resource-limited, small-scale production systems, which necessitates a low-tech, cost-effective means of conserving diversity is needed. Here, we validate a simple biobanking technique using cryopreserved embryonic chicken gonads. The gonads are quickly isolated, visually sexed, pooled by sex, and cryopreserved. Subsequently, the stored material is thawed and dissociated before injection into sterile host chicken embryos. By using pooled GFP and RFP-labelled donor gonadal cells and Sire Dam Surrogate mating, we demonstrate that chicks deriving entirely from male and female donor germ cells are hatched. This technology will enable ongoing efforts to conserve chicken genetic diversity for both commercial and smallholder farmers, and to preserve existing genetic resources at poultry research facilities.


Subject(s)
Breeding/methods , Chickens/genetics , Cryopreservation/veterinary , Germ Cells/cytology , Infertility/veterinary , Animals , Biological Specimen Banks , Chickens/physiology , Cost-Benefit Analysis , Female , Genetic Variation , Male
10.
Sci Rep ; 11(1): 19236, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584135

ABSTRACT

In poultry, in vitro propagated primordial germ cells (PGCs) represent an important tool for the cryopreservation of avian genetic resources. However, several studies have highlighted sexual differences exhibited by PGCs during in vitro propagation, which may compromise their reproductive capacities. To understand this phenomenon, we compared the proteome of pregonadal migratory male (ZZ) and female (ZW) chicken PGCs propagated in vitro by quantitative proteomic analysis using a GeLC-MS/MS strategy. Many proteins were found to be differentially abundant in chicken male and female PGCs indicating their early sexual identity. Many of the proteins more highly expressed in male PGCs were encoded by genes localised to the Z sex chromosome. This suggests that the known lack of dosage compensation of the transcription of Z-linked genes between sexes persists at the protein level in PGCs, and that this may be a key factor of their autonomous sex differentiation. We also found that globally, protein differences do not closely correlate with transcript differences indicating a selective translational mechanism in PGCs. Male and female PGC expressed protein sets were associated with differential biological processes and contained proteins known to be biologically relevant for male and female germ cell development, respectively. We also discovered that female PGCs have a higher capacity to uptake proteins from the cell culture medium than male PGCs. This study presents the first evidence of an early predetermined sex specific cell fate of chicken PGCs and their sexual molecular specificities which will enable the development of more precise sex-specific in vitro culture conditions for the preservation of avian genetic resources.


Subject(s)
Cell Differentiation/genetics , Chickens/genetics , Germ Cells/physiology , Sex Determination Processes/genetics , Animal Husbandry/methods , Animals , Breeding/methods , Chick Embryo , Female , Male , Proteomics
11.
Poult Sci ; 100(8): 101207, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34242944

ABSTRACT

Primordial germ cells (PGCs) are the precursors of germline cells that generate sperm and ova in adults. Thus, they are promising tools for gene editing and genetic preservation, especially in avian species. In this study, we established stable male and female PGC lines from 6Hungarian indigenous chicken breeds with derivation rates ranging from 37.5 to 50 percent. We characterized the PGCs for expression of the germ cell-specific markers during prolonged culture in vitro. An in vivo colonization test was performed on PGCs from four Hungarian chicken breeds and the colonization rates were between 76 and 100%. Cryopreserved PGCs of the donor breed (Partridge color Hungarian) were injected into Black Transylvanian Naked Neck host embryos to form chimeric progeny that, after backcrossing, would permit reconstitution of the donor breed. For 24 presumptive chimeras 13 were male and 11 were female. In the course of backcrossing, 340 chicks were hatched and 17 of them (5%) were pure Partridge colored. Based on the backcrossing 1 hen and 3 roosters of the 24 presumptive chimeras (16.6%) have proven to be germline chimeras. Therefore, it was proven that the original breed can be recovered from primordial germ cells which are stored in the gene bank. To our knowledge, our study is a first that applied feeder free culturing conditions for both male and female cell lines successfully and used multiple indigenous chicken breeds to create a gene bank representing a region (Carpathian Basin).


Subject(s)
Chickens , Galliformes , Animals , Chickens/genetics , Cryopreservation/veterinary , Female , Galliformes/genetics , Germ Cells , Hungary , Male , Regeneration
12.
BMC Dev Biol ; 10: 24, 2010 Feb 25.
Article in English | MEDLINE | ID: mdl-20184730

ABSTRACT

BACKGROUND: Somitogenesis is the earliest sign of segmentation in the developing vertebrate embryo. This process starts very early, soon after gastrulation has initiated and proceeds in an anterior-to-posterior direction during body axis elongation. It is widely accepted that somitogenesis is controlled by a molecular oscillator with the same periodicity as somite formation. This periodic mechanism is repeated a specific number of times until the embryo acquires a defined specie-specific final number of somites at the end of the process of axis elongation. This final number of somites varies widely between vertebrate species. How termination of the process of somitogenesis is determined is still unknown. RESULTS: Here we show that during development there is an imbalance between the speed of somite formation and growth of the presomitic mesoderm (PSM)/tail bud. This decrease in the PSM size of the chick embryo is not due to an acceleration of the speed of somite formation because it remains constant until the last stages of somitogenesis, when it slows down. When the chick embryo reaches its final number of somites at stage HH 24-25 there is still some remaining unsegmented PSM in which expression of components of the somitogenesis oscillator is no longer dynamic. Finally, we identify a change in expression of retinoic acid regulating factors in the tail bud at late stages of somitogenesis, such that in the chick embryo there is a pronounced onset of Raldh2 expression while in the mouse embryo the expression of the RA inhibitor Cyp26A1 is downregulated. CONCLUSIONS: Our results show that the chick somitogenesis oscillator is arrested before all paraxial mesoderm is segmented into somites. In addition, endogenous retinoic acid is probably also involved in the termination of the process of segmentation, and in tail growth in general.


Subject(s)
Chick Embryo , Mesoderm/metabolism , Somites/embryology , Animals , Mice , Retinal Dehydrogenase/metabolism , Tail/embryology , Tretinoin/metabolism
13.
BMC Dev Biol ; 10: 26, 2010 Feb 25.
Article in English | MEDLINE | ID: mdl-20184756

ABSTRACT

BACKGROUND: Regulatory elements that control expression of specific genes during development have been shown in many cases to contain functionally-conserved modules that can be transferred between species and direct gene expression in a comparable developmental pattern. An example of such a module has been identified at the rat myosin light chain (MLC) 1/3 locus, which has been well characterised in transgenic mouse studies. This locus contains two promoters encoding two alternatively spliced isoforms of alkali myosin light chain. These promoters are differentially regulated during development through the activity of two enhancer elements. The MLC3 promoter alone has been shown to confer expression of a reporter gene in skeletal and cardiac muscle in transgenic mice and the addition of the downstream MLC enhancer increased expression levels in skeletal muscle. We asked whether this regulatory module, sufficient for striated muscle gene expression in the mouse, would drive expression in similar domains in the chicken. RESULTS: We have observed that a conserved downstream MLC enhancer is present in the chicken MLC locus. We found that the rat MLC1/3 regulatory elements were transcriptionally active in chick skeletal muscle primary cultures. We observed that a single copy lentiviral insert containing this regulatory cassette was able to drive expression of a lacZ reporter gene in the fast-fibres of skeletal muscle in chicken in three independent transgenic chicken lines in a pattern similar to the endogenous MLC locus. Reporter gene expression in cardiac muscle tissues was not observed for any of these lines. CONCLUSIONS: From these results we conclude that skeletal expression from this regulatory module is conserved in a genomic context between rodents and chickens. This transgenic module will be useful in future investigations of muscle development in avian species.


Subject(s)
Gene Expression Regulation , Muscle, Skeletal/metabolism , Animals , Animals, Genetically Modified , Base Sequence , Cells, Cultured , Chickens , Enhancer Elements, Genetic , Humans , Mice , Mice, Transgenic , Molecular Sequence Data , Myosin Light Chains/genetics , Promoter Regions, Genetic , Rats , Sequence Alignment
14.
Exp Cell Res ; 314(14): 2634-42, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18571647

ABSTRACT

The expression of 4 pluripotency genes (Oct4, Sox2, c-Myc and Klf4) in mouse embryonic fibroblasts can reprogramme them to a pluripotent state. We have investigated the expression of these pluripotency genes when human somatic 293T cells are permeabilized and incubated in extracts of mouse embryonic stem (ES) cells. Expression of all 4 genes was induced over 1-8 h. Gene expression was associated with loss of repressive histone H3 modifications and increased recruitment of RNA polymerase II at the promoters. Lamin A/C, which is typically found only in differentiated cells, was also removed from the nuclei. When 293T cells were returned to culture after exposure to ES cell extract, the expression of the pluripotency genes continued to rise over the following 48 h of culture, suggesting that long-term reprogramming of gene expression had been induced. This provides a methodology for studying the de-differentiation of somatic cells that can potentially lead to an efficient way of reprogramming somatic cells to a pluripotent state without genetically altering them.


Subject(s)
Cell Extracts/pharmacology , Embryonic Stem Cells/metabolism , Gene Expression Regulation/drug effects , Pluripotent Stem Cells/metabolism , Animals , Biomarkers/metabolism , Cell Line , Cell Membrane Permeability/drug effects , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Histones/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Kruppel-Like Factor 4 , Lamin Type A/isolation & purification , Mice , Nanog Homeobox Protein , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/drug effects , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protein Biosynthesis/drug effects , RNA Polymerase II/metabolism , Transcription, Genetic/drug effects , Xenopus
15.
Sci Rep ; 9(1): 14284, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31582777

ABSTRACT

In the last decade, avian gene preservation research has focused on the use of the early precursors of the reproductive cells, the primordial germ cells (PGCs). This is because avian PGCs have a unique migration route through the vascular system which offers easy accessibility. Furthermore, culturing of the cells in vitro, freezing/thawing, reintegration into a recipient embryo and the development of the germ cells can be carried out in well-defined laboratory circumstances. The efficient recovery of the donor genotype and the frequency of germline transmission from the surrogate host animals are still areas which need further development. Thus, the aim of the present study was to investigate an infertile interspecific hybrid (recipient) as an appropriate host for primordial germ cells from native poultry breeds. Guinea fowl × chicken hybrids were produced, the crossing was repeated inversely. The phenotype, the hatching time, the hatching rate, the sex ratio, the presence of own germ cells, the fertility and the phenotype of viable hybrids and the incidence of chromosomal abnormalities of dead hybrid embryos were described. 6.65% viable offspring was obtained with crossing of Guinea fowl females with domestic fowl males. Crossing of domestic fowl hens with Guinea fowl male resulted in lower fertility, 0.14% viable offspring. Based on the investigations, the observed offspring from the successful crossing were sterile male hybrids, thus an extreme form of Haldane's rule was manifested. The sterile hybrid male embryos were tested by injecting fluorescently labeled chicken PGCs. The integration rate of labeled PGCs was measured in 7.5-day, 14.5-day and 18.5-day old embryonic gonads. 50%, 5.3% and 2.4% of the injected hybrid embryos survived and 40%, 5.3% and 2.4% of the examined gonads contained fluorescent labeled donor PGCs. Therefore, these sterile hybrid males may be suitable recipients for male PGCs and possibly for female PGCs although with lower efficiency. This research work shows that the sterility of hybrids can be used in gene conservation to be a universal host for PGCs of different avian species.


Subject(s)
Cryopreservation , Endangered Species , Galliformes/genetics , Animals , Breeding/methods , Chickens/genetics , Chickens/growth & development , Chimera/genetics , Chimera/growth & development , Cryopreservation/methods , Female , Galliformes/growth & development , Germ Cells/cytology , Germ Cells/growth & development , Germ Cells/metabolism , Hybridization, Genetic , Male
16.
Elife ; 82019 06 04.
Article in English | MEDLINE | ID: mdl-31159925

ABSTRACT

Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity of avian IAV polymerases in human cells. Differences between avian and mammalian ANP32 proteins underlie this host range barrier. Human ANP32A and ANP32B homologues both support function of human-adapted influenza polymerase but do not support efficient activity of avian IAV polymerase which requires avian ANP32A. We show here that the gene currently designated as avian ANP32B is evolutionarily distinct from mammalian ANP32B, and that chicken ANP32B does not support IAV polymerase activity even of human-adapted viruses. Consequently, IAV relies solely on chicken ANP32A to support its replication in chicken cells. Amino acids 129I and 130N, accounted for the inactivity of chicken ANP32B. Transfer of these residues to chicken ANP32A abolished support of IAV polymerase. Understanding ANP32 function will help develop antiviral strategies and aid the design of influenza virus resilient genome edited chickens.


Subject(s)
Host Specificity , Host-Pathogen Interactions , Influenza A virus/growth & development , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Animals , Cell Line , Chickens , Humans , Influenza A virus/enzymology , RNA-Dependent RNA Polymerase/metabolism , Virus Replication
17.
Sci Rep ; 8(1): 15126, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30310080

ABSTRACT

Primordial germ cells (PGCs), the embryonic precursors of the sperm and egg, are used for the introduction of genetic modifications into avian genome. Introduction of small defined sequences using genome editing has not been demonstrated in bird species. Here, we compared oligonucleotide-mediated HDR using wild type SpCas9 (SpCas9-WT) and high fidelity SpCas9-HF1 in PGCs and show that many loci in chicken PGCs can be precise edited using donors containing CRISPR/Cas9-blocking mutations positioned in the protospacer adjacent motif (PAM). However, targeting was more efficient using SpCas9-HF1 when mutations were introduced only into the gRNA target sequence. We subsequently employed an eGFP-to-BFP conversion assay, to directly compare HDR mediated by SpCas9-WT and SpCas9-HF1 and discovered that SpCas9-HF1 increases HDR while reducing INDEL formation. Furthermore, SpCas9-HF1 increases the frequency of single allele editing in comparison to SpCas9-WT. We used SpCas9-HF1 to demonstrate the introduction of monoallelic and biallelic point mutations into the FGF20 gene and generate clonal populations of edited PGCs with defined homozygous and heterozygous genotypes. Our results demonstrate the use of oligonucleotide donors and high fidelity CRISPR/Cas9 variants to perform precise genome editing with high efficiency in PGCs.


Subject(s)
Alleles , CRISPR-Cas Systems , Gene Editing , Germ Cells/metabolism , Animals , Base Sequence , Binding Sites , Chickens , Gene Order , Genetic Vectors/genetics , Germ Cells/cytology , Heterozygote , INDEL Mutation , Mutation , Protein Binding , Sequence Analysis, DNA
18.
Int J Dev Biol ; 62(1-2-3): 257-264, 2018.
Article in English | MEDLINE | ID: mdl-29616734

ABSTRACT

After decades of research investment, techniques for the robust and efficient modification of the chicken genome are now with us. The biology of the chicken has provided many challenges, as have the methods by which transgenes can be readily, stably and functionally integrated into the genome. Now that these obstacles have been surmounted and the chicken has been 'updated' to a cutting-edge modern model organism, a future as a central and versatile model in developmental biology beckons. In this review, we describe recent advances in genetic modification of the chicken and some of the many transgenic models developed for the elucidation of the mechanisms of embryogenesis.


Subject(s)
Chick Embryo , Chickens/physiology , Genetic Engineering , Animals , Animals, Genetically Modified , Embryo Culture Techniques , Embryonic Development , Gene Editing , Genome , Germ Cells/cytology , Green Fluorescent Proteins/metabolism , Lentivirus , Models, Genetic , Transgenes
19.
Drug Discov Today ; 10(3): 191-6, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15708533

ABSTRACT

The potential of using transgenic animals for the synthesis of therapeutic proteins was suggested over twenty years ago. Considerable progress has been made in developing methods for the production of transgenic animals and specifically in the expression of therapeutic proteins in the mammary glands of cows, sheep and goats. Development of transgenic hens for protein production in eggs has lagged behind these systems. The positive features associated with the use of the chicken in terms of cost, speed of development of a production flock and potentially appropriate glycosylation of target proteins have led to significant advances in transgenic chicken models in the past few years.


Subject(s)
Animals, Genetically Modified , Bioreactors , Chickens , Proteins/metabolism , Animals , Chickens/genetics , Ovum/metabolism , Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
20.
Stem Cell Reports ; 5(6): 1171-1182, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26677769

ABSTRACT

Precise self-renewal of the germ cell lineage is fundamental to fertility and reproductive success. The early precursors for the germ lineage, primordial germ cells (PGCs), survive and proliferate in several embryonic locations during their migration to the embryonic gonad. By elucidating the active signaling pathways in migratory PGCs in vivo, we were able to create culture conditions that recapitulate this embryonic germ cell environment. In defined medium conditions without feeder cells, the growth factors FGF2, insulin, and Activin A, signaling through their cognate-signaling pathways, were sufficient for self-renewal of germline-competent PGCs. Forced expression of constitutively active MEK1, AKT, and SMAD3 proteins could replace their respective upstream growth factors. Unexpectedly, we found that BMP4 could replace Activin A in non-clonal growth conditions. These defined medium conditions identify the key molecular pathways required for PGC self-renewal and will facilitate efforts in biobanking of chicken genetic resources and genome editing.


Subject(s)
Chick Embryo/cytology , Embryonic Germ Cells/cytology , Fibroblast Growth Factors/metabolism , Insulin/metabolism , Signal Transduction , Smad Proteins/metabolism , Activins/metabolism , Animals , Bone Morphogenetic Proteins/metabolism , Cell Proliferation , Cells, Cultured , Chick Embryo/metabolism , Chickens , Embryonic Germ Cells/metabolism , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL