Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Immunity ; 47(6): 1182-1196.e10, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29262351

ABSTRACT

CD4+ T cells are tightly regulated by microbiota in the intestine, but whether intestinal T cells interface with host-derived metabolites is less clear. Here, we show that CD4+ T effector (Teff) cells upregulated the xenobiotic transporter, Mdr1, in the ileum to maintain homeostasis in the presence of bile acids. Whereas wild-type Teff cells upregulated Mdr1 in the ileum, those lacking Mdr1 displayed mucosal dysfunction and induced Crohn's disease-like ileitis following transfer into Rag1-/- hosts. Mdr1 mitigated oxidative stress and enforced homeostasis in Teff cells exposed to conjugated bile acids (CBAs), a class of liver-derived emulsifying agents that actively circulate through the ileal mucosa. Blocking ileal CBA reabsorption in transferred Rag1-/- mice restored Mdr1-deficient Teff cell homeostasis and attenuated ileitis. Further, a subset of ileal Crohn's disease patients displayed MDR1 loss of function. Together, these results suggest that coordinated interaction between mucosal Teff cells and CBAs in the ileum regulate intestinal immune homeostasis.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/immunology , Bile Acids and Salts/immunology , CD4-Positive T-Lymphocytes/immunology , Crohn Disease/immunology , Ileitis/immunology , Intestinal Mucosa/immunology , ATP Binding Cassette Transporter, Subfamily B, Member 1/deficiency , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Acridines/pharmacology , Adult , Animals , Bile Acids and Salts/metabolism , Bile Acids and Salts/pharmacology , Biological Transport , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/pathology , Crohn Disease/genetics , Crohn Disease/pathology , Disease Models, Animal , Female , Gene Expression Regulation , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , Homeostasis/immunology , Humans , Ileitis/genetics , Ileitis/pathology , Ileum/immunology , Ileum/pathology , Immunity, Mucosal , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Oxidative Stress , Signal Transduction , Tetrahydroisoquinolines/pharmacology
3.
J Exp Med ; 211(1): 89-104, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24395888

ABSTRACT

IL-17A-expressing CD4(+) T cells (Th17 cells) are generally regarded as key effectors of autoimmune inflammation. However, not all Th17 cells are pro-inflammatory. Pathogenic Th17 cells that induce autoimmunity in mice are distinguished from nonpathogenic Th17 cells by a unique transcriptional signature, including high Il23r expression, and these cells require Il23r for their inflammatory function. In contrast, defining features of human pro-inflammatory Th17 cells are unknown. We show that pro-inflammatory human Th17 cells are restricted to a subset of CCR6(+)CXCR3(hi)CCR4(lo)CCR10(-)CD161(+) cells that transiently express c-Kit and stably express P-glycoprotein (P-gp)/multi-drug resistance type 1 (MDR1). In contrast to MDR1(-) Th1 or Th17 cells, MDR1(+) Th17 cells produce both Th17 (IL-17A, IL-17F, and IL-22) and Th1 (IFN-γ) cytokines upon TCR stimulation and do not express IL-10 or other anti-inflammatory molecules. These cells also display a transcriptional signature akin to pathogenic mouse Th17 cells and show heightened functional responses to IL-23 stimulation. In vivo, MDR1(+) Th17 cells are enriched and activated in the gut of Crohn's disease patients. Furthermore, MDR1(+) Th17 cells are refractory to several glucocorticoids used to treat clinical autoimmune disease. Thus, MDR1(+) Th17 cells may be important mediators of chronic inflammation, particularly in clinical settings of steroid resistant inflammatory disease.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Crohn Disease/metabolism , Gene Expression Regulation/immunology , Th17 Cells/drug effects , Th17 Cells/metabolism , ATP Binding Cassette Transporter, Subfamily B , Crohn Disease/immunology , Flow Cytometry , Glucocorticoids/pharmacology , Humans , Interferon-gamma/metabolism , Microarray Analysis , Th17 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL