Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(15): e2109617119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35353605

ABSTRACT

α-Synuclein (α-syn) phosphorylation at serine 129 (pS129­α-syn) is substantially increased in Lewy body disease, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the pathogenic relevance of pS129­α-syn remains controversial, so we sought to identify when pS129 modification occurs during α-syn aggregation and its role in initiation, progression and cellular toxicity of disease. Using diverse aggregation assays, including real-time quaking-induced conversion (RT-QuIC) on brain homogenates from PD and DLB cases, we demonstrated that pS129­α-syn inhibits α-syn fibril formation and seeded aggregation. We also identified lower seeding propensity of pS129­α-syn in cultured cells and correspondingly attenuated cellular toxicity. To build upon these findings, we developed a monoclonal antibody (4B1) specifically recognizing nonphosphorylated S129­α-syn (WT­α-syn) and noted that S129 residue is more efficiently phosphorylated when the protein is aggregated. Using this antibody, we characterized the time-course of α-syn phosphorylation in organotypic mouse hippocampal cultures and mice injected with α-syn preformed fibrils, and we observed aggregation of nonphosphorylated α-syn followed by later pS129­α-syn. Furthermore, in postmortem brain tissue from PD and DLB patients, we observed an inverse relationship between relative abundance of nonphosphorylated α-syn and disease duration. These findings suggest that pS129­α-syn occurs subsequent to initial protein aggregation and apparently inhibits further aggregation. This could possibly imply a potential protective role for pS129­α-syn, which has major implications for understanding the pathobiology of Lewy body disease and the continued use of reduced pS129­α-syn as a measure of efficacy in clinical trials.


Subject(s)
Amyloid , Lewy Body Disease , Parkinson Disease , Protein Aggregation, Pathological , alpha-Synuclein , Amyloid/metabolism , Humans , Lewy Body Disease/genetics , Lewy Body Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Phosphorylation , Protein Aggregates , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Serine/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
2.
Cereb Cortex ; 33(20): 10514-10527, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37615301

ABSTRACT

Here we tested the hypothesis of a relationship between the cortical default mode network (DMN) structural integrity and the resting-state electroencephalographic (rsEEG) rhythms in patients with Alzheimer's disease with dementia (ADD). Clinical and instrumental datasets in 45 ADD patients and 40 normal elderly (Nold) persons originated from the PDWAVES Consortium (www.pdwaves.eu). Individual rsEEG delta, theta, alpha, and fixed beta and gamma bands were considered. Freeware platforms served to derive (1) the (gray matter) volume of the DMN, dorsal attention (DAN), and sensorimotor (SMN) cortical networks and (2) the rsEEG cortical eLORETA source activities. We found a significant positive association between the DMN gray matter volume, the rsEEG alpha source activity estimated in the posterior DMN nodes (parietal and posterior cingulate cortex), and the global cognitive status in the Nold and ADD participants. Compared with the Nold, the ADD group showed lower DMN gray matter, lower rsEEG alpha source activity in those nodes, and lower global cognitive status. This effect was not observed in the DAN and SMN. These results suggest that the DMN structural integrity and the rsEEG alpha source activities in the DMN posterior hubs may be related and predict the global cognitive status in ADD and Nold persons.

3.
Alzheimers Dement ; 20(3): 2298-2308, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38265159

ABSTRACT

Despite its high prevalence among dementias, Lewy body dementia (LBD) remains poorly understood with a limited, albeit growing, evidence base. The public-health burden that LBD imposes is worsened by overlapping pathologies, which contribute to misdiagnosis, and lack of treatments. For this report, we gathered and analyzed public-domain information on advocacy, funding, research outputs, and the therapeutic pipeline to identify gaps in each of these key elements. To further understand the current gaps, we also conducted interviews with leading experts in regulatory/governmental agencies, LBD advocacy, academic research, and biopharmaceutical research, as well as with funding sources. We identified wide gaps across the entire landscape, the most critical being in research. Many of the experts participated in a workshop to discuss the prioritization of research areas with a view to accelerating therapeutic development and improving patient care. This white paper outlines the opportunities for bridging the major LBD gaps and creates the framework for collaboration in that endeavor. HIGHLIGHTS: A group representing academia, government, industry, and consulting expertise was convened to discuss current progress in Dementia with Lewy Body care and research. Consideration of expert opinion,natural language processing of the literature as well as publicly available data bases, and Delphi inspired discussion led to a proposed consensus document of priorities for the field.


Subject(s)
Lewy Body Disease , Humans , Lewy Body Disease/diagnosis , Lewy Body Disease/therapy
4.
Mov Disord ; 38(7): 1127-1142, 2023 07.
Article in English | MEDLINE | ID: mdl-37156737

ABSTRACT

BACKGROUND: More than 200 years after James Parkinsondescribed a clinical syndrome based on his astute observations, Parkinson's disease (PD) has evolved into a complex entity, akin to the heterogeneity of other complex human syndromes of the central nervous system such as dementia, motor neuron disease, multiple sclerosis, and epilepsy. Clinicians, pathologists, and basic science researchers evolved arrange of concepts andcriteria for the clinical, genetic, mechanistic, and neuropathological characterization of what, in their best judgment, constitutes PD. However, these specialists have generated and used criteria that are not necessarily aligned between their different operational definitions, which may hinder progress in solving the riddle of the distinct forms of PD and ultimately how to treat them. OBJECTIVE: This task force has identified current in consistencies between the definitions of PD and its diverse variants in different domains: clinical criteria, neuropathological classification, genetic subtyping, biomarker signatures, and mechanisms of disease. This initial effort for "defining the riddle" will lay the foundation for future attempts to better define the range of PD and its variants, as has been done and implemented for other heterogeneous neurological syndromes, such as stroke and peripheral neuropathy. We strongly advocate for a more systematic and evidence-based integration of our diverse disciplines by looking at well-defined variants of the syndrome of PD. CONCLUSION: Accuracy in defining endophenotypes of "typical PD" across these different but interrelated disciplines will enable better definition of variants and their stratification in therapeutic trials, a prerequisite for breakthroughs in the era of precision medicine. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , Syndrome , Biomarkers , Forecasting , Central Nervous System/pathology
5.
Eur J Neurol ; 30(6): 1585-1593, 2023 06.
Article in English | MEDLINE | ID: mdl-36912421

ABSTRACT

BACKGROUND AND PURPOSE: Mild cognitive impairment with Lewy bodies (MCI-LB) is associated with a range of cognitive, motor, neuropsychiatric, sleep, autonomic, and visual symptoms. We investigated the cumulative frequency of symptoms in a longitudinal cohort of MCI-LB compared with MCI due to Alzheimer disease (MCI-AD) and analysed the ability of a previously described 10-point symptom scale to differentiate MCI-LB and MCI-AD, in an independent cohort. METHODS: Participants with probable MCI-LB (n = 70), MCI-AD (n = 51), and controls (n = 34) had a detailed clinical assessment and annual follow-up (mean duration = 1.7 years). The presence of a range of symptoms was ascertained using a modified version of the Lewy Body Disease Association Comprehensive LBD Symptom Checklist at baseline assessment and then annually. RESULTS: MCI-LB participants experienced a greater mean number of symptoms (24.2, SD = 7.6) compared with MCI-AD (11.3, SD = 7.4) and controls (4.2, SD = 3.1; p < 0.001 for all comparisons). A range of cognitive, parkinsonian, neuropsychiatric, sleep, and autonomic symptoms were significantly more common in MCI-LB than MCI-AD, although when present, the time of onset was similar between the two groups. A previously defined 10-point symptom scale demonstrated very good discrimination between MCI-LB and MCI-AD (area under the receiver operating characteristic curve = 0.91, 95% confidence interval = 0.84-0.98), replicating our previous finding in a new cohort. CONCLUSIONS: MCI-LB is associated with the frequent presence of a particular profile of symptoms compared to MCI-AD. Clinicians should look for evidence of these symptoms in MCI and be aware of the potential for treatment. The presence of these symptoms may help to discriminate MCI-LB from MCI-AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Lewy Body Disease , Humans , Lewy Bodies , Lewy Body Disease/diagnosis , Lewy Body Disease/complications , Alzheimer Disease/complications , Cognitive Dysfunction/psychology , ROC Curve
6.
Alzheimers Dement ; 19(11): 5264-5283, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37392199

ABSTRACT

In Lewy body dementia (LBD), disturbances of sleep and/or arousal including insomnia, excessive daytime sleepiness, rapid eye movement (REM) sleep behavior disorder, obstructive sleep apnea, and restless leg syndrome are common. These disorders can each exert a significant negative impact on both patient and caregiver quality of life; however, their etiology is poorly understood. Little guidance is available for assessing and managing sleep disorders in LBD, and they remain under-diagnosed and under-treated. This review aims to (1) describe the specific sleep disorders which occur in LBD, considering their putative or potential mechanisms; (2) describe the history and diagnostic process for these disorders in LBD; and (3) summarize current evidence for their management in LBD and consider some of the ongoing and unanswered questions in this field and future research directions.


Subject(s)
Lewy Body Disease , REM Sleep Behavior Disorder , Sleep Wake Disorders , Humans , Lewy Body Disease/diagnosis , Clinical Relevance , Quality of Life , Sleep , Sleep Wake Disorders/etiology
7.
Alzheimers Dement ; 19(1): 318-332, 2023 01.
Article in English | MEDLINE | ID: mdl-36239924

ABSTRACT

Dementia with Lewy bodies (DLB) is clinically defined by the presence of visual hallucinations, fluctuations, rapid eye movement (REM) sleep behavioral disorder, and parkinsonism. Neuropathologically, it is characterized by the presence of Lewy pathology. However, neuropathological studies have demonstrated the high prevalence of coexistent Alzheimer's disease, TAR DNA-binding protein 43 (TDP-43), and cerebrovascular pathologic cases. Due to their high prevalence and clinical impact on DLB individuals, clinical trials should account for these co-pathologies in their design and selection and the interpretation of biomarkers values and outcomes. Here we discuss the frequency of the different co-pathologies in DLB and their cross-sectional and longitudinal clinical impact. We then evaluate the utility and possible applications of disease-specific and disease-nonspecific biomarkers and how co-pathologies can impact these biomarkers. We propose a framework for integrating multi-modal biomarker fingerprints and step-wise selection and assessment of DLB individuals for clinical trials, monitoring target engagement, and interpreting outcomes in the setting of co-pathologies.


Subject(s)
Lewy Body Disease , Humans , Alzheimer Disease/pathology , Biomarkers , Clinical Trials as Topic , Cross-Sectional Studies , Lewy Body Disease/complications , Lewy Body Disease/pathology , Parkinsonian Disorders/etiology , REM Sleep Behavior Disorder/etiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
8.
Neurobiol Dis ; 168: 105698, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35314318

ABSTRACT

Dementia with Lewy bodies (DLB) is the second most common neurodegenerative cause of dementia, behind Alzheimer's disease (AD). The profile of inflammation in AD has been extensively researched in recent years, with evidence that chronic peripheral inflammation in midlife increases the risk of late-onset AD, and data supporting inflammation being associated with disease progression. In contrast, our understanding of the role of inflammation in DLB is less developed. Most research to date has examined inflammation in related disorders, such as Parkinson's disease, but there is now a growing range of literature examining inflammation in DLB itself. We present a review of the literature in this field, exploring a range of research methodologies including those quantifying markers of inflammation in cerebrospinal fluid, peripheral blood, post-mortem brain tissue, and using neuroimaging and preclinical data. Our review reveals evidence from PET imaging and peripheral blood analysis to support an increase in cerebral and peripheral inflammation in mild or prodromal DLB, that dissipates with disease progression. We present evidence from post-mortem brain tissue and pre-clinical studies that indicate α-synuclein directly promotes inflammation, but that also support the presence of AD co-pathology as an important factor in the profile of neuroinflammation in DLB. We propose that specific markers of inflammation may play a sentinel role in the mild stage of the disease, particularly when combined with AD pathology. We advocate further examination of the profile of inflammation in DLB through robust longitudinal studies, to enhance our understanding of the pathogenesis of the disease. The goal should be to utilise future results to develop a composite biomarker to aid diagnosis of DLB, and to potentially identify novel therapeutic targets.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Alzheimer Disease/complications , Biomarkers/cerebrospinal fluid , Disease Progression , Humans , Inflammation , Lewy Bodies/pathology , Lewy Body Disease/pathology
9.
Mov Disord ; 37(10): 2110-2121, 2022 10.
Article in English | MEDLINE | ID: mdl-35997131

ABSTRACT

BACKGROUND: Multiple System Atrophy is a rare neurodegenerative disease with alpha-synuclein aggregation in glial cytoplasmic inclusions and either predominant olivopontocerebellar atrophy or striatonigral degeneration, leading to dysautonomia, parkinsonism, and cerebellar ataxia. One prior genome-wide association study in mainly clinically diagnosed patients with Multiple System Atrophy failed to identify genetic variants predisposing for the disease. OBJECTIVE: Since the clinical diagnosis of Multiple System Atrophy yields a high rate of misdiagnosis when compared to the neuropathological gold standard, we studied only autopsy-confirmed cases. METHODS: We studied common genetic variations in Multiple System Atrophy cases (N = 731) and controls (N = 2898). RESULTS: The most strongly disease-associated markers were rs16859966 on chromosome 3, rs7013955 on chromosome 8, and rs116607983 on chromosome 4 with P-values below 5 × 10-6 , all of which were supported by at least one additional genotyped and several imputed single nucleotide polymorphisms. The genes closest to the chromosome 3 locus are ZIC1 and ZIC4 encoding the zinc finger proteins of cerebellum 1 and 4 (ZIC1 and ZIC4). INTERPRETATION: Since mutations of ZIC1 and ZIC4 and paraneoplastic autoantibodies directed against ZIC4 are associated with severe cerebellar dysfunction, we conducted immunohistochemical analyses in brain tissue of the frontal cortex and the cerebellum from 24 Multiple System Atrophy patients. Strong immunohistochemical expression of ZIC4 was detected in a subset of neurons of the dentate nucleus in all healthy controls and in patients with striatonigral degeneration, whereas ZIC4-immunoreactive neurons were significantly reduced inpatients with olivopontocerebellar atrophy. These findings point to a potential ZIC4-mediated vulnerability of neurons in Multiple System Atrophy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Multiple System Atrophy , Olivopontocerebellar Atrophies , Striatonigral Degeneration , Autoantibodies , Autopsy , Genome-Wide Association Study , Humans , Multiple System Atrophy/genetics , Multiple System Atrophy/pathology , Nerve Tissue Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , alpha-Synuclein/metabolism
10.
Acta Neuropathol ; 141(4): 511-526, 2021 04.
Article in English | MEDLINE | ID: mdl-33515275

ABSTRACT

Accumulation of the protein α-synuclein into insoluble intracellular deposits termed Lewy bodies (LBs) is the characteristic neuropathological feature of LB diseases, such as Parkinson's disease (PD), Parkinson's disease dementia (PDD) and dementia with LB (DLB). α-Synuclein aggregation is thought to be a critical pathogenic event in the aetiology of LB disease, based on genetic analyses, fundamental studies using model systems, and the observation of LB pathology in post-mortem tissue. However, some monogenic disorders not traditionally characterised as synucleinopathies, such as lysosomal storage disorders, iron storage disorders and mitochondrial diseases, appear disproportionately vulnerable to the deposition of LBs, perhaps suggesting the process of LB formation may be a result of processes perturbed as a result of these conditions. The present review discusses biological pathways common to monogenic disorders associated with LB formation, identifying catabolic processes, particularly related to lipid homeostasis, autophagy and mitochondrial function, as processes that could contribute to LB formation. These findings are discussed in the context of known mediators of α-synuclein aggregation, highlighting the potential influence of impairments to these processes in the aetiology of LB formation.


Subject(s)
Hemochromatosis/pathology , Lewy Bodies/pathology , Lysosomal Storage Diseases/pathology , Mitochondrial Diseases/pathology , alpha-Synuclein/metabolism , Hemochromatosis/metabolism , Humans , Lewy Bodies/metabolism , Lipid Metabolism/physiology , Lysosomal Storage Diseases/metabolism , Lysosomes/metabolism , Lysosomes/pathology , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/metabolism
11.
Acta Neuropathol ; 142(6): 961-984, 2021 12.
Article in English | MEDLINE | ID: mdl-34514546

ABSTRACT

Mutations in glucocerebrosidase (GBA) are the most prevalent genetic risk factor for Lewy body disorders (LBD)-collectively Parkinson's disease, Parkinson's disease dementia and dementia with Lewy bodies. Despite this genetic association, it remains unclear how GBA mutations increase susceptibility to develop LBD. We investigated relationships between LBD-specific glucocerebrosidase deficits, GBA-related pathways, and α-synuclein levels in brain tissue from LBD and controls, with and without GBA mutations. We show that LBD is characterised by altered sphingolipid metabolism with prominent elevation of ceramide species, regardless of GBA mutations. Since extracellular vesicles (EV) could be involved in LBD pathogenesis by spreading disease-linked lipids and proteins, we investigated EV derived from post-mortem cerebrospinal fluid (CSF) and brain tissue from GBA mutation carriers and non-carriers. EV purified from LBD CSF and frontal cortex were heavily loaded with ceramides and neurodegeneration-linked proteins including alpha-synuclein and tau. Our in vitro studies demonstrate that LBD EV constitute a "pathological package" capable of inducing aggregation of wild-type alpha-synuclein, mediated through a combination of alpha-synuclein-ceramide interaction and the presence of pathological forms of alpha-synuclein. Together, our findings indicate that abnormalities in ceramide metabolism are a feature of LBD, constituting a promising source of biomarkers, and that GBA mutations likely accelerate the pathological process occurring in sporadic LBD through endolysosomal deficiency.


Subject(s)
Ceramides/metabolism , Extracellular Vesicles/metabolism , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , alpha-Synuclein/metabolism , Glucosylceramidase/genetics , Humans , Mutation , Parkinsonian Disorders/genetics , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism
12.
Acta Neuropathol ; 141(2): 159-172, 2021 02.
Article in English | MEDLINE | ID: mdl-33399945

ABSTRACT

Currently, the neuropathological diagnosis of Lewy body disease (LBD) may be stated according to several staging systems, which include the Braak Lewy body stages (Braak), the consensus criteria by McKeith and colleagues (McKeith), the modified McKeith system by Leverenz and colleagues (Leverenz), and the Unified Staging System by Beach and colleagues (Beach). All of these systems use semi-quantitative scoring (4- or 5-tier scales) of Lewy pathology (LP; i.e., Lewy bodies and Lewy neurites) in defined cortical and subcortical areas. While these systems are widely used, some suffer from low inter-rater reliability and/or an inability to unequivocally classify all cases with LP. To address these limitations, we devised a new system, the LP consensus criteria (LPC), which is based on the McKeith system, but applies a dichotomous approach for the scoring of LP (i.e., "absent" vs. "present") and includes amygdala-predominant and olfactory-only stages. α-Synuclein-stained slides from brainstem, limbic system, neocortex, and olfactory bulb from a total of 34 cases with LP provided by the Newcastle Brain Tissue Resource (NBTR) and the University of Pennsylvania brain bank (UPBB) were scanned and assessed by 16 raters, who provided diagnostic categories for each case according to Braak, McKeith, Leverenz, Beach, and LPC systems. In addition, using LP scores available from neuropathological reports of LP cases from UPBB (n = 202) and NBTR (n = 134), JT (UPBB) and JA (NBTR) assigned categories according to all staging systems to these cases. McKeith, Leverenz, and LPC systems reached good (Krippendorff's α ≈ 0.6), while both Braak and Beach systems had lower (Krippendorff's α ≈ 0.4) inter-rater reliability, respectively. Using the LPC system, all cases could be unequivocally classified by the majority of raters, which was also seen for 97.1% when the Beach system was used. However, a considerable proportion of cases could not be classified when using Leverenz (11.8%), McKeith (26.5%), or Braak (29.4%) systems. The category of neocortical LP according to the LPC system was associated with a 5.9 OR (p < 0.0001) of dementia in the 134 NBTR cases and a 3.14 OR (p = 0.0001) in the 202 UPBB cases. We established that the LPC system has good reproducibility and allows classification of all cases into distinct categories. We expect that it will be reliable and useful in routine diagnostic practice and, therefore, suggest that it should be the standard future approach for the basic post-mortem evaluation of LP.


Subject(s)
Brain/pathology , Lewy Body Disease/pathology , Autopsy , Brain Mapping , Consensus , Humans , Lewy Bodies/pathology , Lewy Body Disease/classification , Lewy Body Disease/diagnosis , Observer Variation , Reproducibility of Results
13.
Mov Disord ; 36(1): 143-151, 2021 01.
Article in English | MEDLINE | ID: mdl-32960456

ABSTRACT

BACKGROUND: Lewy body dementia, comprising both dementia with Lewy bodies and Parkinson's disease dementia, is challenging to manage because of a complex symptom profile and lack of clear evidence-based management guidelines. OBJECTIVES: We assessed the feasibility of undertaking a cluster randomized study of the introduction of an evidence-based management toolkit for Lewy body dementia, assessing the outcomes for patients and carers as secondary measures. METHODS: We randomized 23 memory/dementia, movement disorder, or nonspecialist secondary care services to the management toolkit or usual care. People with dementia with Lewy bodies or Parkinson's disease dementia underwent assessments of cognition, motor and neuropsychiatric symptoms, and global outcome at baseline and 3 and 6 months. Healthcare, personal and social care costs, and carer-related outcomes of carer stress, depression, and anxiety were also examined. RESULTS: A total of 131 participants were recruited (target 120), for whom 6-month data were available on 108 (83%). There was a benefit of being in the intervention arm for carers (reduced Zarit Burden Scale [P < 0.01], reduced depressive symptoms [P < 0.05]), who also reported less marked patient deterioration on the global outcome measure (P < 0.05). There were no significant differences in other outcomes or in costs between groups. CONCLUSIONS: The introduction of an evidence-based management toolkit for Lewy body dementia was feasible and associated with some benefits, especially for carers. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Anxiety Disorders , Caregivers , Cognition , Humans , Lewy Body Disease/therapy
14.
Psychol Med ; 51(15): 2590-2598, 2021 11.
Article in English | MEDLINE | ID: mdl-32366348

ABSTRACT

BACKGROUND: Mild cognitive impairment (MCI) may gradually worsen to dementia, but often remains stable for extended periods of time. Little is known about the predictors of decline to help explain this variation. We aimed to explore whether this heterogeneous course of MCI may be predicted by the presence of Lewy body (LB) symptoms in a prospectively-recruited longitudinal cohort of MCI with Lewy bodies (MCI-LB) and Alzheimer's disease (MCI-AD). METHODS: A prospective cohort (n = 76) aged ⩾60 years underwent detailed assessment after recent MCI diagnosis, and were followed up annually with repeated neuropsychological testing and clinical review of cognitive status and LB symptoms. Latent class mixture modelling identified data-driven sub-groups with distinct trajectories of global cognitive function. RESULTS: Three distinct trajectories were identified in the full cohort: slow/stable progression (46%), intermediate progressive decline (41%) and a small group with a much faster decline (13%). The presence of LB symptomology, and visual hallucinations in particular, predicted decline v. a stable cognitive trajectory. With time zeroed on study end (death, dementia or withdrawal) where available (n = 39), the same subgroups were identified. Adjustment for baseline functioning obscured the presence of any latent classes, suggesting that baseline function is an important parameter in prospective decline. CONCLUSIONS: These results highlight some potential signals for impending decline in MCI; poorer baseline function and the presence of probable LB symptoms - particularly visual hallucinations. Identifying people with a rapid decline is important but our findings are preliminary given the modest cohort size.


Subject(s)
Alzheimer Disease/pathology , Alzheimer Disease/psychology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/psychology , Lewy Bodies/pathology , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Disease Progression , England , Female , Humans , Latent Class Analysis , Lewy Body Disease , Longitudinal Studies , Male , Middle Aged , Prospective Studies
15.
Am J Geriatr Psychiatry ; 29(3): 272-284, 2021 03.
Article in English | MEDLINE | ID: mdl-32863138

ABSTRACT

OBJECTIVE: We explored whether the mild cognitive impairment (MCI) stages of dementia with Lewy bodies (DLB) and Alzheimer disease (AD) differ in their cognitive profiles, and longitudinal progression. DESIGN: A prospective, longitudinal design was utilized with annual follow-up (Max 5 years, Mean 1.9, standard deviation 1.1) after diagnosis. Participants underwent repeated cognitive testing, and review of their clinical diagnosis and symptoms, including evaluation of core features of DLB. SETTING: This was an observational study of independently living individuals, recruited from local healthcare trusts in North East England, UK. PARTICIPANTS: An MCI cohort (n = 76) aged ≥60 years was utilized, differentially diagnosed with MCI due to AD (MCI-AD), or possible/probable MCI with Lewy bodies (MCI-LB). MEASUREMENTS: A comprehensive clinical and neuropsychological testing battery was administered, including ACE-R, trailmaking tests, FAS verbal fluency, and computerized battery of attention and perception tasks. RESULTS: Probable MCI-LB presented with less impaired recognition memory than MCI-AD, greater initial impairments in verbal fluency and perception of line orientation, and thereafter demonstrated an expedited decline in visuo-constructional functions in the ACE-R compared to MCI-AD. No clear diagnostic group differences were found in deterioration speeds for global cognition, language, overall memory, attention or other executive functions. CONCLUSION: These findings provide further evidence for differences in severity and decline of visuospatial dysfunctions in DLB compared with AD; further exploration is required to clarify when and how differences in attention, executive, and memory functions emerge, as well as speed of decline to dementia.


Subject(s)
Alzheimer Disease/complications , Alzheimer Disease/psychology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Lewy Body Disease/complications , Lewy Body Disease/psychology , Aged , Alzheimer Disease/physiopathology , Attention , Cognitive Dysfunction/physiopathology , England , Executive Function , Female , Humans , Lewy Body Disease/physiopathology , Male , Memory , Middle Aged , Neuropsychological Tests , Prospective Studies
16.
Alzheimers Dement ; 17(9): 1528-1553, 2021 09.
Article in English | MEDLINE | ID: mdl-33860614

ABSTRACT

The Electrophysiology Professional Interest Area (EPIA) and Global Brain Consortium endorsed recommendations on candidate electroencephalography (EEG) measures for Alzheimer's disease (AD) clinical trials. The Panel reviewed the field literature. As most consistent findings, AD patients with mild cognitive impairment and dementia showed abnormalities in peak frequency, power, and "interrelatedness" at posterior alpha (8-12 Hz) and widespread delta (< 4 Hz) and theta (4-8 Hz) rhythms in relation to disease progression and interventions. The following consensus statements were subscribed: (1) Standardization of instructions to patients, resting state EEG (rsEEG) recording methods, and selection of artifact-free rsEEG periods are needed; (2) power density and "interrelatedness" rsEEG measures (e.g., directed transfer function, phase lag index, linear lagged connectivity, etc.) at delta, theta, and alpha frequency bands may be use for stratification of AD patients and monitoring of disease progression and intervention; and (3) international multisectoral initiatives are mandatory for regulatory purposes.


Subject(s)
Alzheimer Disease/physiopathology , Clinical Trials as Topic , Electroencephalography/standards , Brain/physiopathology , Cognitive Dysfunction/physiopathology , Disease Progression , Humans
17.
J Neurol Neurosurg Psychiatry ; 91(5): 512-519, 2020 05.
Article in English | MEDLINE | ID: mdl-32213570

ABSTRACT

Visual hallucinations are common in older people and are especially associated with ophthalmological and neurological disorders, including dementia and Parkinson's disease. Uncertainties remain whether there is a single underlying mechanism for visual hallucinations or they have different disease-dependent causes. However, irrespective of mechanism, visual hallucinations are difficult to treat. The National Institute for Health Research (NIHR) funded a research programme to investigate visual hallucinations in the key and high burden areas of eye disease, dementia and Parkinson's disease, culminating in a workshop to develop a unified framework for their clinical management. Here we summarise the evidence base, current practice and consensus guidelines that emerged from the workshop.Irrespective of clinical condition, case ascertainment strategies are required to overcome reporting stigma. Once hallucinations are identified, physical, cognitive and ophthalmological health should be reviewed, with education and self-help techniques provided. Not all hallucinations require intervention but for those that are clinically significant, current evidence supports pharmacological modification of cholinergic, GABAergic, serotonergic or dopaminergic systems, or reduction of cortical excitability. A broad treatment perspective is needed, including carer support. Despite their frequency and clinical significance, there is a paucity of randomised, placebo-controlled clinical trial evidence where the primary outcome is an improvement in visual hallucinations. Key areas for future research include the development of valid and reliable assessment tools for use in mechanistic studies and clinical trials, transdiagnostic studies of shared and distinct mechanisms and when and how to treat visual hallucinations.


Subject(s)
Eye Diseases/complications , Hallucinations/etiology , Nervous System Diseases/complications , Dementia/complications , Dementia/physiopathology , Dementia/therapy , Eye Diseases/physiopathology , Eye Diseases/therapy , Hallucinations/physiopathology , Hallucinations/therapy , Humans , Nervous System Diseases/physiopathology , Nervous System Diseases/therapy , Parkinson Disease/complications , Parkinson Disease/physiopathology , Parkinson Disease/therapy
18.
Psychol Med ; 49(3): 396-402, 2019 02.
Article in English | MEDLINE | ID: mdl-29692275

ABSTRACT

BACKGROUND: Dopaminergic imaging has high diagnostic accuracy for dementia with Lewy bodies (DLB) at the dementia stage. We report the first investigation of dopaminergic imaging at the prodromal stage. METHODS: We recruited 75 patients over 60 with mild cognitive impairment (MCI), 33 with probable MCI with Lewy body disease (MCI-LB), 15 with possible MCI-LB and 27 with MCI with Alzheimer's disease. All underwent detailed clinical, neurological and neuropsychological assessments and FP-CIT [123I-N-fluoropropyl-2ß-carbomethoxy-3ß-(4-iodophenyl)] dopaminergic imaging. FP-CIT scans were blindly rated by a consensus panel and classified as normal or abnormal. RESULTS: The sensitivity of visually rated FP-CIT imaging to detect combined possible or probable MCI-LB was 54.2% [95% confidence interval (CI) 39.2-68.6], with a specificity of 89.0% (95% CI 70.8-97.6) and a likelihood ratio for MCI-LB of 4.9, indicating that FP-CIT may be a clinically important test in MCI where any characteristic symptoms of Lewy body (LB) disease are present. The sensitivity in probable MCI-LB was 61.0% (95% CI 42.5-77.4) and in possible MCI-LB was 40.0% (95% CI 16.4-67.7). CONCLUSIONS: Dopaminergic imaging had high specificity at the pre-dementia stage and gave a clinically important increase in diagnostic confidence and so should be considered in all patients with MCI who have any of the diagnostic symptoms of DLB. As expected, the sensitivity was lower in MCI-LB than in established DLB, although over 50% still had an abnormal scan. Accurate diagnosis of LB disease is important to enable early optimal treatment for LB symptoms.


Subject(s)
Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Dopamine Plasma Membrane Transport Proteins/pharmacokinetics , Lewy Body Disease/diagnostic imaging , Neuroimaging/standards , Tomography, Emission-Computed/standards , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Cognitive Dysfunction/metabolism , Female , Humans , Lewy Body Disease/metabolism , Male , Sensitivity and Specificity , Tropanes/pharmacokinetics
19.
Brain ; 141(9): 2721-2739, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30137212

ABSTRACT

Our hypothesis is that changes in gene and protein expression are crucial to the development of late-onset Alzheimer’s disease. Previously we examined how DNA alleles control downstream expression of RNA transcripts and how those relationships are changed in late-onset Alzheimer’s disease. We have now examined how proteins are incorporated into networks in two separate series and evaluated our outputs in two different cell lines. Our pipeline included the following steps: (i) predicting expression quantitative trait loci; (ii) determining differential expression; (iii) analysing networks of transcript and peptide relationships; and (iv) validating effects in two separate cell lines. We performed all our analysis in two separate brain series to validate effects. Our two series included 345 samples in the first set (177 controls, 168 cases; age range 65–105; 58% female; KRONOSII cohort) and 409 samples in the replicate set (153 controls, 141 cases, 115 mild cognitive impairment; age range 66–107; 63% female; RUSH cohort). Our top target is heat shock protein family A member 2 (HSPA2), which was identified as a key driver in our two datasets. HSPA2 was validated in two cell lines, with overexpression driving further elevation of amyloid-β40 and amyloid-β42 levels in APP mutant cells, as well as significant elevation of microtubule associated protein tau and phosphorylated-tau in a modified neuroglioma line. This work further demonstrates that studying changes in gene and protein expression is crucial to understanding late onset disease and further nominates HSPA2 as a specific key regulator of late-onset Alzheimer’s disease processes.10.1093/brain/awy215_video1awy215media15824729224001.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , HSP70 Heat-Shock Proteins/physiology , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Brain/metabolism , Brain Mapping/methods , Cell Line , Female , Gene Expression Profiling/methods , HEK293 Cells , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Humans , Male , Nerve Net/physiopathology , Protein Processing, Post-Translational , RNA/analysis , RNA/metabolism , Transcriptome/genetics
20.
Int J Geriatr Psychiatry ; 34(7): 990-998, 2019 07.
Article in English | MEDLINE | ID: mdl-30901488

ABSTRACT

INTRODUCTION: Lewy body disease is postulated, by the Braak model, to originate in the enteric nervous system, before spreading to the central nervous system. Therefore, a high prevalence of gastroparesis symptoms would be expected in prodromal dementia with Lewy bodies (DLB) and be highest in those with a dopaminergic deficit on imaging. The aim of this study was to explore whether gastroparesis symptoms are an early diagnostic marker of prodromal DLB and explore the relationship between symptoms and dopaminergic imaging findings on FP-CIT SPECT. METHODS: We recruited 75 patients over 60 with mild cognitive impairment (MCI), 48 with MCI with suspected Lewy body disease (MCI-LB) and 27 with MCI with suspected Alzheimer's disease (MCI-AD). All patients completed the Gastroparesis Cardinal Symptom Index (GSCI) questionnaire and also underwent FP-CIT [123 I-N-fluoropropyl-2ß-carbomethoxy-3ß-(4-iodophenyl)] dopaminergic imaging. RESULTS: At least one symptom suggestive of gastroparesis was reported in 48% (n = 23) MCI-LB vs 37% MCI-AD (n = 10) (P = 0.36). Rates of definite symptoms of gastroparesis, as defined by a GCSI total score ≥ 1.90, were rare and rates in MCI-LB were not different from MCI-AD (6% vs 0%, p = 0.55). After adjusting for gender differences between groups, no difference in gastroparesis symptom prevalence (2.27 vs 0.81 P = 0.05) or severity score (0.62 vs 0.28, p = 0.28) was noted between normally and abnormally visually rated FP-CIT SPECT scans. CONCLUSION: The GCSI is not a useful tool for differentiating MCI-LB from MCI-AD. A low rate of definite gastroparesis was detected in prodromal DLB. No association was found between gastroparesis symptoms and FP-CIT SPECT findings.


Subject(s)
Gastroparesis/epidemiology , Lewy Body Disease/diagnosis , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Female , Humans , Lewy Body Disease/complications , Male , Middle Aged , Prevalence , Prodromal Symptoms , Tomography, Emission-Computed, Single-Photon/methods , Tropanes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL