Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters

Publication year range
1.
EMBO J ; 40(12): e107346, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33934394

ABSTRACT

Mutations in the shelterin protein POT1 are associated with chronic lymphocytic leukemia (CLL), Hodgkin lymphoma, angiosarcoma, melanoma, and other cancers. These cancer-associated POT1 (caPOT1) mutations are generally heterozygous, missense, or nonsense mutations occurring throughout the POT1 reading frame. Cancers with caPOT1 mutations have elongated telomeres and show increased genomic instability, but which of the two phenotypes promotes tumorigenesis is unclear. We tested the effects of CAS9-engineered caPOT1 mutations in human embryonic and hematopoietic stem cells (hESCs and HSCs, respectively). HSCs with caPOT1 mutations did not show overt telomere damage. In vitro and in vivo competition experiments showed the caPOT1 mutations did not confer a selective disadvantage. Since DNA damage signaling is known to affect the fitness of HSCs, the data argue that caPOT1 mutations do not cause significant telomere damage. Furthermore, hESC lines with caPOT1 mutations showed no detectable telomere damage response while showing consistent telomere elongation. Thus, caPOT1 mutations are likely selected for during cancer progression because of their ability to elongate telomeres and extend the proliferative capacity of the incipient cancer cells.


Subject(s)
Neoplasms/genetics , Telomere-Binding Proteins/genetics , Telomere , Animals , DNA Damage , Female , Humans , K562 Cells , Male , Mice , Mutation , Shelterin Complex , Stem Cells
2.
Blood ; 141(11): 1293-1307, 2023 03 16.
Article in English | MEDLINE | ID: mdl-35977101

ABSTRACT

Familial aggregation of Hodgkin lymphoma (HL) has been demonstrated in large population studies, pointing to genetic predisposition to this hematological malignancy. To understand the genetic variants associated with the development of HL, we performed whole genome sequencing on 234 individuals with and without HL from 36 pedigrees that had 2 or more first-degree relatives with HL. Our pedigree selection criteria also required at least 1 affected individual aged <21 years, with the median age at diagnosis of 21.98 years (3-55 years). Family-based segregation analysis was performed for the identification of coding and noncoding variants using linkage and filtering approaches. Using our tiered variant prioritization algorithm, we identified 44 HL-risk variants in 28 pedigrees, of which 33 are coding and 11 are noncoding. The top 4 recurrent risk variants are a coding variant in KDR (rs56302315), a 5' untranslated region variant in KLHDC8B (rs387906223), a noncoding variant in an intron of PAX5 (rs147081110), and another noncoding variant in an intron of GATA3 (rs3824666). A newly identified splice variant in KDR (c.3849-2A>C) was observed for 1 pedigree, and high-confidence stop-gain variants affecting IRF7 (p.W238∗) and EEF2KMT (p.K116∗) were also observed. Multiple truncating variants in POLR1E were found in 3 independent pedigrees as well. Whereas KDR and KLHDC8B have previously been reported, PAX5, GATA3, IRF7, EEF2KMT, and POLR1E represent novel observations. Although there may be environmental factors influencing lymphomagenesis, we observed segregation of candidate germline variants likely to predispose HL in most of the pedigrees studied.


Subject(s)
Hodgkin Disease , Humans , Young Adult , Adult , Hodgkin Disease/genetics , Genetic Predisposition to Disease , Germ-Line Mutation , Codon, Nonsense , Whole Genome Sequencing , Pedigree , Cell Cycle Proteins/genetics
3.
Blood ; 137(15): 2046-2056, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33512457

ABSTRACT

Chronic lymphocytic lymphoma (CLL) has one of the highest familial risks among cancers. Monoclonal B-cell lymphocytosis (MBL), the precursor to CLL, has a higher prevalence (13%-18%) in families with 2 or more members with CLL compared with the general population (5%-12%). Although, the rate of progression to CLL for high-count MBLs (clonal B-cell count ≥500/µL) is ∼1% to 5%/y, no low-count MBLs have been reported to progress to date. We report the incidence and natural history of MBL in relatives from CLL families. In 310 CLL families, we screened 1045 relatives for MBL using highly sensitive flow cytometry and prospectively followed 449 of them. MBL incidence was directly age- and sex-adjusted to the 2010 US population. CLL cumulative incidence was estimated using Kaplan-Meier survival curves. At baseline, the prevalence of MBL was 22% (235/1045 relatives). After a median follow-up of 8.1 years among 449 relatives, 12 individuals progressed to CLL with a 5-year cumulative incidence of 1.8%. When considering just the 139 relatives with low-count MBL, the 5-year cumulative incidence increased to 5.7%. Finally, 264 had no MBL at baseline, of whom 60 individuals subsequently developed MBL (2 high-count and 58 low-count MBLs) with an age- and sex-adjusted incidence of 3.5% after a median of 6 years of follow-up. In a screening cohort of relatives from CLL families, we reported progression from normal-count to low-count MBL to high-count MBL to CLL, demonstrating that low-count MBL precedes progression to CLL. We estimated a 1.1% annual rate of progression from low-count MBL, which is in excess of that in the general population.


Subject(s)
B-Lymphocytes/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/etiology , Lymphocytosis/complications , Adult , Aged , Aged, 80 and over , Disease Progression , Female , Humans , Incidence , Kaplan-Meier Estimate , Lymphocytosis/diagnosis , Lymphocytosis/etiology , Lymphocytosis/pathology , Male , Middle Aged , Pedigree
4.
J Med Genet ; 59(4): 346-350, 2022 04.
Article in English | MEDLINE | ID: mdl-33782093

ABSTRACT

DICER1 syndrome is a rare paediatric autosomal dominant inherited disorder predisposing to various benign and malignant tumours. It is caused by a germline pathogenic variant in DICER1, and the second hit for tumour development is usually a missense hotspot pathogenic variant in the DICER1 ribonuclease IIIb domain. While DICER1 predisposing variants account for about 60% of ovarian Sertoli-Leydig cell tumours, no DICER1-related testicular stromal tumours have been described. Here we report the first two cases of testicular stromal tumours in children carrying a DICER1 germline pathogenic variant: a case of Sertoli cell tumour and a case of Leydig cell tumour diagnosed at 2 and 12 years of age, respectively. A somatic DICER1 hotspot pathogenic variant was detected in the Sertoli cell tumour. This report extends the spectrum of DICER1-related tumours to include testicular Sertoli cell tumour and potentially testicular Leydig cell tumour. Diagnosis of a testicular Sertoli cell tumour should prompt DICER1 genetic testing so that patients with a DICER1 germline pathogenic variant can benefit from established surveillance guidelines. DICER1 genetic evaluation may be considered for testicular Leydig cell tumour. Our findings suggest that miRNA dysregulation underlies the aetiology of some testicular stromal tumours.


Subject(s)
Leydig Cell Tumor , Neoplastic Syndromes, Hereditary , Ovarian Neoplasms , Sertoli Cell Tumor , Sertoli-Leydig Cell Tumor , Testicular Neoplasms , Child , DEAD-box RNA Helicases/genetics , Female , Humans , Leydig Cell Tumor/diagnosis , Leydig Cell Tumor/genetics , Male , Ovarian Neoplasms/genetics , Ribonuclease III/genetics , Sertoli Cell Tumor/genetics , Sertoli-Leydig Cell Tumor/genetics , Sertoli-Leydig Cell Tumor/pathology , Testicular Neoplasms/genetics
5.
Br J Haematol ; 181(5): 604-613, 2018 06.
Article in English | MEDLINE | ID: mdl-29687880

ABSTRACT

Recurrent large-scale somatic copy number alterations (SCNAs), and somatic point mutations can be analysed to stratify patients with chronic lymphocytic leukaemia (CLL) into distinct prognostic groups. To investigate the relationship between SCNAs and somatic mutations, we performed whole-exome sequencing and single nucleotide polymorphism microarray analyses on 98 CLL patients from 40 families with a high burden of CLL. Overall, 69 somatic mutations in 29 CLL driver genes were detected among 45 subjects (46%), with the most frequently mutated genes being TP53 (8·2%), NOTCH1 (8·2%) and ATM (5·1%). Additionally, 142 SCNAs from 54 subjects (57%) were detected, including losses of chromosome 13q14 (28·9%), 11q (5·6%), 17p (2·1%), and gain of chromosome 12 (4·2%). We found that patients having both an adverse point mutation in a CLL driver gene and an unfavourable SCNA tended to have poorer survival (Hazard ratio [HR] = 3·17, 95% confidence interval [CI] = 0·97-10·35; P = 0·056) than patients having either a point mutation (HR = 1·34, 95%CI = 0·66-2·71; P = 0·42) or SCNAs (HR = 2·65, 95%CI = 0·77-9·13; P = 0·12). TP53 mutation carriers were associated with the poorest overall survival (HR = 4·39, 95%CI = 1·28-15·04; P = 0·018). Our study suggests that combining SCNA and mutational data could contribute to predicting outcome in familial CLL.


Subject(s)
Chromosomes, Human/genetics , DNA Copy Number Variations , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Neoplasm Proteins/genetics , Point Mutation , Disease-Free Survival , Female , Humans , Male , Survival Rate
6.
Br J Haematol ; 181(3): 372-377, 2018 05.
Article in English | MEDLINE | ID: mdl-29693246

ABSTRACT

In a previous whole exome sequencing of patients from 41 families with Hodgkin lymphoma, we identified two families with distinct heterozygous rare coding variants in POT1 (D224N and Y36H), both in a highly conserved region of the gene. POT1 D224N mutant did not bind to a single-stranded telomere oligonucleotide in vitro suggesting the mutation perturbs POT1's ability to bind to the telomeric G-rich overhang. Human HT1080 cells expressing POT1 D224N and lymphoblastoid cells carrying Y36H both showed increased telomere length and fragility in comparison to wild type cells. This strongly suggests that mutant POT1 causes chromosome instability and may play a role in lymphomagenesis in these families.


Subject(s)
Chromosomal Instability , Family , Germ-Line Mutation , Hodgkin Disease , Mutation, Missense , Telomere-Binding Proteins , Amino Acid Substitution , Cell Line, Tumor , Female , Hodgkin Disease/genetics , Hodgkin Disease/metabolism , Hodgkin Disease/pathology , Humans , Male , Shelterin Complex , Telomere/genetics , Telomere/metabolism , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism
7.
Haematologica ; 101(7): 853-60, 2016 07.
Article in English | MEDLINE | ID: mdl-27365461

ABSTRACT

Hodgkin lymphoma shows strong familial aggregation but no major susceptibility genes have been identified to date. The goal of this study was to identify high-penetrance variants using whole exome sequencing in 17 Hodgkin lymphoma prone families with three or more affected cases or obligate carriers (69 individuals), followed by targeted sequencing in an additional 48 smaller HL families (80 individuals). Alignment and variant calling were performed using standard methods. Dominantly segregating, rare, coding or potentially functional variants were further prioritized based on predicted deleteriousness, conservation, and potential importance in lymphoid malignancy pathways. We selected 23 genes for targeted sequencing. Only the p.A1065T variant in KDR (kinase insert domain receptor) also known as VEGFR2 (vascular endothelial growth factor receptor 2) was replicated in two independent Hodgkin lymphoma families. KDR is a type III receptor tyrosine kinase, the main mediator of vascular endothelial growth factor induced proliferation, survival, and migration. Its activity is associated with several diseases including lymphoma. Functional experiments have shown that p.A1065T, located in the activation loop, can promote constitutive autophosphorylation on tyrosine in the absence of vascular endothelial growth factor and that the kinase activity was abrogated after exposure to kinase inhibitors. A few other promising mutations were identified but appear to be "private". In conclusion, in the largest sequenced cohort of Hodgkin lymphoma families to date, we identified a causal mutation in the KDR gene. While independent validation is needed, this mutation may increase downstream tumor cell proliferation activity and might be a candidate for targeted therapy.


Subject(s)
Exome , Genetic Association Studies , Genetic Predisposition to Disease , Hodgkin Disease/genetics , Mutation , Vascular Endothelial Growth Factor Receptor-2/genetics , Adult , Computational Biology/methods , Family , Female , High-Throughput Nucleotide Sequencing , Hodgkin Disease/diagnosis , Humans , Male , Middle Aged , Models, Molecular , Molecular Sequence Annotation , Pedigree , Protein Conformation , Vascular Endothelial Growth Factor Receptor-2/chemistry , Young Adult
8.
Haematologica ; 101(7): 846-52, 2016 07.
Article in English | MEDLINE | ID: mdl-26721895

ABSTRACT

Familial acute myeloid leukemia is rare and linked to germline mutations in RUNX1, GATA2 or CCAAT/enhancer binding protein-α (CEBPA). We re-evaluated a large family with acute myeloid leukemia originally seen at NIH in 1969. We used whole exome sequencing to study this family, and conducted in silico bioinformatics analysis, protein structural modeling and laboratory experiments to assess the impact of the identified CEBPA Q311P mutation. Unlike most previously identified germline mutations in CEBPA, which were N-terminal frameshift mutations, we identified a novel Q311P variant that was located in the C-terminal bZip domain of C/EBPα. Protein structural modeling suggested that the Q311P mutation alters the ability of the CEBPA dimer to bind DNA. Electrophoretic mobility shift assays showed that the Q311P mu-tant had attenuated binding to DNA, as predicted by the protein modeling. Consistent with these findings, we found that the Q311P mutation has reduced transactivation, consistent with a loss-of-function mutation. From 45 years of follow up, we observed incomplete penetrance (46%) of CEBPA Q311P. This study of a large multi-generational pedigree reveals that a germline mutation in the C-terminal bZip domain can alter the ability of C/EBP-α to bind DNA and reduces transactivation, leading to acute myeloid leukemia.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha/genetics , Exome , Germ-Line Mutation , Leukemia, Myeloid, Acute/genetics , Protein Interaction Domains and Motifs , Adolescent , Adult , Alleles , CCAAT-Enhancer-Binding Protein-alpha/chemistry , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Child , Child, Preschool , Family , Female , Follow-Up Studies , Gene Expression Regulation, Leukemic , Genotype , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myeloid, Acute/diagnosis , Male , Middle Aged , Models, Molecular , Pedigree , Protein Conformation , Protein Multimerization , Young Adult
9.
Hum Genet ; 134(7): 775-87, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25939664

ABSTRACT

Juvenile myelomonocytic leukemia (JMML) is a pediatric myeloproliferative neoplasm that arises from malignant transformation of the stem cell compartment and results in increased production of myeloid cells. Somatic and germline variants in CBL (Casitas B-lineage lymphoma proto-oncogene) have been associated with JMML. We report an incompletely penetrant CBL Y371C mutation discovered by whole-exome sequencing in three individuals with JMML in a large pedigree with 35 years of follow-up. The Y371 residue is highly evolutionarily conserved among CBL orthologs and paralogs. In silico bioinformatics prediction programs suggested that the Y371C mutation is highly deleterious. Protein structural modeling revealed that the Y371C mutation abrogated the ability of the CBL protein to adopt a conformation that is required for ubiquitination. Clinically, the three mutation-positive JMML individuals exhibited variable clinical courses; in two out of three, primary hematologic abnormalities persisted into adulthood with minimal clinical symptoms. The penetrance of the CBL Y371C mutation was 30% for JMML and 40% for all leukemia. Of the 8 mutation carriers in the family with available photographs, only one had significant dysmorphic features; we found no evidence of a clinical phenotype consistent with a "CBL syndrome". Although CBL Y371C has been previously reported in familial JMML, we are the first group to follow a complete pedigree harboring this mutation for an extended period, revealing additional information about this variant's penetrance, function and natural history.


Subject(s)
Germ-Line Mutation , Leukemia, Myelomonocytic, Juvenile/genetics , Mutation, Missense , Pedigree , Proto-Oncogene Proteins c-cbl/genetics , Ubiquitination/genetics , Adolescent , Adult , Child , Child, Preschool , Exome , Female , Follow-Up Studies , Humans , Infant , Male , Models, Molecular , Penetrance , Protein Structure, Tertiary , Proto-Oncogene Mas , Proto-Oncogene Proteins c-cbl/chemistry
10.
Hered Cancer Clin Pract ; 12(1): 3, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24559313

ABSTRACT

BACKGROUND: Testicular germ cell tumor (TGCT) is the most common malignancy in young men. Familial clustering, epidemiologic evidence of increased risk with family or personal history, and the association of TGCT with genitourinary (GU) tract anomalies have suggested an underlying genetic predisposition. Linkage data have not identified a rare, highly-penetrant, single gene in familial TGCT (FTGCT) cases. Based on its association with congenital GU tract anomalies and suggestions that there is an intrauterine origin to TGCT, we hypothesized the existence of unrecognized dysmorphic features in FTGCT. METHODS: We evaluated 38 FTGCT individuals and 41 first-degree relatives from 22 multiple-case families with detailed dysmorphology examinations, physician-based medical history and physical examination, laboratory testing, and genitourinary imaging studies. RESULTS: The prevalence of major abnormalities and minor variants did not significantly differ between either FTGCT individuals or their first-degree relatives when compared with normal population controls, except for tall stature, macrocephaly, flat midface, and retro-/micrognathia. However, these four traits were not manifest as a constellation of features in any one individual or family. We did detect an excess prevalence of the genitourinary anomalies cryptorchidism and congenital inguinal hernia in our population, as previously described in sporadic TGCT, but no congenital renal, retroperitoneal or mediastinal anomalies were detected. CONCLUSIONS: Overall, our study did not identify a constellation of dysmorphic features in FTGCT individuals, which is consistent with results of genetic studies suggesting that multiple low-penetrance genes are likely responsible for FTGCT susceptibility.

12.
Semin Hematol ; 60(2): 65-72, 2023 03.
Article in English | MEDLINE | ID: mdl-37099032

ABSTRACT

Waldenström macroglobulinemia (WM) is a rare subtype of non-Hodgkin lymphoma characterized by the presence of lymphoplasmacytic lymphoma (LPL) in the bone marrow accompanied by a monoclonal immunoglobulin type M (IgM) in the serum. WM was first described only 80 years ago and became reportable in the US as a malignancy in 1988. Very little systematic research was conducted prior to 2000 to characterize incidence, clinical characteristics, risk factors or diagnostic and prognostic criteria, and there were essentially no WM-specific clinical interventional trials. Since the inaugural meeting of the International Workshop in Waldenström's Macroglobulinemia (IWWM) in 2000, WM has become the focus of a steadily increasing and productive body of research, engaging a growing number of investigators throughout the world. This introductory overview provides summary of the current understanding of the epidemiology of WM/LPL as a backdrop for a series of consensus panel recommendations arising from research presented at the 11th IWWM.


Subject(s)
Waldenstrom Macroglobulinemia , Humans , Bone Marrow/pathology , Prognosis , Waldenstrom Macroglobulinemia/epidemiology , Waldenstrom Macroglobulinemia/diagnosis , Waldenstrom Macroglobulinemia/pathology
13.
Clin Cancer Res ; 29(1): 261-270, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36260525

ABSTRACT

PURPOSE: Chordoma is a rare bone tumor with a high recurrence rate and limited treatment options. The aim of this study was to identify molecular subtypes of chordoma that may improve clinical management. EXPERIMENTAL DESIGN: We conducted RNA sequencing in 48 tumors from patients with Chinese skull-base chordoma and identified two major molecular subtypes. We then replicated the classification using a NanoString panel in 48 patients with chordoma from North America. RESULTS: Tumors in one subtype were more likely to have somatic mutations and reduced expression in chromatin remodeling genes, such as PBRM1 and SETD2, whereas the other subtype was characterized by the upregulation of genes in epithelial-mesenchymal transition and Sonic Hedgehog pathways. IHC staining of top differentially expressed genes between the two subtypes in 312 patients with Chinese chordoma with long-term follow-up data showed that the expression of some markers such as PTCH1 was significantly associated with survival outcomes. CONCLUSIONS: Our findings may improve the understanding of subtype-specific tumorigenesis of chordoma and inform clinical prognostication and targeted options.


Subject(s)
Chordoma , Skull Base Neoplasms , Humans , Chordoma/genetics , Chordoma/pathology , Hedgehog Proteins/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Profiling , Skull Base Neoplasms/genetics , Skull Base Neoplasms/pathology
14.
Blood ; 115(22): 4464-71, 2010 Jun 03.
Article in English | MEDLINE | ID: mdl-20308603

ABSTRACT

Familial aggregation of Waldenström macroglobulinemia (WM) and related B-cell disorders (BCDs) suggests a role for genetic factors, but few data address environmental influences. We designed a questionnaire-based study to examine clinical and environmental factors in a cohort of WM families with various patterns of case aggregation. We analyzed data on 103 WM patients and 272 unaffected relatives from 35 multiple-case WM and 46 mixed WM/BCD kindred and 28 nonfamilial (sporadic) WM patients, using logistic regression models with generalized estimating equations to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for association. In this study population, the WM disease process appeared similar among patients regardless of family history. Familial WM patients were more likely than unaffected relatives to report a history of autoimmune disease (OR, 2.27; 95% CI = 1.21-4.28) and infections (OR, 2.13; 95% CI = 1.25-3.64). Familial WM patients were also more likely to report exposure to farming (OR, 2.70; 95% CI = 1.34-5.42), pesticides (OR, 2.83; 95% CI = 1.56-5.11), wood dust (OR, 2.86; 95% CI = 1.54-5.33), and organic solvents (multiple-case WM OR, 4.21; 95% CI = 1.69-10.51) compared with unaffected family members. These data provide clues to both genetic and environmental factors that may influence development of WM. Well-designed case-control studies are needed to confirm these findings.


Subject(s)
Waldenstrom Macroglobulinemia/etiology , Waldenstrom Macroglobulinemia/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Autoimmune Diseases/complications , Confidence Intervals , Environmental Exposure , Female , Humans , Infections/complications , Male , Middle Aged , National Cancer Institute (U.S.) , Occupational Exposure , Odds Ratio , Registries , Risk Factors , Surveys and Questionnaires , United States/epidemiology , Waldenstrom Macroglobulinemia/epidemiology , Young Adult
15.
J Med Genet ; 48(7): 444-9, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21266383

ABSTRACT

BACKGROUND: Chordoma, an age-dependent rare cancer, arises from notochordal remnants. Fewer than 5% of chordomas occur in children. Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous syndrome characterised by abnormal tissue growths in multiple organ systems. Reports of chordoma in children with TSC suggest that TSC1 and TSC2 mutations may contribute to chordoma aetiology. METHODS: To determine whether the 10 TSC-associated childhood chordomas reported in the literature are representative of chordoma in the general paediatric population, the authors compared age at diagnosis, primary site and outcome in them with results from a systematic assessment of 65 paediatric chordoma cases reported to the US population-based cancer registries contributing to the SEER Program of the National Cancer Institute. RESULTS: TSC-associated paediatric chordomas differed from chordomas in the general paediatric population: median age at diagnosis (6.2 months, TSC, vs 12.5 years, SEER); anatomical site (40% sacral, TSC, vs 9.4% sacral, SEER); and site-specific age at diagnosis (all four sacral chordomas diagnosed during the fetal or neonatal period, TSC, vs all six sacral chordomas diagnosed at >15 years, SEER). Finally, three of four patients with TSC-associated sacral chordoma were alive and tumour-free at 2.2, 8 and 19 years after diagnosis versus a median survival of 36 months among paediatric patients with sacral chordoma in SEER. CONCLUSIONS: These results strengthen the association between paediatric chordoma and TSC. Future clinical and molecular studies documenting the magnitude and clinical spectrum of the joint occurrence of these two diseases should provide the basis for delineating the biological relationship between them.


Subject(s)
Chordoma/diagnosis , Chordoma/etiology , Tuberous Sclerosis/complications , Tuberous Sclerosis/diagnosis , Adolescent , Age Factors , Child , Child, Preschool , Chordoma/genetics , Chordoma/mortality , Female , Humans , Infant , Infant, Newborn , Kaplan-Meier Estimate , Male , Mutation/genetics , Prognosis , SEER Program , Tuberous Sclerosis/genetics , Tuberous Sclerosis/mortality , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/genetics
16.
Cancers (Basel) ; 13(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916078

ABSTRACT

This study aimed to compare histological features of familial and sporadic testicular germ cell tumors (TGCTs) and surrounding parenchyma, since discriminating features might be etiologically relevant and clinically useful. The study of parenchyma was prompted by reports claiming a higher prevalence of testicular microlithiasis in familial cases. Histological features of TGCTs and surrounding parenchyma of 296 sporadic and 305 familial cases were compared. For each case, one representative hematoxylin and eosin-stained slide was available. Slides were independently scored by two expert pathologists using a semi-quantitative data abstract. Discrepancies were resolved by consensus. A logistic regression model was used to assess the ability to discriminate between sporadic and familial GCT. The histological composition of a tumor, amount of lymphocytic infiltration, amount of germ cell neoplasia in situ (GCNIS), and presence of testicular microlithiasis (TM) did not discriminate between sporadic and familial GCT (area under the curve 0.56, 95%CI 0.51-0.61). Novel observations included increasing lymphocytic infiltration and decreasing GCNIS and TM with increasing age at diagnosis. The presence of tubules with infiltrating lymphocytes was mainly associated with pure seminomas and nonseminomas with a seminoma component. Among seminomas, tubules with infiltrating lymphocytes decreased with increasing age. No discernable differences between sporadic and familial TGCTs were found. The age-related changes in the tumors and surrounding parenchyma in these groups combined are consistent with a host response building up over time predominantly affecting seminomas, the seminoma-component of nonseminomas and GCNIS. TM may gradually dissolve with age. Our hypothesis that histological differences between sporadic and familial TGCT might identify genetically distinct disease subsets was not supported.

17.
Blood Adv ; 5(1): 216-223, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33570641

ABSTRACT

Pathogenic germline variants in DICER1 underlie an autosomal dominant, pleiotropic tumor-predisposition disorder. Murine models with the loss of DICER1 in hematopoietic stem cell progenitors demonstrate hematologic aberrations that include reductions in red and white blood cell counts, hemoglobin volume, and impaired maturation resulting in dysplasia. We investigated whether hematologic abnormalities such as those observed in DICER1-deficient mice were observed in humans with a pathogenic germline variant in DICER1. A natural history study of individuals with germline pathogenic DICER1 variants and family controls conducted through the National Cancer Institute (NCI) evaluated enrollees at the National Institutes of Health Clinical Center during a comprehensive clinical outpatient visit that included collecting routine clinical laboratory studies. These were compared against normative laboratory values and compared between the DICER1 carriers and controls. There were no statistical differences in routine clinical hematology laboratory studies observed in DICER1 carriers and family controls. A review of the medical history of DICER1 carriers showed that none of the individuals in the NCI cohort developed myelodysplastic syndrome or leukemia. Query of the International Pleuropulmonary Blastoma/DICER1 Registry revealed 1 DICER1 carrier who developed a secondary leukemia after treatment of pleuropulmonary blastoma. We found limited evidence that the hematologic abnormalities observed in murine DICER1 models developed in our cohort of DICER1 carriers. In addition, no cases of myelodysplastic syndrome were observed in either the NCI cohort or the International Pleuropulmonary Blastoma/DICER1 Registry; 1 case of presumed secondary leukemia was reported. Abnormalities in hematologic indices should not be solely attributed to DICER1. This trial was registered at www.clinicaltrials.gov as #NCT01247597.


Subject(s)
Hematology , Neoplasms , Pulmonary Blastoma , Animals , DEAD-box RNA Helicases/genetics , Germ Cells , Germ-Line Mutation , Mice , Ribonuclease III/genetics
18.
JNCI Cancer Spectr ; 5(2)2021 04.
Article in English | MEDLINE | ID: mdl-34308104

ABSTRACT

Background: Pediatric cancers are the leading cause of death by disease in children despite improved survival rates overall. The contribution of germline genetic susceptibility to pediatric cancer survivors has not been extensively characterized. We assessed the frequency of pathogenic or likely pathogenic (P/LP) variants in 5451 long-term pediatric cancer survivors from the Childhood Cancer Survivor Study. Methods: Exome sequencing was conducted on germline DNA from 5451 pediatric cancer survivors (cases who survived ≥5 years from diagnosis; n = 5105 European) and 597 European cancer-free adults (controls). Analyses focused on comparing the frequency of rare P/LP variants in 237 cancer-susceptibility genes and a subset of 60 autosomal dominant high-to-moderate penetrance genes, for both case-case and case-control comparisons. Results: Of European cases, 4.1% harbored a P/LP variant in high-to-moderate penetrance autosomal dominant genes compared with 1.3% in controls (2-sided P = 3 × 10-4). The highest frequency of P/LP variants was in genes typically associated with adult onset rather than pediatric cancers, including BRCA1/2, FH, PALB2, PMS2, and CDKN2A. A statistically significant excess of P/LP variants, after correction for multiple tests, was detected in patients with central nervous system cancers (NF1, SUFU, TSC1, PTCH2), Wilms tumor (WT1, REST), non-Hodgkin lymphoma (PMS2), and soft tissue sarcomas (SDHB, DICER1, TP53, ERCC4, FGFR3) compared with other pediatric cancers. Conclusion: In long-term pediatric cancer survivors, we identified P/LP variants in cancer-susceptibility genes not previously associated with pediatric cancer as well as confirmed known associations. Further characterization of variants in these genes in pediatric cancer will be important to provide optimal genetic counseling for patients and their families.


Subject(s)
Cancer Survivors , Genetic Predisposition to Disease/genetics , Germ-Line Mutation , Neoplasms/genetics , Adolescent , Age of Onset , Aged , Cancer Survivors/statistics & numerical data , Case-Control Studies , Central Nervous System Neoplasms/genetics , Child , Female , Genes, Recessive , Humans , Kidney Neoplasms/genetics , Lymphoma, Non-Hodgkin/genetics , Male , Penetrance , Sarcoma/genetics , Exome Sequencing , Wilms Tumor/genetics
19.
Blood ; 112(8): 3052-6, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18703425

ABSTRACT

A role for genetic factors in the etiology of lymphoplasmacytic lymphoma/Waldenström macroglobulinemia (LPL/WM) is implicated based on prior findings from multiply affected families and small case-control and cohort studies. We identified 2144 LPL/WM patients (1539 WM [72%] and 605 LPL [28%]) diagnosed in Sweden, 8279 population-based matched controls, and linkable first-degree relatives of patients (n = 6177) and controls (n = 24 609). Using a marginal survival model, we calculated relative risks and 95% confidence intervals as measures of familial aggregation. We found first-degree relatives of LPL/WM patients to have 20-fold (4.1-98.4), 3.0-fold (2.0-4.4), 3.4-fold (1.7-6.6), and 5.0-fold (1.3-18.9) increased risks of developing LPL/WM, non-Hodgkin lymphoma (NHL), chronic lymphocytic leukemia (CLL), and monoclonal gammopathy of undetermined significance (MGUS), respectively. However, there was no evidence of an increased risk of developing multiple myeloma or Hodgkin lymphoma. In analyses stratified by type of first-degree relative (parent, sibling, offspring), age at diagnosis of the probands (greater or less than 70 years), and sex of the first-degree relative, we did not observe the risk estimates to be significantly different compared with the overall analyses. Our findings of highly increased risks of developing LPL/WM, NHL, CLL, and MGUS support the operation of shared susceptibility genes that predispose to LPL/WM and other lymphoproliferative disorders.


Subject(s)
Genetic Predisposition to Disease , Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Lymphoproliferative Disorders/epidemiology , Lymphoproliferative Disorders/genetics , Waldenstrom Macroglobulinemia/epidemiology , Waldenstrom Macroglobulinemia/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Family Health , Female , Humans , Lymphoproliferative Disorders/diagnosis , Male , Middle Aged , Registries , Sweden
20.
Am J Med Genet A ; 152A(3): 601-6, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20186797

ABSTRACT

We present monozygotic twins discordant for the autosomal dominant disorder neurofibromatosis type 1 (NF1). The affected twin was diagnosed with NF1 at age 12, based upon accepted clinical criteria for the disorder. Both twins were re-examined at ages 35 and 57, at which times the unaffected twin continued to show no clinical manifestations of NF1. Short tandem repeat marker (STR) genotyping at 10 loci on chromosome 17 and 10 additional loci dispersed across the genome revealed identical genotypes for the twins, confirming their monozygosity. The affected twin has three children, two of whom also have NF1, while the unaffected twin has two children, both unaffected. Using lymphoblastoid, fibroblast, and buccal cell samples collected from both twins and from other family members in three generations, we discovered a pathogenic nonsense mutation in exon 40 of the NF1 gene. This mutation was found in all cell samples from the affected twin and her affected daughter, and in lymphoblastoid and buccal cells but not fibroblasts from the unaffected twin. We also found a novel non-synonymous change in exon 16 of the NF1 gene that was transmitted from the unaffected mother to both twins and co-segregated with the pathogenic mutation in the ensuing generation. All cells from the twins were heterozygous for this apparent exon 16 polymorphism and for single nucleotide polymorphisms (SNPs) within 2.5 kb flanking the site of the exon 40 nonsense mutation. This suggests that the NF1 gene of the unaffected twin differed in the respective lymphoblastoid cells and fibroblasts only at the mutation site itself, making post-zygotic mutation leading to mosaicism the most likely mechanism of phenotypic discordance. Although the unaffected twin is a mosaic, the distribution of the mutant allele among different cells and tissues appears to be insufficient to cause overt clinical manifestations of NF1.


Subject(s)
Codon, Nonsense , Diseases in Twins/genetics , Genes, Neurofibromatosis 1 , Neurofibromatosis 1/genetics , Adult , Base Sequence , Child , DNA Mutational Analysis , Exons , Female , Heterozygote , Humans , Male , Middle Aged , Mosaicism , Pedigree , Polymorphism, Single Nucleotide , Twins, Monozygotic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL