Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Chemphyschem ; 25(4): e202300565, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38175858

ABSTRACT

Methionine side chains are flexible entities which play important roles in defining hydrophobic interfaces. We utilize deuterium static solid-state NMR to assess rotameric inter-conversions and other dynamic modes of the methionine in the context of a nine-residue random-coil peptide (RC9) with the low-complexity sequence GGKGMGFGL. The measurements in the temperature range of 313 to 161 K demonstrate that the rotameric interconversions in the hydrated solid powder state persist to temperatures below 200 K. Removal of solvation significantly reduces the rate of the rotameric motions. We employed 2 H NMR line shape analysis, longitudinal and rotation frame relaxation, and chemical exchange saturation transfer methods and found that the combination of multiple techniques creates a significantly more refined model in comparison with a single technique. Further, we compare the most essential features of the dynamics in RC9 to two different methionine-containing systems, characterized previously. Namely, the M35 of hydrated amyloid-ß1-40 in the three-fold symmetric polymorph as well as Fluorenylmethyloxycarbonyl (FMOC)-methionine amino acid with the bulky hydrophobic group. The comparison suggests that the driving force for the enhanced methionine side chain mobility in RC9 is the thermodynamic factor stemming from distributions of rotameric populations, rather than the increase in the rate constant.


Subject(s)
Amyloid beta-Peptides , Methionine , Temperature , Magnetic Resonance Spectroscopy , Amyloid beta-Peptides/chemistry , Racemethionine , Nuclear Magnetic Resonance, Biomolecular
2.
Biochemistry ; 57(11): 1690-1701, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29444403

ABSTRACT

Plants utilize multiple isoforms of villin, an F-actin regulating protein with an N-terminal gelsolin-like core and a distinct C-terminal headpiece domain. Unlike their vertebrate homologues, plant villins have a much longer linker polypeptide connecting the core and headpiece. Moreover, the linker-headpiece connection region in plant villins lacks sequence homology to the vertebrate villin sequences. It is unknown to what extent the plant villin headpiece structure and function resemble those of the well-studied vertebrate counterparts. Here we present the first solution NMR structure and backbone dynamics characterization of a headpiece from plants, villin isoform 4 from Arabidopsis thaliana. The villin 4 headpiece is a 63-residue domain (V4HP63) that adopts a typical headpiece fold with an aromatics core and a tryptophan-centered hydrophobic cap within its C-terminal subdomain. However, V4HP63 has a distinct N-terminal subdomain fold as well as a novel, high mobility loop due to the insertion of serine residue in the canonical sequence that follows the variable length loop in headpiece sequences. The domain binds actin filaments with micromolar affinity, like the vertebrate analogues. However, the V4HP63 surface charge pattern is novel and lacks certain features previously thought necessary for high-affinity F-actin binding. Utilizing the updated criteria for strong F-actin binding, we predict that the headpiece domains of all other villin isoforms in A. thaliana have high affinity for F-actin.


Subject(s)
Actins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/chemistry , Microfilament Proteins/metabolism , Protein Isoforms/metabolism , Amino Acid Sequence , Arabidopsis Proteins/chemistry , Biopolymers/chemistry , Biopolymers/metabolism , Chromatography, Gel , Microfilament Proteins/chemistry , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Isoforms/chemistry , Surface Properties
3.
J Biomol NMR ; 72(1-2): 39-54, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30121872

ABSTRACT

We investigated correlated µs-ms time scale motions of neighboring 13C'-15N and 13Cα-13Cß nuclei in both protonated and perdeuterated samples of GB3. The techniques employed, NMR relaxation due to cross-correlated chemical shift modulations, specifically target concerted changes in the isotropic chemical shifts of the two nuclei associated with spatial fluctuations. Field-dependence of the relaxation rates permits identification of the parameters defining the chemical exchange rate constant under the assumption of a two-site exchange. The time scale of motions falls into the intermediate to fast regime (with respect to the chemical shift time scale, 100-400 s-1 range) for the 13C'-15N pairs and into the slow to intermediate regime for the 13Cα-13Cß pairs (about 150 s-1). Comparison of the results obtained for protonated and deuterated GB3 suggests that deuteration has a tendency to reduce these slow scale correlated motions, especially for the 13Cα-13Cß pairs.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate/chemistry , Motion , Nuclear Magnetic Resonance, Biomolecular/methods , Carbon Isotopes , Chemistry Techniques, Analytical , Deuterium , Molecular Dynamics Simulation , Nitrogen Isotopes
4.
PLoS Comput Biol ; 11(6): e1004302, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26067675

ABSTRACT

The primary, secondary, and tertiary structures of spectrin are reasonably well defined, but the structural basis for the known dramatic molecular shape change, whereby the molecular length can increase three-fold, is not understood. In this study, we combine previously reported biochemical and high-resolution crystallographic data with structural mass spectroscopy and electron microscopic data to derive a detailed, experimentally-supported quaternary structure of the spectrin heterotetramer. In addition to explaining spectrin's physiological resting length of ~55-65 nm, our model provides a mechanism by which spectrin is able to undergo a seamless three-fold extension while remaining a linear filament, an experimentally observed property. According to the proposed model, spectrin's quaternary structure and mechanism of extension is similar to a Chinese Finger Trap: at shorter molecular lengths spectrin is a hollow cylinder that extends by increasing the pitch of each spectrin repeat, which decreases the internal diameter. We validated our model with electron microscopy, which demonstrated that, as predicted, spectrin is hollow at its biological resting length of ~55-65 nm. The model is further supported by zero-length chemical crosslink data indicative of an approximately 90 degree bend between adjacent spectrin repeats. The domain-domain interactions in our model are entirely consistent with those present in the prototypical linear antiparallel heterotetramer as well as recently reported inter-strand chemical crosslinks. The model is consistent with all known physical properties of spectrin, and upon full extension our Chinese Finger Trap Model reduces to the ~180-200 nm molecular model currently in common use.


Subject(s)
Spectrin/chemistry , Spectrin/ultrastructure , Crystallography, X-Ray , Humans , Models, Molecular , Protein Conformation
5.
J Biol Chem ; 289(13): 9000-12, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24515109

ABSTRACT

Apolipoprotein B (apoB) is the principal protein component of triacylglyceride (TAG)-rich lipoproteins, including chylomicrons and very low density lipoprotein, which is the precursor to LDL (the "bad cholesterol"). TAG-rich lipoprotein assembly is initiated by the N-terminal ßα1 superdomain of apoB, which co-translationally binds and remodels the luminal leaflet of the rough endoplasmic reticulum. The ßα1 superdomain contains four domains and is predicted to interact directly with lipids. Using drop tensiometry, we examined the interfacial properties of the α-helical and C-sheet domains and several subdomains to establish a detailed structure-function relationship at the lipid/water interface. The adsorption, stress response, exchangeability, and pressure (Π)-area relationship were studied at both triolein/water and triolein/1-palmitoyl, 2-oleoylphosphatidylcholine/water interfaces that mimic physiological environments. The α-helical domain spontaneously adsorbed to a triolein/water interface and formed a viscoelastic surface. It was anchored to the surface by helix 6, and the other helices were ejected and/or remodeled on the surface as a function of surface pressure. The C-sheet instead formed an elastic film on a triolein/water interface and was irreversibly anchored to the lipid surface, which is consistent with the behavior of amphipathic ß-strands. When both domains were adsorbed together on the surface, the C-sheet shielded a portion of the α-helical domain from the surface, which retained its globular structure. Overall, the unique secondary and tertiary structures of the N-terminal domains of apoB support the intrinsic capability of co-translational lipid recruitment. The evidence presented here allows the construction of a detailed model of the initiation of TAG-rich lipoprotein assembly.


Subject(s)
Apolipoproteins B/chemistry , Apolipoproteins B/metabolism , Triglycerides/metabolism , Amino Acid Sequence , Apolipoproteins B/biosynthesis , Humans , Models, Molecular , Molecular Sequence Data , Phosphatidylcholines/metabolism , Protein Biosynthesis , Protein Structure, Secondary , Protein Structure, Tertiary , Surface Properties , Triolein/metabolism , Water/metabolism
6.
Biochim Biophys Acta ; 1842(10): 1548-54, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25108285

ABSTRACT

OBJECTIVE: The microsomal triglyceride transfer protein (MTTP) plays a critical role in the formation of hepatic very low density lipoprotein. Abetalipoproteinemia (ABL) is a rare, naturally occurring extreme form of MTTP inhibition, which is characterized by the virtual absence of apolipoprotein (apo) B-containing lipoproteins in blood. The goal of this study was to examine the effect that four novel MTTP missense mutations had on protein interactions, expression and lipid-transfer activity, and to determine which mutations were responsible for the ABL phenotype observed in two patients. APPROACH AND RESULTS: In two patients with ABL, we identified in MTTP a novel frameshift mutation (K35Ffs*37), and four novel missense mutations, namely, G264R, Y528H, R540C, and N649S. When transiently expressed in COS-7 cells, all missense MTTP mutations interacted with apoB17, apoB48, and protein disulfide isomerase. Mutations Y528H and R540C, however, displayed negligible levels of MTTP activity and N649S displayed a partial reduction relative to the wild-type MTTP. In contrast, G264R retained full lipid-transfer activity. CONCLUSIONS: These studies indicate that missense mutations Y528H, R540C, and N649S appear to cause ABL by reducing MTTP activity rather than by reducing binding of MTTP with protein disulfide isomerase or apoB. The region of MTTP containing amino acids 528 and 540 constitutes a critical domain for its lipid-transfer activity.

7.
J Biol Chem ; 288(12): 8313-8320, 2013 Mar 22.
Article in English | MEDLINE | ID: mdl-23355471

ABSTRACT

Dematin (band 4.9) is an F-actin binding and bundling protein best known for its role within red blood cells, where it both stabilizes as well as attaches the spectrin/actin cytoskeleton to the erythrocytic membrane. Here, we investigate the structural consequences of phosphorylating serine 381, a covalent modification that turns off F-actin bundling activity. In contrast to the canonical doctrine, in which phosphorylation of an intrinsically disordered region/protein confers affinity for another domain/protein, we found the converse to be true of dematin: phosphorylation of the well folded C-terminal villin-type headpiece confers affinity for its intrinsically disordered N-terminal core domain. We employed analytical ultracentrifugation to demonstrate that dematin is monomeric, in contrast to the prevailing view that it is trimeric. Next, using a series of truncation mutants, we verified that dematin has two F-actin binding sites, one in the core domain and the other in the headpiece domain. Although the phosphorylation-mimicking mutant, S381E, was incapable of bundling microfilaments, it retains the ability to bind F-actin. We found that a phosphorylation-mimicking mutant, S381E, eliminated the ability to bundle, but not bind F-actin filaments. Lastly, we show that the S381E point mutant caused the headpiece domain to associate with the core domain, leading us to the mechanism for cAMP-dependent kinase control of dematin's F-actin bundling activity: when unphosphorylated, dematin's two F-actin binding domains move independent of one another permitting them to bind different F-actin filaments. Phosphorylation causes these two domains to associate, forming a compact structure, and sterically eliminating one of these F-actin binding sites.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/chemistry , Microfilament Proteins/chemistry , Actin Cytoskeleton/chemistry , Actins/chemistry , Allosteric Regulation , Amino Acid Substitution , Humans , Microfilament Proteins/genetics , Models, Molecular , Mutagenesis, Site-Directed , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Ultracentrifugation
8.
Purinergic Signal ; 10(4): 611-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25165006

ABSTRACT

Phosphohydrolysis of extracellular ATP and ADP is an essential step in purinergic signaling that regulates key pathophysiological processes, such as those linked to inflammation. Classically, this reaction has been known to occur in the pericellular milieu catalyzed by membrane bound cellular ecto-nucleotidases, which can be released in the form of both soluble ecto-enzymes as well as being associated with exosomes. Circulating ecto-nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1/CD39) and adenylate kinase 1 (AK1) activities have been shown to be present in plasma. However, other ecto-nucleotidases have not been characterized in depth. An in vitro ADPase assay was developed to probe the ecto-enzymes responsible for the ecto-nucleotidase activity in human platelet-free plasma, in combination with various specific biochemical inhibitors. Identities of ecto-nucleotidases were further characterized by chromatography, immunoblotting, and flow cytometry of circulating exosomes. We noted that microparticle-bound E-NTPDases and soluble AK1 constitute the highest levels of ecto-nucleotidase activity in human plasma. All four cell membrane expressed E-NTPDases are also found in circulating microparticles in human plasma, inclusive of: CD39, NTPDase 2 (CD39L1), NTPDase 3 (CD39L3), and NTPDase 8. CD39 family members and other ecto-nucleotidases are found on distinct microparticle populations. A significant proportion of the microparticle-associated ecto-nucleotidase activity is sensitive to POM6, inferring the presence of NTPDases, either -2 or/and -3. We have refined ADPase assays of human plasma from healthy volunteers and have found that CD39, NTPDases 2, 3, and 8 to be associated with circulating microparticles, whereas soluble AK1 is present in human plasma. These ecto-enzymes constitute the bulk circulating ADPase activity, suggesting a broader implication of CD39 family and other ecto-enzymes in the regulation of extracellular nucleotide metabolism.


Subject(s)
Antigens, CD/metabolism , Apyrase/metabolism , Cell-Derived Microparticles/enzymology , Adenosine Diphosphate/metabolism , Antigens, CD/analysis , Apyrase/analysis , Blotting, Western , Chromatography, Gel , Flow Cytometry , Humans
9.
Biochemistry ; 52(45): 7890-900, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-24070253

ABSTRACT

Villin is a gelsolin-like cytoskeleton regulator localized in the brush border at the apical end of epithelial cells. Villin regulates microvilli by bundling F-actin at low calcium levels and severing it at high calcium levels. The villin polypeptide consists of six gelsolin-like repeats (V1-V6) and the unique, actin binding C-terminal headpiece domain (HP). Villin modular fragment V6-HP requires calcium to stay monomeric and bundle F-actin. Our data show that isolated V6 is monomeric and does not bind F-actin at any level of calcium. We propose that the 40-residue unfolded V6-to-HP linker can be a key regulatory element in villin's functions such as its interactions with F-actin. Here we report a calcium-bound solution nuclear magnetic resonance (NMR) structure of V6, which has a gelsolin-like fold with the long α-helix in the extended conformation. Intrinsic tryptophan fluorescence quenching reveals two-Kd calcium binding in V6 (Kd1 of 22 µM and Kd2 of 2.8 mM). According to our NMR data, the conformation of V6 responds the most to micromolar calcium. We show that the long α-helix and the adjacent residues form the calcium-sensitive elements in V6. These observations are consistent with the calcium activation of F-actin severing by villin analogous to the gelsolin helix-straightening mechanism.


Subject(s)
Calcium/chemistry , Gelsolin/chemistry , Microfilament Proteins/chemistry , Actins/chemistry , Actins/metabolism , Chromatography, Gel , Gelsolin/metabolism , Genetic Vectors , Humans , Magnetic Resonance Spectroscopy , Microfilament Proteins/metabolism , Protein Binding
10.
Magnetochemistry ; 9(1)2023 Jan.
Article in English | MEDLINE | ID: mdl-36776538

ABSTRACT

Protein methyl groups can participate in multiple motional modes on different time scales. Sub-nanosecond to nano-second time scale motions of methyl axes are particularly challenging to detect for small proteins in solutions. In this work we employ NMR relaxation interference between the methyl H-H/H-C dipole-dipole interactions [Sun&Tugarinov, J. Magn. Reason. 2012] to characterize methyl axes motions as a function of temperature in a small model protein villin headpiece subdomain (HP36), in which all non-exchangeable protons are deuterated with the exception of methyl groups of leucine and valine residues. The data points to the existence of slow motional modes of methyl axes on sub-nanosecond to nanosecond time scales. Further, at high temperatures for which the overall tumbling of the protein is on the order of 2 ns, we observe a coupling between the slow internal motion and the overall molecular tumbling, based on the anomalous order parameters and their temperature-dependent trends. The addition of 28%(w/w) glycerol-d8 increases the viscosity of the solvent and separates the timescales of internal and overall tumbling, thus permitting for another view of the necessity of the coupling assumption for these sites at high temperatures.

11.
Biochemistry ; 50(18): 3706-12, 2011 May 10.
Article in English | MEDLINE | ID: mdl-21449557

ABSTRACT

Villin-type headpiece domains are ∼70 residue motifs that reside at the C-terminus of a variety of actin-associated proteins. Villin headpiece (HP67) is a commonly used model system for both experimental and computational studies of protein folding. HP67 is made up of two subdomains that form a tightly packed interface. The isolated C-terminal subdomain of HP67 (HP35) is one of the smallest autonomously folding proteins known. The N-terminal subdomain requires the presence of the C-terminal subdomain to fold. In the structure of HP67, a conserved salt bridge connects N- and C-terminal subdomains. This buried salt bridge between residues E39 and K70 is unusual in a small protein domain. We used mutational analysis, monitored by CD and NMR, and functional assays to determine the role of this buried salt bridge. First, the two residues in the salt bridge were replaced with strictly hydrophobic amino acids, E39M/K70M. Second, the two residues in the salt bridge were swapped, E39K/K70E. Any change from the wild-type salt bridge residues results in unfolding of the N-terminal subdomain, even when the mutations were made in a stabilized variant of HP67. The C-terminal subdomain remains folded in all mutants and is stabilized by some of the mutations. Using actin sedimentation assays, we find that a folded N-terminal domain is essential for specific actin binding. Therefore, the buried salt bridge is required for the specific folding of the N-terminal domain which confers actin-binding activity to villin-type headpiece domains, even though the residues required for this specific interaction destabilize the C-terminal subdomain.


Subject(s)
Actins/chemistry , Microfilament Proteins/chemistry , Animals , Chickens , Circular Dichroism , Cloning, Molecular , DNA Mutational Analysis , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy/methods , Protein Binding , Protein Conformation , Protein Denaturation , Protein Folding , Protein Structure, Tertiary , Salts/chemistry , Thermodynamics
13.
Biochemistry ; 49(18): 3898-907, 2010 May 11.
Article in English | MEDLINE | ID: mdl-20353182

ABSTRACT

The N-terminal sequence of apolipoprotein B (apoB) is critical in triacylglycerol-rich lipoprotein assembly. The first 17% of apoB (B17) is thought to consist of three domains: B5.9, a beta-barrel, B6.4-13, a series of 17 alpha-helices, and B13-17, a putative beta-sheet. B5.9 does not bind to lipid, while B6.4-13 and B13-17 contain hydrophobic interfaces that can interact with lipids. To understand how B6.4-13 and B13-17 might interact with triacylglycerol during lipoprotein assembly, the interfacial properties of both peptides were studied at the triolein/water interface. Both B6.4-13 and B13-17 are surface active. Once bound, the peptides can be neither exchanged nor pushed off the interface. Some residues of the peptides can be ejected from the interface upon compression but readsorb on expansion. B13-17 binds to the interface more strongly. The maximum pressure the peptide can withstand without being partially ejected (Pi(max)) is 19.2 mN/m for B13-17 compared to 16.7 mN/m for B6.4-13. B13-17 is purely elastic at the interface, while B6.4-13 forms a viscous-elastic film. When they are spread at an air/water interface, the limiting area and the collapse pressures are 16.6 A(2)/amino acid and 31 mN/m for B6.4-13 and 17.8 A(2)/amino acid and 35 mN/m for B13-17, respectively. The alpha-helical B6.4-13 contains some hydrophobic helices that stay bound and prevent the peptide from leaving the surface. The beta-sheets of B13-17 bind irreversibly to the surface. We suggest that during lipoprotein assembly, the N-terminal apoB starts recruiting lipid as early as B6.4, but additional sequences are essential for formation of a lipid pocket that can stabilize lipoprotein emulsion particles for secretion.


Subject(s)
Apolipoproteins B/chemistry , Egg Proteins/chemistry , Animals , Apolipoproteins B/genetics , Apolipoproteins B/metabolism , Binding Sites , Chickens , Egg Proteins/genetics , Humans , Kinetics , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Triglycerides/chemistry
14.
Anal Biochem ; 398(1): 117-9, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-19932072

ABSTRACT

F-actin binding constants are traditionally determined by centrifugal cosedimentation with actin microfilaments, where bound protein is separated from actin with SDS-PAGE and quantitated using densitometry. Here, we demonstrate that UV quantitation of reverse-phase HPLC-separated proteins provides increased accuracy and sensitivity, can be fully automated, and allows one to perform F-actin competition assays on similar sized proteins.


Subject(s)
Actins/antagonists & inhibitors , Chromatography, High Pressure Liquid/methods , Actins/metabolism , Binding Sites , Binding, Competitive , Microfilament Proteins/analysis , Spectrophotometry, Ultraviolet
15.
J Biomol NMR ; 43(1): 39-50, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19030997

ABSTRACT

Dematin is an actin-binding protein abundant in red blood cells and other tissues. It contains a villin-type 'headpiece' F-actin-binding domain at its extreme C-terminus. The isolated dematin headpiece domain (DHP) undergoes a significant conformational change upon phosphorylation. The mutation of Ser74 to Glu closely mimics the phosphorylation of DHP. We investigated motions in the backbone of DHP and its mutant DHPS74E using several complementary NMR relaxation techniques: laboratory frame (15)N NMR relaxation, which is sensitive primarily to the ps-ns time scale, cross-correlated chemical shift modulation NMR relaxation detecting correlated mus-ms time scale motions of neighboring (13)C' and (15)N nuclei, and cross-correlated relaxation of two (15)N-(1)H dipole-dipole interactions detecting slow motions of backbone NH vectors in successive amino acid residues. The results indicate a reduction in mobility upon the mutation in several regions of the protein. The additional salt bridge formed in DHPS74E that links the N- and C-terminal subdomains is likely to be responsible for these changes.


Subject(s)
Blood Proteins/chemistry , Blood Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Protein Structure, Tertiary , Algorithms , Amino Acid Substitution , Blood Proteins/genetics , Carbon Isotopes/chemistry , Humans , Microfilament Proteins , Models, Molecular , Nitrogen Isotopes/chemistry , Phosphoproteins/genetics , Phosphorylation , Protein Conformation
16.
Biophys J ; 95(12): 5941-50, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18820237

ABSTRACT

The villin headpiece subdomain (HP36) is a widely used system for protein-folding studies. Nuclear magnetic resonance cross-correlated relaxation rates arising from correlated fluctuations of two N-H(N) dipole-dipole interactions involving successive residues were measured at two temperatures at which HP36 is at least 99% folded. The experiment revealed the presence of motions slower than overall tumbling of the molecule. Based on the theoretical analysis of the spectral densities we show that the structural and dynamic contributions to the experimental cross-correlated relaxation rate can be separated under certain conditions. As a result, dynamic cross-correlated order parameters describing slow microsecond-to-millisecond motions of N-H bonds in neighboring residues can be introduced for any extent of correlations in the fluctuations of the two bond vectors. These dynamic cross-correlated order parameters have been extracted for HP36. The comparison of their values at two different temperatures indicates that when the temperature is raised, slow motions increase in amplitude. The increased amplitude of these fluctuations may reflect the presence of processes directly preceding the unfolding of the protein.


Subject(s)
Amides/chemistry , Chickens , Movement , Neurofilament Proteins/chemistry , Neurofilament Proteins/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Animals , Crystallography, X-Ray , Humans , Magnetic Resonance Spectroscopy , Reproducibility of Results , Temperature , Time Factors , Uncertainty
17.
Structure ; 14(2): 379-87, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16472756

ABSTRACT

Dematin is an actin binding protein from the junctional complex of the erythrocyte cytoskeleton. The protein has two actin binding sites and bundles actin filaments in vitro. This actin bundling activity is reversibly regulated by phosphorylation in the carboxyl terminal "headpiece" domain (DHP). DHP is a typical villin-type headpiece actin binding motif and contains a flexible N-terminal loop and an alpha-helical C-terminal subdomain that is phosphorylated at Ser74. The NMR structure of a Ser74-to-Glu mutant (DHPs74e) closely mimics the conformation of phosphorylated DHP. The negative charge at Ser74 does not alter the conformation of the C-terminal subdomain, but attracts the N-terminal loop toward the C terminus, changing the orientation of the N-terminal subdomain. NMR relaxation studies also indicate reduced mobility in the N-terminal loop in DHPs74e. Thus, phosphorylation in DHP serves as a switch controlling the conformational state of DHP and the actin bundling activity of dematin.


Subject(s)
Blood Proteins/chemistry , Microfilament Proteins/chemistry , Models, Molecular , Phosphoproteins/chemistry , Blood Proteins/genetics , Blood Proteins/metabolism , Humans , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Motion , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Protein Structure, Tertiary
18.
J Mol Biol ; 355(5): 1078-94, 2006 Feb 03.
Article in English | MEDLINE | ID: mdl-16332376

ABSTRACT

The contribution of interactions involving the imidazole ring of His41 to the pH-dependent stability of the villin headpiece (HP67) N-terminal subdomain has been investigated by nuclear magnetic resonance (NMR) spin relaxation. NMR-derived backbone N-H order parameters (S2) for wild-type (WT) HP67 and H41Y HP67 indicate that reduced conformational flexibility of the N-terminal subdomain in WT HP67 is due to intramolecular interactions with the His41 imidazole ring. These interactions, together with desolvation effects, contribute to significantly depress the pKa of the buried imidazole ring in the native state. 15N R1rho relaxation dispersion data indicate that WT HP67 populates a partially folded intermediate state that is 10.9 kJ mol(-1) higher in free energy than the native state under non-denaturing conditions at neutral pH. The partially folded intermediate is characterized as having an unfolded N-terminal subdomain while the C-terminal subdomain retains a native-like fold. Although the majority of the residues in the N-terminal subdomain sample a random-coil distribution of conformations, deviations of backbone amide 1H and 15N chemical shifts from canonical random-coil values for residues within 5A of the His41 imidazole ring indicate that a significant degree of residual structure is maintained in the partially folded ensemble. The pH-dependence of exchange broadening is consistent with a linear three-state exchange model whereby unfolding of the N-terminal subdomain is coupled to titration of His41 in the partially folded intermediate with a pKa,I=5.69+/-0.07. Although maintenance of residual interactions with the imidazole ring in the unfolded N-terminal subdomain appears to reduce pKa,I compared to model histidine compounds, protonation of His41 disrupts these interactions and reduces the difference in free energy between the native state and partially folded intermediate under acidic conditions. In addition, chemical shift changes for residues Lys70-Phe76 in the C-terminal subdomain suggest that the HP67 actin binding site is disrupted upon unfolding of the N-terminal subdomain, providing a potential mechanism for regulating the villin-dependent bundling of actin filaments.


Subject(s)
Histidine/chemistry , Microfilament Proteins/chemistry , Protein Folding , Protein Structure, Tertiary , Animals , Chickens , Hydrogen Bonding , Hydrogen-Ion Concentration , Imidazoles/chemistry , Microfilament Proteins/genetics , Models, Molecular , Point Mutation , Tyrosine/chemistry
19.
J Chromatogr A ; 1521: 44-52, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-28942999

ABSTRACT

Fusion protein systems are commonly used for expression of small proteins and peptides. An important criterion for a fusion protein system to be useful is the ability to separate the protein of interest from the tag. Additionally, because no protease cleaves fusion proteins with 100% efficiency, the ability to separate the desired peptide from any remaining uncleaved protein is also necessary. This is likely to be the more difficult task as at least a portion of the sequence of the fusion protein is identical to that of the protein of interest. When a high level of purity is required, gradient elution reversed-phase HPLC is frequently used as a final purification step. Shallow gradients are often advantageous for maximizing both the purity and yield of the final product; however, the relationship between relative retention times at shallow gradients and those at steeper gradients typically used for analytical HPLC are not always straightforward. In this work, we report reversed-phase HPLC results for the fusion protein system consisting of the N-terminal domain of ribosomal protein L9 (NTL9) and the 36-residue villin headpiece subdomain (HP36) linked by a recognition sequence for the protease factor Xa. This system represents an excellent example of the difficulties in purification that may arise from this unexpected elution behavior at shallow gradients. Additionally, we report on the sensitivity of this elution behavior to the concentration of the additive trifluoroacetic acid in the mobile phase and present optimized conditions for separating HP36 from the full fusion protein by reversed-phase HPLC using a shallow gradient. Finally, we suggest that these findings are relevant to the purification of other fusion protein systems, for which similar problems may arise, and support this suggestion using insights from the linear solvent strength model of gradient elution liquid chromatography.


Subject(s)
Chemistry Techniques, Analytical/methods , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Peptides/isolation & purification , Recombinant Fusion Proteins/isolation & purification , Models, Chemical , Peptides/analysis , Solvents/chemistry
20.
Protein Sci ; 25(2): 423-32, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26473993

ABSTRACT

The thermostable 36-residue subdomain of the villin headpiece (HP36) is the smallest known cooperatively folding protein. Although the folding and internal dynamics of HP36 and close variants have been extensively studied, there has not been a comprehensive investigation of side-chain motion in this protein. Here, the fast motion of methyl-bearing amino acid side chains is explored over a range of temperatures using site-resolved solution nuclear magnetic resonance deuterium relaxation. The squared generalized order parameters of methyl groups extensively spatially segregate according to motional classes. This has not been observed before in any protein studied using this methodology. The class segregation is preserved from 275 to 305 K. Motions detected in Helix 3 suggest a fast timescale of conformational heterogeneity that has not been previously observed but is consistent with a range of folding and dynamics studies. Finally, a comparison between the order parameters in solution with previous results based on solid-state nuclear magnetic resonance deuterium line shape analysis of HP36 in partially hydrated powders shows a clear disagreement for half of the sites. This result has significant implications for the interpretation of data derived from a variety of approaches that rely on partially hydrated protein samples.


Subject(s)
Microfilament Proteins/chemistry , Animals , Chickens , Molecular Dynamics Simulation , Motion , Protein Folding , Protein Stability , Protein Structure, Secondary , Protein Structure, Tertiary , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL