Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
BMC Genomics ; 20(1): 143, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30777008

ABSTRACT

BACKGROUND: Genital C. trachomatis infection may cause pelvic inflammatory disease (PID) that can lead to tubal factor infertility (TFI). Understanding the pathogenesis of chlamydial complications including the pathophysiological processes within the female host genital tract is important in preventing adverse pathology. MicroRNAs regulate several pathophysiological processes of infectious and non-infectious etiologies. In this study, we tested the hypothesis that the miRNA profile of single and repeat genital chlamydial infections will be different and that these differences will be time dependent. Thus, we analyzed and compared differentially expressed mice genital tract miRNAs after single and repeat chlamydia infections using a C. muridarum mouse model. Mice were sacrificed and their genital tract tissues were collected at 1, 2, 4, and 8 weeks after a single and repeat chlamydia infections. Histopathology, and miRNA sequencing were performed. RESULTS: Histopathology presentation showed that the oviduct and uterus of reinfected mice were more inflamed, distended and dilated compared to mice infected once. The miRNAs expression profile was different in the reproductive tissues after a reinfection, with a greater number of miRNAs expressed after reinfection. Also, the number of miRNAs expressed each week after chlamydia infection and reinfection varied, with weeks eight and one having the highest number of differentially expressed miRNAs for chlamydia infection and reinfection respectively. Ten miRNAs; mmu-miR-378b, mmu-miR-204-5p, mmu-miR-151-5p, mmu-miR-142-3p, mmu-miR-128-3p, mmu-miR-335-3p, mmu-miR-195a-3p, mmu-miR-142-5p, mmu-miR-106a-5p and mmu-miR-92a-3p were common in both primary chlamydia infection and reinfection. Pathway analysis showed that, amongst other functions, the differentially regulated miRNAs control pathways involved in cellular and tissue development, disease conditions and toxicity. CONCLUSIONS: This study provides insights into the changes in miRNA expression over time after chlamydia infection and reinfection, as well as the pathways they regulate to determine pathological outcomes. The miRNAs networks generated in our study shows that there are differences in the focus molecules involved in significant biological functions in chlamydia infection and reinfection, implying that chlamydial pathogenesis occurs differently for each type of infection and that this could be important when determining treatments regime and disease outcome. The study underscores the crucial role of host factors in chlamydia pathogenesis.


Subject(s)
Chlamydia Infections/genetics , Chlamydia Infections/microbiology , Chlamydia , Genitalia/microbiology , MicroRNAs/genetics , Transcriptome , Animals , Biopsy , Cell Line , Chlamydia Infections/pathology , Computational Biology/methods , Disease Models, Animal , Female , Gene Expression Profiling , Gene Expression Regulation , Genitalia/pathology , Humans , Immunohistochemistry , Mice
2.
BMC Immunol ; 18(1): 27, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28525970

ABSTRACT

BACKGROUND: We have previously reported that interleukin-10 (IL-10) deficient dendritic cells (DCs) are potent antigen presenting cells that induced elevated protective immunity against Chlamydia. To further investigate the molecular and biochemical mechanism underlying the superior immunostimulatory property of IL-10 deficient DCs we performed proteomic analysis on protein profiles from Chlamydia-pulsed wild-type (WT) and IL-10-/- DCs to identify differentially expressed proteins with immunomodulatory properties. RESULTS: The results showed that alpha enolase (ENO1), a metabolic enzyme involved in the last step of glycolysis was significantly upregulated in Chlamydia-pulsed IL-10-/- DCs compared to WT DCs. We further studied the immunoregulatory role of ENO1 in DC function by generating ENO1 knockdown DCs, using lentiviral siRNA technology. We analyzed the effect of the ENO1 knockdown on DC functions after pulsing with Chlamydia. Pyruvate assay, transmission electron microscopy, flow cytometry, confocal microscopy, cytokine, T-cell activation and adoptive transfer assays were also used to study DC function. The results showed that ENO1 knockdown DCs had impaired maturation and activation, with significant decrease in intracellular pyruvate concentration as compared with the Chlamydia-pulsed WT DCs. Adoptive transfer of Chlamydia-pulsed ENO1 knockdown DCs were poorly immunogenic in vitro and in vivo, especially the ability to induce protective immunity against genital chlamydia infection. The marked remodeling of the mitochondrial morphology of Chlamydia-pulsed ENO1 knockdown DCs compared to the Chlamydia-pulsed WT DCs was associated with the dysregulation of translocase of the outer membrane (TOM) 20 and adenine nucleotide translocator (ANT) 1/2/3/4 that regulate mitochondrial permeability. The results suggest that an enhanced glycolysis is required for efficient antigen processing and presentation by DCs to induce a robust immune response. CONCLUSIONS: The upregulation of ENO1 contributes to the superior immunostimulatory function of IL-10 deficient DCs. Our studies indicated that ENO1 deficiency causes the reduced production of pyruvate, which then contributes to a dysfunction in mitochondrial homeostasis that may affect DC survival, maturation and antigen presenting properties. Modulation of ENO1 thus provides a potentially effective strategy to boost DC function and promote immunity against infectious and non-infectious diseases.


Subject(s)
Biomarkers, Tumor/genetics , Chlamydia Infections/immunology , Chlamydia trachomatis/immunology , DNA-Binding Proteins/genetics , Dendritic Cells/physiology , Genitalia/immunology , Phosphopyruvate Hydratase/genetics , Tumor Suppressor Proteins/genetics , Animals , Antigen Presentation , Biomarkers, Tumor/metabolism , Cell Membrane Permeability , Cells, Cultured , DNA-Binding Proteins/metabolism , Dendritic Cells/microbiology , Female , Genitalia/microbiology , Immunity, Innate , Interleukin-10/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Phosphopyruvate Hydratase/metabolism , Proteomics , Pyruvic Acid/metabolism , RNA, Small Interfering/genetics , Tumor Suppressor Proteins/metabolism , Up-Regulation
3.
Carcinogenesis ; 36(9): 1019-27, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26069256

ABSTRACT

To develop new and effective chemopreventive agents against bone metastasis, we assessed the effects of muscadine grape skin extract (MSKE), whose main bioactive component is anthocyanin, on bone turnover, using prostate and breast cancer cell models overexpressing Snail transcription factor. MSKE has been shown previously to promote apoptosis in prostate cancer cells without affecting normal prostate epithelial cells. Snail is overexpressed in prostate and breast cancer, and is associated with increased invasion, migration and bone turnover/osteoclastogenesis. Cathepsin L (CatL) is a cysteine cathepsin protease that is overexpressed in cancer and involved in bone turnover. Snail overexpression in prostate (LNCaP, ARCaP-E) and breast (MCF-7) cancer cells led to increased CatL expression/activity and phosphorylated STAT-3 (pSTAT-3), compared to Neo vector controls, while the reverse was observed in C4-2 (the aggressive subline of LNCaP) cells with Snail knockdown. Moreover, CatL expression was higher in prostate and breast tumor tissue compared to normal tissue. MSKE decreased Snail and pSTAT3 expression, and abrogated Snail-mediated CatL activity, migration and invasion. Additionally, Snail overexpression promoted osteoclastogenesis, which was significantly inhibited by the MSKE as effectively as Z-FY-CHO, a CatL-specific inhibitor, or osteoprotegerin, a receptor activator of nuclear factor kappa B ligand (RANKL) antagonist. Overall, these novel findings suggest that Snail regulation of CatL may occur via STAT-3 signaling and can be antagonized by MSKE, leading to decreased cell invasion, migration and bone turnover. Therefore, inhibition using a natural product such as MSKE could potentially be a promising bioactive compound for bone metastatic cancer.


Subject(s)
Anticarcinogenic Agents/pharmacology , Bone Neoplasms/prevention & control , Breast Neoplasms/pathology , Cathepsin L/antagonists & inhibitors , Plant Extracts/pharmacology , Prostatic Neoplasms/pathology , Transcription Factors/antagonists & inhibitors , Vitis/chemistry , Animals , Anticarcinogenic Agents/therapeutic use , Apoptosis/drug effects , Bone Neoplasms/secondary , Cathepsin L/biosynthesis , Cathepsin L/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Chemoprevention/methods , Female , Humans , MCF-7 Cells , Male , Mice , Mice, Nude , Neoplasm Invasiveness , Osteoclasts/cytology , Osteogenesis/drug effects , Osteoprotegerin/pharmacology , Plant Extracts/therapeutic use , RANK Ligand/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Snail Family Transcription Factors , Transcription Factors/biosynthesis
4.
Infect Immun ; 83(12): 4662-72, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26371131

ABSTRACT

Interleukin-10 (IL-10) has been implicated in susceptibility to genital chlamydial infection and the development of tubal pathologies. IL-10 limitation also resulted in the rapid elicitation of immune responses against Chlamydia, and decreased levels of IL-10 correlated with protective anti-Chlamydia immunity. To investigate the molecular basis for these effects, we compared the reproductive pathologies and fertility rates in Chlamydia-infected wild-type (WT) and IL-10-knockout (IL-10(-/-)) mice; we also analyzed the expression of the Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) superfamily, IL-1ß production, NLRP3 inflammasome assembly and activation, and the immunostimulatory capacity and apoptotic predilection of Chlamydia-exposed dendritic cells (DCs) from WT and IL-10(-/-) mice. Our results revealed that, in addition to the rapid clearance of infection, genitally infected IL-10(-/-) mice were protected from tubal pathologies and infertility, whereas WT (IL-10(+/+)) mice were not. Chlamydia-pulsed IL-10(-/-) DCs expressed larger numbers of TLR4/IL-1R molecules and had enhanced IL-1ß production. In addition, NLRP3 inflammasome assembly was suppressed in IL-10(-/-) DCs through the inhibition of the P2X purinoceptor 7 (P2X7) receptor (P2X7R), an ATP-gated ion channel, and a decrease in intracellular Ca(2+) levels, which inhibited DC apoptosis. Thus, the potent immunostimulatory capacity of IL-10-deficient DCs is due, at least in part, to the suppression of the intracellular inflammasome assembly, which prevents DC apoptosis, allowing efficient antigen presentation. The results indicate that IL-10 deficiency enables efficient antigen presentation by DCs for rapid and enhanced immune activation against Chlamydia, which results in rapid microbial clearance, which prevents tubal pathologies during infection. Our finding has important implications for the induction of protective immunity against Chlamydia and other infectious and noninfectious diseases by vaccines.


Subject(s)
Carrier Proteins/immunology , Chlamydia Infections/immunology , Chlamydia muridarum/immunology , Dendritic Cells/immunology , Fertility/immunology , Interleukin-10/immunology , Adoptive Transfer , Animals , Antigen Presentation , Apoptosis/immunology , Calcium/immunology , Calcium/metabolism , Carrier Proteins/genetics , Chlamydia Infections/genetics , Chlamydia Infections/microbiology , Chlamydia Infections/pathology , Chlamydia muridarum/pathogenicity , Dendritic Cells/microbiology , Dendritic Cells/transplantation , Female , Gene Expression Regulation , Host-Pathogen Interactions , Inflammasomes/genetics , Inflammasomes/immunology , Interleukin-10/deficiency , Interleukin-10/genetics , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Receptors, Interleukin-1 Type I/genetics , Receptors, Interleukin-1 Type I/immunology , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/immunology , Signal Transduction , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology
5.
BMC Cancer ; 12: 336, 2012 Aug 02.
Article in English | MEDLINE | ID: mdl-22857708

ABSTRACT

BACKGROUND: Maspin, a putative tumor suppressor that is down-regulated in breast and prostate cancer, has been associated with decreased cell motility. Snail transcription factor is a zinc finger protein that is increased in breast cancer and is associated with increased tumor motility and invasion by induction of epithelial-mesenchymal transition (EMT). We investigated the molecular mechanisms by which Snail increases tumor motility and invasion utilizing prostate cancer cells. METHODS: Expression levels were analyzed by RT-PCR and western blot analyses. Cell motility and invasion assays were performed, while Snail regulation and binding to maspin promoter was analyzed by luciferase reporter and chromatin immunoprecipitation (ChIP) assays. RESULTS: Snail protein expression was higher in different prostate cancer cells lines as compared to normal prostate epithelial cells, which correlated inversely with maspin expression. Snail overexpression in 22Rv1 prostate cancer cells inhibited maspin expression and led to increased migration and invasion. Knockdown of Snail in DU145 and C4-2 cancer cells resulted in up-regulation of maspin expression, concomitant with decreased migration. Transfection of Snail into 22Rv1 or LNCaP cells inhibited maspin promoter activity, while stable knockdown of Snail in C4-2 cells increased promoter activity. ChIP analysis showed that Snail is recruited to the maspin promoter in 22Rv1 cells. CONCLUSIONS: Overall, this is the first report showing that Snail can negatively regulate maspin expression by directly repressing maspin promoter activity, leading to increased cell migration and invasion. Therefore, therapeutic targeting of Snail may be useful to re-induce expression of maspin tumor suppressor and prevent prostate cancer tumor progression.


Subject(s)
Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Serpins/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Cell Line, Tumor , Cell Movement , Epithelial Cells/metabolism , Gene Expression , Gene Silencing , Humans , Male , Promoter Regions, Genetic , Snail Family Transcription Factors , Transcription Factors/genetics , Transcriptional Activation
6.
Prostate ; 70(9): 982-92, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20166136

ABSTRACT

BACKGROUND: Snail transcription factor induces epithelial-mesenchymal transition (EMT) via decreased cell adhesion-associated molecules like E-cadherin, and increased mesenchymal markers like vimentin. We previously established Snail-mediated EMT model utilizing androgen-dependent LNCaP cells. These cells express increased vimentin protein and relocalization of E-cadherin from the cell membrane to the cytosol. Interestingly, Snail transfection in LNCaP cells resulted in cells acquiring a neuroendocrine (NE)-like morphology with long neurite-like processes. METHODS: We tested for expression of NE markers neuron-specific enolase (NSE) and chromogranin A (CgA) by Western blot analysis, and performed proliferation assays to test for paracrine cell proliferation. RESULTS: LNCaP cells transfected with Snail displayed increase in the NE markers, NSE and CgA as well as translocation of androgen receptor (AR) to the nucleus. LNCaP C-33 cells that have been previously published as a neuroendocrine differentiation (NED) model exhibited increased expression levels of Snail protein as compared to LNCaP parental cells. Functionally, conditioned medium from the LNCaP-Snail transfected cells increased proliferation of parental LNCaP and PC-3 cells, which could be abrogated by NSE/CgA siRNA. Additionally, NED in LNCaP-C33 cells or that induced in parental LNCaP cells by serum starvation could be inhibited by knockdown of Snail with siRNA. CONCLUSION: Overall our data provide evidence that Snail transcription factor may promote tumor aggressiveness in the LNCaP cells through multiple processes; induction of EMT may be required to promote migration, while NED may promote tumor proliferation by a paracrine mechanism. Therefore, therapeutic targeting of Snail may prove beneficial in not only abrogating EMT but also NED.


Subject(s)
Cell Differentiation/physiology , Chromogranin A/metabolism , Phosphopyruvate Hydratase/metabolism , Prostate/metabolism , Transcription Factors/metabolism , Androgens/metabolism , Blotting, Western , Cell Line, Tumor , Cell Proliferation , Cells, Cultured , Chromogranin A/genetics , Fluorescent Antibody Technique , Humans , Male , Phosphopyruvate Hydratase/genetics , RNA, Small Interfering , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Snail Family Transcription Factors , Time Factors , Transcription Factors/genetics , Transfection
7.
PLoS One ; 12(12): e0188643, 2017.
Article in English | MEDLINE | ID: mdl-29216217

ABSTRACT

Chlamydia trachomatis is a bacterial agent that causes sexually transmitted infections worldwide. The regulatory functions of dendritic cells (DCs) play a major role in protective immunity against Chlamydia infections. Here, we investigated the role of ASC in DCs metabolism and the regulation of DCs activation and function during Chlamydia infection. Following Chlamydia stimulation, maturation and antigen presenting functions were impaired in ASC-/- DCs compared to wild type (WT) DCs, in addition, ASC deficiency induced a tolerant phenotype in Chlamydia stimulated DCs. Using real-time extracellular flux analysis, we showed that activation in Chlamydia stimulated WT DCs is associated with a metabolic change in which mitochondrial oxidative phosphorylation (OXPHOS) is inhibited and the cells become committed to utilizing glucose through aerobic glycolysis for differentiation and antigen presenting functions. However, in ASC-/- DCs Chlamydia-induced metabolic change was prevented and there was a significant effect on mitochondrial morphology. The mitochondria of Chlamydia stimulated ASC-/- DCs had disrupted cristae compared to the normal narrow pleomorphic cristae found in stimulated WT DCs. In conclusion, our results suggest that Chlamydia-mediated activation of DCs is associated with a metabolic transition in which OXPHOS is inhibited, thereby dedicating the DCs to aerobic glycolysis, while ASC deficiency disrupts DCs function by inhibiting the reprogramming of DCs metabolism within the mitochondria, from glycolysis to electron transport chain.


Subject(s)
Chlamydia Infections/immunology , Chlamydia trachomatis/pathogenicity , Dendritic Cells/immunology , Animals , Cytokines/metabolism , Dendritic Cells/metabolism , Female , Mice , Mice, Inbred C57BL , Oxidative Phosphorylation
8.
Cell Adh Migr ; 5(3): 249-57, 2011.
Article in English | MEDLINE | ID: mdl-21478672

ABSTRACT

Snail transcription factor induces epithelial-mesenchymal transition (EMT) in which the epithelial cells downregulate cell-cell adhesion genes such as E-Cadherin and upregulate mesenchymal genes such as vimentin, leading to increased invasion and migration. Very little is known about the role of Snail in cellular adhesion to the extracellular matrix. We hypothesized that Snail will lead to decreased cellular adhesion to fibronectin and collagen I matrix through integrin regulation, concomitant with increased cell migration. Androgen-independent C4-2 cells, an aggressive subline of androgen-dependent LNCaP cells, exhibited decreased cell adhesion and increased cell migration on fibronectin and collagen I as compared to LNCaP cells, which was reversed by Snail knock down in C4-2 cells. ARCaP and LNCaP prostate cancer cells stably transfected with Snail displayed decreased adhesion and increased cell migration on fibronectin and collagen I as compared to control Neo-transfected cells, which was reversed by Snail knockdown. Flow cytometry analysis revealed a decrease in a5, a2 and b1 integrin expression in ARCaP Snail-transfected cells that was reversed in Snail knock down cells. We also observed an increase in ERK phosphorylation in ARCaP Snail-transfected cells as compared to control ARCaP-Neo cells, and inhibition of the MAPK pathway with UO126 inhibitor in ARCaP Snail-transfected cells abrogated Snail-mediated decrease in cell adhesion and reinduced a5, a2 and b1 integrin expression. Collectively, these studies define a new role for Snail transcription factor in cell adhesion to the ECM, which may be mediated by MAPK signaling, and may be crucial for cell detachment and subsequent metastasis.


Subject(s)
Cell Adhesion/physiology , Integrins/metabolism , Mitogen-Activated Protein Kinases/metabolism , Prostatic Neoplasms/metabolism , Transcription Factors/metabolism , Cell Adhesion/genetics , Cell Line, Tumor , Extracellular Matrix , Flow Cytometry , Humans , Integrin alpha2/genetics , Integrin alpha2/metabolism , Integrin alpha5/genetics , Integrin alpha5/metabolism , Integrin beta1/genetics , Integrin beta1/metabolism , Integrins/genetics , Male , Mitogen-Activated Protein Kinases/genetics , Phosphorylation , Prostatic Neoplasms/genetics , Snail Family Transcription Factors , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL