Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Publication year range
1.
Inorg Chem ; 59(18): 13190-13200, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32869986

ABSTRACT

Understanding magnetic anisotropy and specifically how to tailor it is crucial in the search for high-temperature single-ion magnets. Herein, we investigate the magnetic anisotropy in a six-coordinated cobalt(II) compound that has a complex geometry and distinct triaxial magnetic anisotropy from the perspective of the electronic structure, using electronic spectra, ab initio calculations, and an experimental charge density, of which the latter two provides insight into the d-orbital splitting. The analysis showed that the d-orbital splitting satisfactorily predicted the complex triaxial magnetic anisotropy exhibited by the compound. Furthermore, a novel method to directly compare the ab initio results and the d-orbital populations obtained from the experimental charge density was developed, while a topological analysis of the density provided insights into the metal-ligand bonding. This work thus further establishes the validity of using d-orbitals for predicting magnetic anisotropy in transition metal compounds while also pointing out the need for a more frequent usage of the term triaxial anisotropy in the field of single-molecule magnetism.

2.
Chemistry ; 24(66): 17598-17605, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30291646

ABSTRACT

The intrinsic redox activity of the dithiolene ligand is presented here as the novel spin host in the design of a prototype molecular electron spin qubit, where the traditional roles of the metal and ligand components in coordination complexes are inverted. A series of paramagnetic bis(dithiolene) complexes with group 10 metals-nickel, palladium, platinum-provides a backdrop to investigate the spin dynamics of the organic ligand radical using pulsed EPR spectroscopy. The temperature dependence of the phase memory time (TM ) is shown to be dependent on the identity of the diamagnetic metal ion, with the short times recorded for platinum a consequence of a diminishing spin-lattice (T1 ) relaxation time driven by spin-orbit coupling. The utility of the radical ligand spin center is confirmed when it delivers one of the longest phase memory times ever recorded for a molecular two-qubit prototype.

3.
Digit Discov ; 2(4): 1143-1151, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-38013815

ABSTRACT

Presumptive (or 'spot') tests have served forensic scientists, law enforcement, and legal practitioners for over a hundred years. Yet, the intended design of such tests, enabling quick identification of drugs by-eye, also hides their full potential. Here, we report the development and application of time-resolved imaging methods of reactions attending spot tests for amphetamines, barbiturates, and benzodiazepines. Analysis of the reaction videos helps distinguish drugs within the same structural class that, by-eye, are judged to give the same qualitative spot test result. It is envisaged that application of these results will bridge the existing suite of field and lab-based confirmatory forensic tests, and support a broader range of colorimetric sensing technologies.

4.
Adv Mater ; 35(38): e2302114, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37289574

ABSTRACT

General-purpose quantum computation and quantum simulation require multi-qubit architectures with precisely defined, robust interqubit interactions, coupled with local addressability. This is an unsolved challenge, primarily due to scalability issues. These issues often derive from poor control over interqubit interactions. Molecular systems are promising materials for the realization of large-scale quantum architectures, due to their high degree of positionability and the possibility to precisely tailor interqubit interactions. The simplest quantum architecture is the two-qubit system, with which quantum gate operations can be implemented. To be viable, a two-qubit system must possess long coherence times, the interqubit interaction must be well defined and the two qubits must also be addressable individually within the same quantum manipulation sequence. Here results are presented on the investigation of the spin dynamics of chlorinated triphenylmethyl organic radicals, in particular the perchlorotriphenylmethyl (PTM) radical, a mono-functionalized PTM, and a biradical PTM dimer. Extraordinarily long ensemble coherence times up to 148 µs are found at all temperatures below 100 K. Two-qubit and, importantly, individual qubit addressability in the biradical system are demonstrated. These results underline the potential of molecular materials for the development of quantum architectures.

5.
Org Process Res Dev ; 26(11): 3073-3088, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36437899

ABSTRACT

A software platform for the computer vision-enabled analysis of mixing phenomena of relevance to process scale-up is described. By bringing new and known time-resolved mixing metrics under one platform, hitherto unavailable comparisons of pixel-derived mixing metrics are exemplified across non-chemical and chemical processes. The analytical methods described are applicable using any camera and across an appreciable range of reactor scales, from development through to process scale-up. A case study in nucleophilic aromatic substitution run on a 5 L scale in a stirred tank reactor shows how camera and offline concentration analyses can be correlated. In some cases, it can be shown that camera data hold the power to predict reaction progress.

6.
Chem Sci ; 10(5): 1483-1491, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30809365

ABSTRACT

A bis(dithiolene)gold complex is presented as a model for an organic molecular electron spin qubit attached to a metallic surface that acts as a conduit to electrically address the qubit. A two-membered electron transfer series is developed of the formula [AuIII(adt)2]1-/0, where adt is a redox-active dithiolene ligand that is sequentially oxidized as the series is traversed while the central metal ion remains AuIII and steadfastly square planar. One-electron oxidation of diamagnetic [AuIII(adt)2]1- (1) produces an S = 1/2 charge-neutral complex, [AuIII(adt2 3-˙)] (2) which is spectroscopically and theoretically characterized with a near negligible Au contribution to the ground state. A phase memory time (T M) of 21 µs is recorded in 4 : 1 CS2/CCl4 at 10 K, which is the longest ever reported for a coordination complex possessing a third-row transition metal ion. With increasing temperature, T M dramatically decreases becoming unmeasurable above 80 K as a consequence of the diminishing spin-lattice (T 1) relaxation time fueled by spin-orbit coupling. These relaxation times are 1-2 orders of magnitude shorter for the solid dilution of 2 in isoelectronic [Ni(adt)2] because this material is a molecular semiconductor. Although the conducting properties of this material provide efficient pathways to dissipate the energy through the lattice, it can also be used to electrically address the paramagnetic dopant by tapping into the mild reduction potential to switch magnetism "on" and "off" in the gold complex without compromising the integrity of its structure. These results serve to highlight the need to consider all components of these spintronic assemblies.

7.
Dalton Trans ; 48(17): 5491-5495, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30892339

ABSTRACT

Heterometallic rare earth transition metal compounds of dithioxalate (dto)2-, [NiII{(dto)LnIIITp2}2] (Ln = Y (1), Gd (2); Tp = hydrotris(pyrazol-1-yl)borate) were synthesised. The Lewis acidic rare earth ions are bound to the dioxolene and chemical reduction of 1 and 2 with cobaltocene yielded [CoCp2]+[NiII{(dto)LnIIITp2}2]˙- Ln = Y (3), Gd (4). The reduction is ligand-based and 3 and 4 are the first examples of both molecular and electronic structural characterisation of the dithiooxalato radical (dto)3˙-.

8.
Chem Commun (Camb) ; 54(80): 11284-11287, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30239538

ABSTRACT

Reduction of 1,10-phenanthroline-5,6-dione (pd) with CoCpR2 resulted in the first molecular compounds of the pd˙- semi-quinone radical anion, [CoCpR2]+[pd]˙- (R = H, (1); R = Me4, (2)). Furthermore compounds 1 and 2 were reacted with [Y(hfac)3(thf)2] (hfac = 1,1,1-5,5,5-hexafluoroacetylacetonate) to synthesise the rare earth-transition metal heterometallic compounds, [CoCpR2]+[Y(hfac)3(N,N'-pd)]˙- (R = H, (3); R = Me4, (4)).

9.
Dalton Trans ; 47(31): 10692-10701, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-29897068

ABSTRACT

We report a robust and modular synthetic route to heterometallic rare earth-transition metal complexes. We have used the redox-active bridging ligand 1,10-phenathroline-5,6-dione (pd), which has selective N,N' or O,O' binding sites as the template for this synthetic route. The coordination complexes [Ln(hfac)3(N,N'-pd)] (Ln = Y [1], Gd [2]; hfac = hexafluoroacetylacetonate) were synthesised in high yield. These complexes have been fully characterised using a range of spectroscopic techniques. Solid state molecular structures of 1 and 2 have been determined by X-ray crystallography and display different pd binding modes in coordinating and non-coordinating solvents. Complexes 1 and 2 are unusually highly coloured in coordinating solvents, for example the vis-NIR spectrum of 1 in acetonitrile displays an electronic transition centred at 587 nm with an extinction coefficient consistent with significant charge transfer. The reaction between 1 and 2 and VCp2 or VCpt2 (Cpt = tetramethylcyclopentadienyl) resulted in the isolation of the heterobimetallic complexes, [Ln(hfac)3(N,N'-O,O'-pd)VCp2] (Ln = Y [3], Gd [4]) or [Ln(hfac)3(N,N'-O,O'-pd)VCpt2] (Ln = Y [5], Gd [6]). The solid state molecular structures of 3, 5 and 6 have been determined by X-ray crystallography. The spectroscopic data on 3-6 are consistent with oxidation of V(ii) to V(iv) and reduction of pd to pd2- in the heterobimetallic complexes. The spin-Hamiltonian parameters from low temperature X-band EPR spectroscopy of 3 and 5 describe a 2A1 ground state, with a V(iv) centre. DFT calculations on 3 are in good agreement with experimental data and confirm the SOMO as the dx2-y2 orbital localised on vanadium.

SELECTION OF CITATIONS
SEARCH DETAIL