Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nucleic Acids Res ; 52(D1): D938-D949, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38000386

ABSTRACT

Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research. The Monarch App is an integrated platform combining data about genes, phenotypes, and diseases across species. Monarch's APIs enable access to carefully curated datasets and advanced analysis tools that support the understanding and diagnosis of disease for diverse applications such as variant prioritization, deep phenotyping, and patient profile-matching. We have migrated our system into a scalable, cloud-based infrastructure; simplified Monarch's data ingestion and knowledge graph integration systems; enhanced data mapping and integration standards; and developed a new user interface with novel search and graph navigation features. Furthermore, we advanced Monarch's analytic tools by developing a customized plugin for OpenAI's ChatGPT to increase the reliability of its responses about phenotypic data, allowing us to interrogate the knowledge in the Monarch graph using state-of-the-art Large Language Models. The resources of the Monarch Initiative can be found at monarchinitiative.org and its corresponding code repository at github.com/monarch-initiative/monarch-app.


Subject(s)
Databases, Factual , Disease , Genes , Phenotype , Humans , Internet , Databases, Factual/standards , Software , Genes/genetics , Disease/genetics
2.
Sensors (Basel) ; 24(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38203170

ABSTRACT

Respiratory viruses' detection is vitally important in coping with pandemics such as COVID-19. Conventional methods typically require laboratory-based, high-cost equipment. An emerging alternative method is Near-Infrared (NIR) spectroscopy, especially a portable one of the type that has the benefits of low cost, portability, rapidity, ease of use, and mass deployability in both clinical and field settings. One obstacle to its effective application lies in its common limitations, which include relatively low specificity and general quality. Characteristically, the spectra curves show an interweaving feature for the virus-present and virus-absent samples. This then provokes the idea of using machine learning methods to overcome the difficulty. While a subsequent obstacle coincides with the fact that a direct deployment of the machine learning approaches leads to inadequate accuracy of the modelling results. This paper presents a data-driven study on the detection of two common respiratory viruses, the respiratory syncytial virus (RSV) and the Sendai virus (SEV), using a portable NIR spectrometer supported by a machine learning solution enhanced by an algorithm of variable selection via the Variable Importance in Projection (VIP) scores and its Quantile value, along with variable truncation processing, to overcome the obstacles to a certain extent. We conducted extensive experiments with the aid of the specifically developed algorithm of variable selection, using a total of four datasets, achieving classification accuracy of: (1) 0.88, 0.94, and 0.93 for RSV, SEV, and RSV + SEV, respectively, averaged over multiple runs, for the neural network modelling of taking in turn 3 sessions of data for training and the remaining one session of an 'unknown' dataset for testing. (2) the average accuracy of 0.94 (RSV), 0.97 (SEV), and 0.97 (RSV + SEV) for model validation and 0.90 (RSV), 0.93 (SEV), and 0.91 (RSV + SEV) for model testing, using two of the datasets for model training, one for model validation and the other for model testing. These results demonstrate the feasibility of using portable NIR spectroscopy coupled with machine learning to detect respiratory viruses with good accuracy, and the approach could be a viable solution for population screening.


Subject(s)
COVID-19 , Viruses , Humans , Algorithms , COVID-19/diagnosis , Coping Skills , Machine Learning
3.
Microvasc Res ; 147: 104480, 2023 05.
Article in English | MEDLINE | ID: mdl-36690270

ABSTRACT

OBJECTIVE: Coronary microvascular dysfunction (CMD) is a cause of ischaemia with non-obstructive coronary arteries (INOCA). It is notoriously underdiagnosed due to the need for invasive microvascular function testing. We hypothesized that systemic microvascular dysfunction could be demonstrated non-invasively in the microcirculation of the bulbar conjunctiva in patients with CMD. METHODS: Patients undergoing coronary angiography for the investigation of chest pain or dyspnoea, with physiologically insignificant epicardial disease (fractional flow reserve ≥0.80) were recruited. All patients underwent invasive coronary microvascular function testing. We compared a cohort of patients with evidence of CMD (IMR ≥25 or CFR <2.0); to a group of controls (IMR <25 and CFR ≥2.0). Conjunctival imaging was performed using a previously validated combination of a smartphone and slit-lamp biomicroscope. This technique allows measurement of vessel diameter and other indices of microvascular function by tracking erythrocyte motion. RESULTS: A total of 111 patients were included (43 CMD and 68 controls). There were no differences in baseline demographics, co-morbidities or epicardial coronary disease severity. The mean number of vessel segments analysed per patient was 21.0 ± 12.8 (3.2 ± 3.5 arterioles and 14.8 ± 10.8 venules). In the CMD cohort, significant reductions were observed in axial/cross-sectional velocity, blood flow, wall shear rate and stress. CONCLUSION: The changes in microvascular function linked to CMD can be observed non-invasively in the bulbar conjunctiva. Conjunctival vascular imaging may have utility as a non-invasive tool to both diagnose CMD and augment conventional cardiovascular risk assessment.


Subject(s)
Coronary Artery Disease , Fractional Flow Reserve, Myocardial , Myocardial Ischemia , Humans , Cross-Sectional Studies , Prospective Studies , Hemodynamics , Coronary Angiography/methods , Coronary Vessels , Microcirculation , Conjunctiva , Coronary Circulation
4.
Microvasc Res ; 136: 104167, 2021 07.
Article in English | MEDLINE | ID: mdl-33838207

ABSTRACT

PURPOSE: Congenital heart disease (CHD) is the most common live birth defect and a proportion of these patients have chronic hypoxia. Chronic hypoxia leads to secondary erythrocytosis resulting in microvascular dysfunction and increased thrombosis risk. The conjunctival microcirculation is easily accessible for imaging and quantitative assessment. It has not previously been studied in adult CHD patients with cyanosis (CCHD). METHODS: We assessed the conjunctival microcirculation and compared CCHD patients and matched healthy controls to determine if there were differences in measured microcirculatory parameters. We acquired images using an iPhone 6s and slit-lamp biomicroscope. Parameters measured included diameter, axial velocity, wall shear rate and blood volume flow. The axial velocity was estimated by applying the 1D + T continuous wavelet transform (CWT). Results are for all vessels as they were not sub-classified into arterioles or venules. RESULTS: 11 CCHD patients and 14 healthy controls were recruited to the study. CCHD patients were markedly more hypoxic compared to the healthy controls (84% vs 98%, p = 0.001). A total of 736 vessels (292 vs 444) were suitable for analysis. Mean microvessel diameter (D) did not significantly differ between the CCHD patients and controls (20.4 ± 2.7 µm vs 20.2 ± 2.6 µm, p = 0.86). Axial velocity (Va) was lower in the CCHD patients (0.47 ± 0.06 mm/s vs 0.53 ± 0.05 mm/s, p = 0.03). Blood volume flow (Q) was lower for CCHD patients (121 ± 30pl/s vs 145 ± 50pl/s, p = 0.65) with the greatest differences observed in vessels >22 µm diameter (216 ± 121pl/s vs 258 ± 154pl/s, p = 0.001). Wall shear rate (WSR) was significantly lower for the CCHD group (153 ± 27 s-1 vs 174 ± 22 s-1, p = 0.04). CONCLUSIONS: This iPhone and slit-lamp combination assessment of conjunctival vessels found lower axial velocity, wall shear rate and in the largest vessel group, lower blood volume flow in chronically hypoxic patients with congenital heart disease. With further study this assessment method may have utility in the evaluation of patients with chronic hypoxia.


Subject(s)
Conjunctiva/blood supply , Cyanosis/diagnosis , Heart Defects, Congenital/diagnosis , Microcirculation , Slit Lamp Microscopy , Adult , Blood Flow Velocity , Case-Control Studies , Cyanosis/etiology , Cyanosis/physiopathology , Female , Heart Defects, Congenital/complications , Heart Defects, Congenital/physiopathology , Humans , Male , Middle Aged , Predictive Value of Tests , Regional Blood Flow , Slit Lamp , Slit Lamp Microscopy/instrumentation , Smartphone , Stress, Mechanical , Young Adult
5.
Microvasc Res ; 126: 103907, 2019 11.
Article in English | MEDLINE | ID: mdl-31330150

ABSTRACT

PURPOSE: The conjunctival microcirculation is a readily-accessible vascular bed for quantitative haemodynamic assessment and has been studied previously using a digital charge-coupled device (CCD). Smartphone video imaging of the conjunctiva, and haemodynamic parameter quantification, represents a novel approach. We report the feasibility of smartphone video acquisition and subsequent haemodynamic measure quantification via semi-automated means. METHODS: Using an Apple iPhone 6 s and a Topcon SL-D4 slit-lamp biomicroscope, we obtained videos of the conjunctival microcirculation in 4 fields of view per patient, for 17 low cardiovascular risk patients. After image registration and processing, we quantified the diameter, mean axial velocity, mean blood volume flow, and wall shear rate for each vessel studied. Vessels were grouped into quartiles based on their diameter i.e. group 1 (<11 µm), 2 (11-16 µm), 3 (16-22 µm) and 4 (>22 µm). RESULTS: From the 17 healthy controls (mean QRISK3 6.6%), we obtained quantifiable haemodynamics from 626 vessel segments. The mean diameter of microvessels, across all sites, was 21.1µm (range 5.8-58 µm). Mean axial velocity was 0.50mm/s (range 0.11-1mm/s) and there was a modestly positive correlation (r 0.322) seen with increasing diameter, best appreciated when comparing group 4 to the remaining groups (p < .0001). Blood volume flow (mean 145.61pl/s, range 7.05-1178.81pl/s) was strongly correlated with increasing diameter (r 0.943, p < .0001) and wall shear rate (mean 157.31 s-1, range 37.37-841.66 s-1) negatively correlated with increasing diameter (r - 0.703, p < .0001). CONCLUSIONS: We, for the first time, report the successful assessment and quantification of the conjunctival microcirculatory haemodynamics using a smartphone-based system.


Subject(s)
Cardiovascular Diseases/diagnosis , Conjunctiva/blood supply , Diagnostic Techniques, Ophthalmological/instrumentation , Hemodynamics , Microcirculation , Slit Lamp , Smartphone , Adult , Blood Flow Velocity , Cardiovascular Diseases/physiopathology , Case-Control Studies , Feasibility Studies , Female , Hemorheology , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Mobile Applications , Models, Cardiovascular , Predictive Value of Tests , Regional Blood Flow
6.
bioRxiv ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38915571

ABSTRACT

Background: Computational approaches to support rare disease diagnosis are challenging to build, requiring the integration of complex data types such as ontologies, gene-to-phenotype associations, and cross-species data into variant and gene prioritisation algorithms (VGPAs). However, the performance of VGPAs has been difficult to measure and is impacted by many factors, for example, ontology structure, annotation completeness or changes to the underlying algorithm. Assertions of the capabilities of VGPAs are often not reproducible, in part because there is no standardised, empirical framework and openly available patient data to assess the efficacy of VGPAs - ultimately hindering the development of effective prioritisation tools. Results: In this paper, we present our benchmarking tool, PhEval, which aims to provide a standardised and empirical framework to evaluate phenotype-driven VGPAs. The inclusion of standardised test corpora and test corpus generation tools in the PhEval suite of tools allows open benchmarking and comparison of methods on standardised data sets. Conclusions: PhEval and the standardised test corpora solve the issues of patient data availability and experimental tooling configuration when benchmarking and comparing rare disease VGPAs. By providing standardised data on patient cohorts from real-world case-reports and controlling the configuration of evaluated VGPAs, PhEval enables transparent, portable, comparable and reproducible benchmarking of VGPAs. As these tools are often a key component of many rare disease diagnostic pipelines, a thorough and standardised method of assessment is essential for improving patient diagnosis and care.

7.
bioRxiv ; 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39345458

ABSTRACT

Phenotypic data are critical for understanding biological mechanisms and consequences of genomic variation, and are pivotal for clinical use cases such as disease diagnostics and treatment development. For over a century, vast quantities of phenotype data have been collected in many different contexts covering a variety of organisms. The emerging field of phenomics focuses on integrating and interpreting these data to inform biological hypotheses. A major impediment in phenomics is the wide range of distinct and disconnected approaches to recording the observable characteristics of an organism. Phenotype data are collected and curated using free text, single terms or combinations of terms, using multiple vocabularies, terminologies, or ontologies. Integrating these heterogeneous and often siloed data enables the application of biological knowledge both within and across species. Existing integration efforts are typically limited to mappings between pairs of terminologies; a generic knowledge representation that captures the full range of cross-species phenomics data is much needed. We have developed the Unified Phenotype Ontology (uPheno) framework, a community effort to provide an integration layer over domain-specific phenotype ontologies, as a single, unified, logical representation. uPheno comprises (1) a system for consistent computational definition of phenotype terms using ontology design patterns, maintained as a community library; (2) a hierarchical vocabulary of species-neutral phenotype terms under which their species-specific counterparts are grouped; and (3) mapping tables between species-specific ontologies. This harmonized representation supports use cases such as cross-species integration of genotype-phenotype associations from different organisms and cross-species informed variant prioritization.

8.
Cardiovasc Revasc Med ; 50: 26-33, 2023 05.
Article in English | MEDLINE | ID: mdl-36707373

ABSTRACT

BACKGROUND: Atherosclerotic heart disease often remains asymptomatic until presentation with a major adverse cardiovascular event. Primary preventive therapies improve outcomes, but conventional screening often misattributes risk. Vascular imaging can be utilised to detect atherosclerosis, but often involves ionising radiation. The conjunctiva is a readily accessible vascular network allowing non-invasive hemodynamic evaluation. AIM: To compare conjunctival microcirculatory function in patients with and without obstructive coronary artery disease. METHODS: We compared the conjunctival microcirculation of myocardial infarction patients (MI-cohort) to controls with no obstructive coronary artery disease (NO-CAD cohort). Conjunctival imaging was performed using a smartphone and slit-lamp biomicroscope combination. Microvascular indices of axial (Va) and cross-sectional (Vcs) velocity; blood flow rate (Q); and wall shear rate (WSR) were compared in all conjunctival vessels between 5 and 45 µm in diameter. RESULTS: A total of 127 patients were recruited (66 MI vs 61 NO-CAD) and 3602 conjunctival vessels analysed (2414 MI vs 1188 NO-CAD). Mean Va, Vcs and Q were significantly lower in the MI vs NO-CAD cohort (Va 0.50 ± 0.17 mm/s vs 0.55 ± 0.15 mm/s, p < 0.001; Vcs 0.35 ± 0.12 mm/s vs 0.38 ± 0.10 mm/s, p < 0.001; Q 154 ± 116 pl/s vs 198 ± 130 pl/s, p < 0.001). To correct for differences in mean vessel diameter, WSR was compared in 10-36 µm vessels (3268/3602 vessels) and was lower in the MI-cohort (134 ± 64 s-1 vs 140 ± 63 s-1, p = 0.002). CONCLUSIONS: Conjunctival microcirculatory alterations can be observed in patients with obstructive coronary artery disease. The conjunctival microvasculature merits further evaluation in cardiovascular risk screening.


Subject(s)
Coronary Artery Disease , Humans , Coronary Artery Disease/diagnostic imaging , Blood Flow Velocity , Microcirculation/physiology , Cross-Sectional Studies , Conjunctiva/blood supply , Coronary Vessels/diagnostic imaging , Coronary Angiography
9.
ACS Omega ; 8(9): 8407-8414, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36910974

ABSTRACT

Sepsis is the body's response to an infection. Existing diagnostic testing equipment is not available in primary care settings and requires long waiting times. Lateral flow devices (LFDs) could be employed in point-of-care (POC) settings for sepsis detection; however, they currently lack the required sensitivity. Herein, LFDs are constructed using 150-310 nm sized selenium nanoparticles (SeNPs) and are compared to commercial 40 nm gold nanoparticles (AuNPs) for the detection of the sepsis biomarker interleukin-6 (IL-6). Both 310 and 150 nm SeNPs reported a lower limit of detection (LOD) than 40 nm AuNPs (0.1 ng/mL compared to 1 ng/mL), although at the cost of test line visual intensity. This is to our knowledge the first use of larger SeNPs (>100 nm) in LFDs and the first comparison of the effect of the size of SeNPs on assay sensitivity in this context. The results herein demonstrate that large SeNPs are viable alternatives to existing commercial labels, with the potential for higher sensitivity than standard 40 nm AuNPs.

10.
ACS Appl Mater Interfaces ; 14(27): 31109-31120, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35767835

ABSTRACT

Laser-induced graphene (LIG) on paper substrates is a desirable material for single-use point-of-care sensing with its high-quality electrical properties, low fabrication cost, and ease of disposal. While a prior study has shown how the repeated lasing of substrates enables the synthesis of high-quality porous graphitic films, however, the process-property correlation of lasing process on the surface microstructure and electrochemical behavior, including charge-transfer kinetics, is missing. The current study presents a systematic in-depth study on LIG synthesis to elucidate the complex relationship between the surface microstructure and the resulting electroanalytical properties. The observed improvements were then applied to develop high-quality LIG-based electrochemical biosensors for uric acid detection. We show that the optimal paper LIG produced via a dual pass (defocused followed by focused lasing) produces high-quality graphene in terms of crystallinity, sp2 content, and electrochemical surface area. The highest quality LIG electrodes achieved a high rate constant k0 of 1.5 × 10-2 cm s-1 and a significant reduction in charge-transfer resistance (818 Ω compared with 1320 Ω for a commercial glassy carbon electrode). By employing square wave anodic stripping voltammetry and chronoamperometry on a disposable two-electrode paper LIG-based device, the improved charge-transfer kinetics led to enhanced performance for sensing of uric acid with a sensitivity of 24.35 ± 1.55 µA µM-1 and a limit of detection of 41 nM. This study shows how high-quality, sensitive LIG electrodes can be integrated into electrochemical paper analytical devices.


Subject(s)
Biosensing Techniques , Graphite , Biosensing Techniques/methods , Electrochemical Techniques/methods , Graphite/chemistry , Lasers , Uric Acid
11.
Front Physiol ; 13: 760000, 2022.
Article in English | MEDLINE | ID: mdl-35399264

ABSTRACT

Introduction: Representation learning allows artificial intelligence (AI) models to learn useful features from large, unlabelled datasets. This can reduce the need for labelled data across a range of downstream tasks. It was hypothesised that wave segmentation would be a useful form of electrocardiogram (ECG) representation learning. In addition to reducing labelled data requirements, segmentation masks may provide a mechanism for explainable AI. This study details the development and evaluation of a Wave Segmentation Pretraining (WaSP) application. Materials and Methods: Pretraining: A non-AI-based ECG signal and image simulator was developed to generate ECGs and wave segmentation masks. U-Net models were trained to segment waves from synthetic ECGs. Dataset: The raw sample files from the PTB-XL dataset were downloaded. Each ECG was also plotted into an image. Fine-tuning and evaluation: A hold-out approach was used with a 60:20:20 training/validation/test set split. The encoder portions of the U-Net models were fine-tuned to classify PTB-XL ECGs for two tasks: sinus rhythm (SR) vs atrial fibrillation (AF), and myocardial infarction (MI) vs normal ECGs. The fine-tuning was repeated without pretraining. Results were compared. Explainable AI: an example pipeline combining AI-derived segmentation masks and a rule-based AF detector was developed and evaluated. Results: WaSP consistently improved model performance on downstream tasks for both ECG signals and images. The difference between non-pretrained models and models pretrained for wave segmentation was particularly marked for ECG image analysis. A selection of segmentation masks are shown. An AF detection algorithm comprising both AI and rule-based components performed less well than end-to-end AI models but its outputs are proposed to be highly explainable. An example output is shown. Conclusion: WaSP using synthetic data and labels allows AI models to learn useful features for downstream ECG analysis with real-world data. Segmentation masks provide an intermediate output that may facilitate confidence calibration in the context of end-to-end AI. It is possible to combine AI-derived segmentation masks and rule-based diagnostic classifiers for explainable ECG analysis.

12.
Micromachines (Basel) ; 13(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36296147

ABSTRACT

Personalised drug delivery systems with the ability to offer real-time imaging and control release are an advancement in diagnostic and therapeutic applications. This allows for a tailored drug dosage specific to the patient with a release profile that offers the optimum therapeutic effect. Coupling this application with medical imaging capabilities, real-time contrast can be viewed to display the interaction with the host. Current approaches towards such novelty produce a drug burst release profile and contrasting agents associated with side effects as a result of poor encapsulation of these components. In this study, a 3D-printed drug delivery matrix with real-time imaging is engineered. Polycaprolactone (PCL) forms the bulk structure and encapsulates tetracycline hydrochloride (TH), an antibiotic drug and Iron Oxide Nanoparticles (IONP, Fe3O4), a superparamagnetic contrasting agent. Hot melt extrusion (HME) coupled with fused deposition modelling (FDM) is utilised to promote the encapsulation of TH and IONP. The effect of additives on the formation of micropores (10-20 µm) on the 3D-printed surface was investigated. The high-resolution process demonstrated successful encapsulation of both bioactive and nano components to present promising applications in drug delivery systems, medical imaging and targeted therapy.

13.
Vaccine ; 40(18): 2535-2539, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35346536

ABSTRACT

BACKGROUND: This study evaluates spike protein IgG antibody response following Oxford-AstraZeneca COVID-19 vaccination using the AbC-19™ lateral flow device. METHODS: Plasma samples were collected from n = 111 individuals from Northern Ireland. The majority were >50 years old and/or clinically vulnerable. Samples were taken at five timepoints from pre-vaccination until 6-months post-first dose. RESULTS: 20.3% of participants had detectable IgG responses pre-vaccination, indicating prior COVID-19. Antibodies were detected in 86.9% of participants three weeks after the first vaccine dose, falling to 74.7% immediately prior to the second dose, and rising to 99% three weeks post-second vaccine. At 6-months post-first dose, this decreased to 90.5%. At all timepoints, previously infected participants had significantly higher antibody levels than those not previously infected. CONCLUSION: This study demonstrates that strong anti-spike protein antibody responses are evoked in almost all individuals that receive two doses of Oxford-AstraZeneca vaccine, and which largely persist beyond six months after first vaccination.


Subject(s)
Antibody Formation , COVID-19 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Middle Aged , Northern Ireland , SARS-CoV-2 , Vaccination
14.
Sci Rep ; 12(1): 6545, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35449196

ABSTRACT

Microvascular haemodynamic alterations are associated with coronary artery disease (CAD). The conjunctival microcirculation can easily be assessed non-invasively. However, the microcirculation of the conjunctiva has not been previously explored in clinical algorithms aimed at identifying patients with CAD. This case-control study involved 66 patients with post-myocardial infarction and 66 gender-matched healthy controls. Haemodynamic properties of the conjunctival microcirculation were assessed with a validated iPhone and slit lamp-based imaging tool. Haemodynamic properties were extracted with semi-automated software and compared between groups. Biomarkers implicated in the development of CAD were assessed in combination with conjunctival microcirculatory parameters. The conjunctival blood vessel parameters and biomarkers were used to derive an algorithm to aid in the screening of patients for CAD. Conjunctival blood velocity measured in combination with the blood biomarkers (N-terminal pro-brain natriuretic peptide and adiponectin) had an area under receiver operator characteristic curve (AUROC) of 0.967, sensitivity 93.0%, specificity 91.5% for CAD. This study demonstrated that the novel algorithm which included a combination of conjunctival blood vessel haemodynamic properties, and blood-based biomarkers could be used as a potential screening tool for CAD and should be validated for potential utility in asymptomatic individuals.


Subject(s)
Algorithms , Conjunctiva , Biomarkers , Blood Flow Velocity , Case-Control Studies , Conjunctiva/blood supply , Humans , Microcirculation
15.
Database (Oxford) ; 20222022 05 25.
Article in English | MEDLINE | ID: mdl-35616100

ABSTRACT

Despite progress in the development of standards for describing and exchanging scientific information, the lack of easy-to-use standards for mapping between different representations of the same or similar objects in different databases poses a major impediment to data integration and interoperability. Mappings often lack the metadata needed to be correctly interpreted and applied. For example, are two terms equivalent or merely related? Are they narrow or broad matches? Or are they associated in some other way? Such relationships between the mapped terms are often not documented, which leads to incorrect assumptions and makes them hard to use in scenarios that require a high degree of precision (such as diagnostics or risk prediction). Furthermore, the lack of descriptions of how mappings were done makes it hard to combine and reconcile mappings, particularly curated and automated ones. We have developed the Simple Standard for Sharing Ontological Mappings (SSSOM) which addresses these problems by: (i) Introducing a machine-readable and extensible vocabulary to describe metadata that makes imprecision, inaccuracy and incompleteness in mappings explicit. (ii) Defining an easy-to-use simple table-based format that can be integrated into existing data science pipelines without the need to parse or query ontologies, and that integrates seamlessly with Linked Data principles. (iii) Implementing open and community-driven collaborative workflows that are designed to evolve the standard continuously to address changing requirements and mapping practices. (iv) Providing reference tools and software libraries for working with the standard. In this paper, we present the SSSOM standard, describe several use cases in detail and survey some of the existing work on standardizing the exchange of mappings, with the goal of making mappings Findable, Accessible, Interoperable and Reusable (FAIR). The SSSOM specification can be found at http://w3id.org/sssom/spec. Database URL: http://w3id.org/sssom/spec.


Subject(s)
Metadata , Semantic Web , Data Management , Databases, Factual , Workflow
16.
Small ; 7(5): 688-93, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21302358

ABSTRACT

The surface morphology of bucky papers (BPs) made from single-walled carbon nanotubes (CNTs) is modified by plasma treatment resulting in the formation of vertical microstructures on the surface. The shapes of these structures are either pillarlike or conelike depending on whether the gas used during plasma treatment is Ar or CH(4) . A complex interplay between different factors, such as the electric field within the plasma sheath, polarization of the CNT, intertubular cohesive forces, and ion bombardment, result in the formation of these structures. The roles played by these factors are quantitatively and qualitatively analyzed. The final material is flexible, substrate-free, composite-free, made only of CNTs, and has discrete vertically aligned structures on its surface. It shows enhanced field emission and electrochemical charge-storage capabilities. The field enhancement factor is increased by 6.8 times, and the turn-on field drops by 3.5 times from an initial value of 0.35 to 0.1 V µm(-1) as a result of the treatment. The increase in Brunauer-Emmett-Teller surface area results in about a fourfold improvement in the specific capacitance of the BP electrodes. Capacitance values before and after the treatments are 75 and 290 F g(-1) , respectively. It is predicted that this controlled surface modification technique could be put to good use in several applications based on macroscopic CNT films.


Subject(s)
Nanotechnology/methods , Nanotubes, Carbon/chemistry , Electrodes , Microscopy, Electron, Scanning , Surface Properties
17.
ACS Synth Biol ; 10(8): 2111-2115, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34324811

ABSTRACT

VisBOL is a web-based visualization tool used to depict genetic circuit designs. This tool depicts simple DNA circuits adequately, but it has become increasingly outdated as new versions of SBOL Visual were released. This paper introduces VisBOL2, a heavily redesigned version of VisBOL that makes a number of improvements to the original VisBOL, including proper functional interaction rendering, dynamic viewing, a more maintainable code base, and modularity that facilitates compatibility with other software tools. This modularity is demonstrated by incorporating VisBOL2 into a sequence visualization plugin for SynBioHub.


Subject(s)
Gene Regulatory Networks , Models, Genetic , Software , Synthetic Biology
18.
Sci Rep ; 11(1): 10218, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33986311

ABSTRACT

This paper presents the results of a study on developing an effective technique to increase the performance characteristics of antenna arrays for sub-THz integrated circuit applications. This is essential to compensate the limited power available from sub-THz sources. Although conventional array structures can provide a solution to enhance the radiation-gain performance however in the case of small-sized array structures the radiation properties can be adversely affected by mutual coupling that exists between the radiating elements. It is demonstrated here the effectiveness of using SIW technology to suppress surface wave propagations and near field mutual coupling effects. Prototype of 2 × 3 antenna arrays were designed and constructed on a polyimide dielectric substrate with thickness of 125 µm for operation across 0.19-0.20 THz. The dimensions of the array were 20 × 13.5 × 0.125 mm3. Metallization of the antenna was coated with 500 nm layer of Graphene. With the proposed technique the isolation between the radiating elements was improved on average by 22.5 dB compared to a reference array antenna with no SIW isolation. The performance of the array was enhanced by transforming the patch to exhibit metamaterial characteristics. This was achieved by embedding the patch antennas in the array with sub-wavelength slots. Compared to the reference array the metamaterial inspired structure exhibits improvement in isolation, radiation gain and efficiency on average by 28 dB, 6.3 dBi, and 34%, respectively. These results show the viability of proposed approach in developing antenna arrays for application in sub-THz integrated circuits.

19.
Sci Rep ; 11(1): 7660, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33828174

ABSTRACT

Microcirculatory dysfunction occurs early in cardiovascular disease (CVD) development. Acute myocardial infarction (MI) is a late consequence of CVD. The conjunctival microcirculation is readily-accessible for quantitative assessment and has not previously been studied in MI patients. We compared the conjunctival microcirculation of acute MI patients and age/sex-matched healthy controls to determine if there were differences in microcirculatory parameters. We acquired images using an iPhone 6s and slit-lamp biomicroscope. Parameters measured included diameter, axial velocity, wall shear rate and blood volume flow. Results are for all vessels as they were not sub-classified into arterioles or venules. The conjunctival microcirculation was assessed in 56 controls and 59 inpatients with a presenting diagnosis of MI. Mean vessel diameter for the controls was 21.41 ± 7.57 µm compared to 22.32 ± 7.66 µm for the MI patients (p < 0.001). Axial velocity for the controls was 0.53 ± 0.15 mm/s compared to 0.49 ± 0.17 mm/s for the MI patients (p < 0.001). Wall shear rate was higher for controls than MI patients (162 ± 93 s-1 vs 145 ± 88 s-1, p < 0.001). Blood volume flow did not differ significantly for the controls and MI patients (153 ± 124 pl/s vs 154 ± 125 pl/s, p = 0.84). This pilot iPhone and slit-lamp assessment of the conjunctival microcirculation found lower axial velocity and wall shear rate in patients with acute MI. Further study is required to correlate these findings further and assess long-term outcomes in this patient group with a severe CVD phenotype.


Subject(s)
Conjunctiva/blood supply , Microcirculation , Non-ST Elevated Myocardial Infarction/physiopathology , ST Elevation Myocardial Infarction/physiopathology , Adult , Aged , Case-Control Studies , Female , Humans , Male , Middle Aged , Prospective Studies
20.
BMJ Open ; 11(6): e048142, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34187827

ABSTRACT

OBJECTIVE: To evaluate the dynamics and longevity of the humoral immune response to SARS-CoV-2 infection and assess the performance of professional use of the UK-RTC AbC-19 Rapid Test lateral flow immunoassay (LFIA) for the target condition of SARS-CoV-2 spike protein IgG antibodies. DESIGN: Nationwide serological study. SETTING: Northern Ireland, UK, May 2020-February 2021. PARTICIPANTS: Plasma samples were collected from a diverse cohort of individuals from the general public (n=279), Northern Ireland healthcare workers (n=195), pre-pandemic blood donations and research studies (n=223) and through a convalescent plasma programme (n=183). Plasma donors (n=101) were followed with sequential samples over 11 months post-symptom onset. MAIN OUTCOME MEASURES: SARS-CoV-2 antibody levels in plasma samples using Roche Elecsys Anti-SARS-CoV-2 IgG/IgA/IgM, Abbott SARS-CoV-2 IgG and EuroImmun IgG SARS-CoV-2 ELISA immunoassays over time. UK-RTC AbC-19 LFIA sensitivity and specificity, estimated using a three-reference standard system to establish a characterised panel of 330 positive and 488 negative SARS-CoV-2 IgG samples. RESULTS: We detected persistence of SARS-CoV-2 IgG antibodies for up to 10 months post-infection, across a minimum of two laboratory immunoassays. On the known positive cohort, the UK-RTC AbC-19 LFIA showed a sensitivity of 97.58% (95.28% to 98.95%) and on known negatives, showed specificity of 99.59% (98.53 % to 99.95%). CONCLUSIONS: Through comprehensive analysis of a cohort of pre-pandemic and pandemic individuals, we show detectable levels of IgG antibodies, lasting over 46 weeks when assessed by EuroImmun ELISA, providing insight to antibody levels at later time points post-infection. We show good laboratory validation performance metrics for the AbC-19 rapid test for SARS-CoV-2 spike protein IgG antibody detection in a laboratory-based setting.


Subject(s)
COVID-19 , Immunoglobulin G , Antibodies, Viral , Antibody Formation , COVID-19/therapy , Cross-Sectional Studies , Humans , Immunization, Passive , Immunoassay , Northern Ireland/epidemiology , SARS-CoV-2 , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL