Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 24(7): 1087-1097, 2023 07.
Article in English | MEDLINE | ID: mdl-37264229

ABSTRACT

Human leukocyte antigen (HLA)-E binds epitopes derived from HLA-A, HLA-B, HLA-C and HLA-G signal peptides (SPs) and serves as a ligand for CD94/NKG2A and CD94/NKG2C receptors expressed on natural killer and T cell subsets. We show that among 16 common classical HLA class I SP variants, only 6 can be efficiently processed to generate epitopes that enable CD94/NKG2 engagement, which we term 'functional SPs'. The single functional HLA-B SP, known as HLA-B/-21M, induced high HLA-E expression, but conferred the lowest receptor recognition. Consequently, HLA-B/-21M SP competes with other SPs for providing epitope to HLA-E and reduces overall recognition of target cells by CD94/NKG2A, calling for reassessment of previous disease models involving HLA-B/-21M. Genetic population data indicate a positive correlation between frequencies of functional SPs in humans and corresponding cytomegalovirus mimics, suggesting a means for viral escape from host responses. The systematic, quantitative approach described herein will facilitate development of prediction algorithms for accurately measuring the impact of CD94/NKG2-HLA-E interactions in disease resistance/susceptibility.


Subject(s)
Killer Cells, Natural , Protein Sorting Signals , Humans , Histocompatibility Antigens Class I , HLA Antigens/metabolism , Histocompatibility Antigens Class II/metabolism , NK Cell Lectin-Like Receptor Subfamily D/genetics , NK Cell Lectin-Like Receptor Subfamily D/metabolism , Lectins, C-Type/metabolism , Receptors, Natural Killer Cell/metabolism , HLA-E Antigens
2.
Nat Immunol ; 23(12): 1654-1656, 2022 12.
Article in English | MEDLINE | ID: mdl-36443516

Subject(s)
Vaccines
3.
Nature ; 612(7941): 771-777, 2022 12.
Article in English | MEDLINE | ID: mdl-36477533

ABSTRACT

Human leucocyte antigen B*27 (HLA-B*27) is strongly associated with inflammatory diseases of the spine and pelvis (for example, ankylosing spondylitis (AS)) and the eye (that is, acute anterior uveitis (AAU))1. How HLA-B*27 facilitates disease remains unknown, but one possible mechanism could involve presentation of pathogenic peptides to CD8+ T cells. Here we isolated orphan T cell receptors (TCRs) expressing a disease-associated public ß-chain variable region-complementary-determining region 3ß (BV9-CDR3ß) motif2-4 from blood and synovial fluid T cells from individuals with AS and from the eye in individuals with AAU. These TCRs showed consistent α-chain variable region (AV21) chain pairing and were clonally expanded in the joint and eye. We used HLA-B*27:05 yeast display peptide libraries to identify shared self-peptides and microbial peptides that activated the AS- and AAU-derived TCRs. Structural analysis revealed that TCR cross-reactivity for peptide-MHC was rooted in a shared binding motif present in both self-antigens and microbial antigens that engages the BV9-CDR3ß TCRs. These findings support the hypothesis that microbial antigens and self-antigens could play a pathogenic role in HLA-B*27-associated disease.


Subject(s)
Autoimmunity , HLA-B Antigens , Peptides , Receptors, Antigen, T-Cell , Humans , Autoantigens/chemistry , Autoantigens/immunology , Autoantigens/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , HLA-B Antigens/immunology , HLA-B Antigens/metabolism , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Synovial Fluid/immunology , Spondylitis, Ankylosing/immunology , Uveitis, Anterior/immunology , Peptide Library , Cross Reactions , Amino Acid Motifs
4.
Nat Immunol ; 15(4): 319-22, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24646598

ABSTRACT

The search for a vaccine against human immunodeficiency virus type 1 (HIV-1) has many hurdles to overcome. Ideally, the stimulation of both broadly neutralizing antibodies and cell-mediated immune responses remains the best option, but no candidate in clinical trials at present has elicited such antibodies, and efficacy trials have not demonstrated any benefit for vaccines designed to stimulate immune responses of CD8(+) T cells. Findings obtained with the simian immunodeficiency virus (SIV) monkey model have provided new evidence that stimulating effective CD8(+) T cell immunity could provide protection, and in this Perspective we explore the path forward for optimizing such responses in humans.


Subject(s)
AIDS Vaccines/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/prevention & control , HIV-1/immunology , Simian Immunodeficiency Virus/immunology , Animals , Antigenic Variation/immunology , Antigens, Viral/genetics , Antigens, Viral/metabolism , Clinical Trials as Topic , Cytotoxicity, Immunologic , Haplorhini , Humans , Immunization , Immunodominant Epitopes/genetics , Immunodominant Epitopes/metabolism , Protein Engineering , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Treatment Outcome
5.
Nat Immunol ; 13(5): 423-7, 2012 Apr 18.
Article in English | MEDLINE | ID: mdl-22513323

ABSTRACT

A vaccine against human immunodeficiency virus (HIV) seems to be on the horizon. Correlates of risk of infection for [corrected] the RV144 vaccine trial have been found. There is understanding of what makes HIV envelope-specific antibodies broadly neutralizing and new T cell vaccine approaches can overcome virus variability.


Subject(s)
AIDS Vaccines/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Clinical Trials as Topic , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Macaca mulatta , T-Lymphocytes/immunology
6.
Immunity ; 38(3): 410-3, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23521882

ABSTRACT

Ferguson et al. (2013) use applied physics to quantitate the fitness of HIV-1 Gag based on sequence variability across the protein. This enables a new approach to vaccine design that focuses CD8+ T cell responses on fitness-constrained parts of Gag.

7.
Proc Natl Acad Sci U S A ; 116(49): 24748-24759, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31748275

ABSTRACT

Peptides generated by proteasome-catalyzed splicing of noncontiguous amino acid sequences have been shown to constitute a source of nontemplated human leukocyte antigen class I (HLA-I) epitopes, but their role in pathogen-specific immunity remains unknown. CD8+ T cells are key mediators of HIV type 1 (HIV-1) control, and identification of novel epitopes to enhance targeting of infected cells is a priority for prophylactic and therapeutic strategies. To explore the contribution of proteasome-catalyzed peptide splicing (PCPS) to HIV-1 epitope generation, we developed a broadly applicable mass spectrometry-based discovery workflow that we employed to identify spliced HLA-I-bound peptides on HIV-infected cells. We demonstrate that HIV-1-derived spliced peptides comprise a relatively minor component of the HLA-I-bound viral immunopeptidome. Although spliced HIV-1 peptides may elicit CD8+ T cell responses relatively infrequently during infection, CD8+ T cells primed by partially overlapping contiguous epitopes in HIV-infected individuals were able to cross-recognize spliced viral peptides, suggesting a potential role for PCPS in restricting HIV-1 escape pathways. Vaccine-mediated priming of responses to spliced HIV-1 epitopes could thus provide a novel means of exploiting epitope targets typically underutilized during natural infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cross-Priming/genetics , HIV Infections/immunology , HIV-1/immunology , Proteasome Endopeptidase Complex/metabolism , AIDS Vaccines/immunology , AIDS Vaccines/therapeutic use , Antigens, Viral/genetics , Antigens, Viral/immunology , Antigens, Viral/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Line , Cohort Studies , Cross Reactions/immunology , Datasets as Topic , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/metabolism , HIV Infections/blood , HIV Infections/therapy , HIV Infections/virology , HIV-1/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Immune Evasion , Peptides/genetics , Peptides/immunology , Peptides/metabolism , Proteasome Endopeptidase Complex/immunology , RNA Splicing/immunology , RNA, Viral/blood , RNA, Viral/genetics , RNA, Viral/isolation & purification , RNA-Seq , Viral Proteins/genetics , Viral Proteins/immunology , Viral Proteins/metabolism
8.
Eur J Immunol ; 50(12): 2075-2091, 2020 12.
Article in English | MEDLINE | ID: mdl-32716529

ABSTRACT

Diverse SIV and HIV epitopes that bind the rhesus homolog of HLA-E, Mamu-E, have recently been identified in SIVvaccine studies using a recombinant Rhesus cytomegalovirus (RhCMV 68-1) vector, where unprecedented protection against SIV challenge was achieved. Additionally, several Mycobacterial peptides identified both algorithmically and following elution from infected cells, are presented to CD8+ T cells by HLA-E in humans. Yet, a comparative and comprehensive analysis of relative HLA-E peptide binding strength via a reliable, high throughput in vitro assay is currently lacking. To address this, we developed and optimized a novel, highly sensitive peptide exchange ELISA-based assay that relatively quantitates peptide binding to HLA-E. Using this approach, we screened multiple peptides, including peptide panels derived from HIV, SIV, and Mtb predicted to bind HLA-E. Our results indicate that although HLA-E preferentially accommodates canonical MHC class I leader peptides, many non-canonical, sequence diverse, pathogen-derived peptides also bind HLA-E, albeit generally with lower relative binding strength. Additionally, our screens demonstrate that the majority of peptides tested, including some key Mtb and SIV epitopes that have been shown to elicit strong Mamu-E-restricted T cell responses, either bind HLA-E extremely weakly or give signals that are indistinguishable from the negative, peptide-free controls.


Subject(s)
Histocompatibility Antigens Class I/immunology , Peptide Fragments/immunology , Peptides/immunology , Protein Binding/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus/immunology , Epitopes, T-Lymphocyte/immunology , Genes, MHC Class I/immunology , HIV/immunology , Histocompatibility Antigens Class II/immunology , Humans , Macaca mulatta/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , HLA-E Antigens
9.
PLoS Pathog ; 15(2): e1007567, 2019 02.
Article in English | MEDLINE | ID: mdl-30789961

ABSTRACT

Most studies of T lymphocytes focus on recognition of classical major histocompatibility complex (MHC) class I or II molecules presenting oligopeptides, yet there are numerous variations and exceptions of biological significance based on recognition of a wide variety of nonclassical MHC molecules. These include αß and γδ T cells that recognize different class Ib molecules (CD1, MR-1, HLA-E, G, F, et al.) that are nearly monomorphic within a given species. Collectively, these T cells can be considered "unconventional," in part because they recognize lipids, metabolites, and modified peptides. Unlike classical MHC-specific cells, unconventional T cells generally exhibit limited T-cell antigen receptor (TCR) repertoires and often produce innate immune cell-like rapid effector responses. Exploiting this system in new generation vaccines for human immunodeficiency virus (HIV), tuberculosis (TB), other infectious agents, and cancer was the focus of a recent workshop, "Immune Surveillance by Non-classical MHC Molecules: Improving Diversity for Antigens," sponsored by the National Institute of Allergy and Infectious Diseases. Here, we summarize salient points presented regarding the basic immunobiology of unconventional T cells, recent advances in methodologies to measure unconventional T-cell activity in diseases, and approaches to harness their considerable clinical potential.


Subject(s)
Immunologic Surveillance/immunology , Major Histocompatibility Complex/immunology , Animals , Antigens , HLA Antigens , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Humans , Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocytes/immunology
10.
Nat Immunol ; 10(6): 636-46, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19412183

ABSTRACT

Although cytotoxic T lymphocytes (CTLs) in people infected with human immunodeficiency virus type 1 can potentially target multiple virus epitopes, the same few are recognized repeatedly. We show here that CTL immunodominance in regions of the human immunodeficiency virus type 1 group-associated antigen proteins p17 and p24 correlated with epitope abundance, which was strongly influenced by proteasomal digestion profiles, affinity for the transporter protein TAP, and trimming mediated by the endoplasmatic reticulum aminopeptidase ERAAP, and was moderately influenced by HLA affinity. Structural and functional analyses demonstrated that proteasomal cleavage 'preferences' modulated the number and length of epitope-containing peptides, thereby affecting the response avidity and clonality of T cells. Cleavage patterns were affected by both flanking and intraepitope CTL-escape mutations. Our analyses show that antigen processing shapes CTL response hierarchies and that viral evolution modifies cleavage patterns and suggest strategies for in vitro vaccine optimization.


Subject(s)
Antigen Presentation , HIV Antigens/immunology , HIV Core Protein p24/immunology , T-Lymphocytes, Cytotoxic/immunology , gag Gene Products, Human Immunodeficiency Virus/immunology , ATP-Binding Cassette Transporters/metabolism , Amino Acid Sequence , Evolution, Molecular , HIV Antigens/metabolism , HIV Core Protein p24/metabolism , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , HLA-A Antigens/immunology , HLA-A Antigens/metabolism , Humans , Immunodominant Epitopes/genetics , Immunodominant Epitopes/immunology , Leucyl Aminopeptidase/metabolism , Major Histocompatibility Complex , Models, Molecular , Molecular Sequence Data , Mutation , Proteasome Endopeptidase Complex/immunology , Proteasome Endopeptidase Complex/metabolism , Protein Binding , T-Lymphocytes, Cytotoxic/virology , gag Gene Products, Human Immunodeficiency Virus/metabolism
12.
J Immunol ; 200(1): 49-60, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29150562

ABSTRACT

MHC-E is a highly conserved nonclassical MHC class Ib molecule that predominantly binds and presents MHC class Ia leader sequence-derived peptides for NK cell regulation. However, MHC-E also binds pathogen-derived peptide Ags for presentation to CD8+ T cells. Given this role in adaptive immunity and its highly monomorphic nature in the human population, HLA-E is an attractive target for novel vaccine and immunotherapeutic modalities. Development of HLA-E-targeted therapies will require a physiologically relevant animal model that recapitulates HLA-E-restricted T cell biology. In this study, we investigated MHC-E immunobiology in two common nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM). Compared to humans and MCM, RM expressed a greater number of MHC-E alleles at both the population and individual level. Despite this difference, human, RM, and MCM MHC-E molecules were expressed at similar levels across immune cell subsets, equivalently upregulated by viral pathogens, and bound and presented identical peptides to CD8+ T cells. Indeed, SIV-specific, Mamu-E-restricted CD8+ T cells from RM recognized antigenic peptides presented by all MHC-E molecules tested, including cross-species recognition of human and MCM SIV-infected CD4+ T cells. Thus, MHC-E is functionally conserved among humans, RM, and MCM, and both RM and MCM represent physiologically relevant animal models of HLA-E-restricted T cell immunobiology.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens/metabolism , Killer Cells, Natural/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Animals , Antigen Presentation , Antigens, Viral/immunology , Antigens, Viral/metabolism , Cells, Cultured , Conserved Sequence/genetics , Histocompatibility Antigens/genetics , Histocompatibility Antigens/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Macaca fascicularis , Macaca mulatta , Models, Animal , Peptides/immunology , Peptides/metabolism , HLA-E Antigens
13.
J Virol ; 92(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30021907

ABSTRACT

While prior studies have demonstrated that CD8 T cell responses to cryptic epitopes (CE) are readily detectable during HIV-1 infection, their ability to drive escape mutations following acute infection is unknown. We predicted 66 CE in a Zambian acute infection cohort based on escape mutations occurring within or near the putatively predicted HLA-I-restricted epitopes. The CE were evaluated for CD8 T cell responses for patients with chronic and acute HIV infections. Of the 66 predicted CE, 10 were recognized in 8/32 and 4/11 patients with chronic and acute infections, respectively. The immunogenic CE were all derived from a single antisense reading frame within pol However, when these CE were tested using longitudinal study samples, CE-specific T cell responses were detected but did not consistently select for viral escape mutations. Thus, while we demonstrated that CE are immunogenic in acute infection, the immune responses to CE are not major drivers of viral escape in the initial stages of HIV infection. The latter finding may be due to either the subdominant nature of CE-specific responses, the low antigen sensitivity, or the magnitude of CE responses during acute infections.IMPORTANCE Although prior studies demonstrated that cryptic epitopes of HIV-1 induce CD8 T cell responses, evidence that targeting these epitopes drives HIV escape mutations has been substantially limited, and no studies have addressed this question following acute infection. In this comprehensive study, we utilized longitudinal viral sequencing data obtained from three separate acute infection cohorts to predict potential cryptic epitopes based on HLA-I-associated viral escape. Our data show that cryptic epitopes are immunogenic during acute infection and that many of the responses they elicit are toward translation products of HIV-1 antisense reading frames. However, despite cryptic epitope targeting, our study did not find any evidence of early CD8-mediated immune escape. Nevertheless, improving cryptic epitope-specific CD8 T cell responses may still be beneficial in both preventative and therapeutic HIV-1 vaccines.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , HIV Infections/immunology , HIV-1/immunology , Immune Evasion , pol Gene Products, Human Immunodeficiency Virus/genetics , Acute Disease , Adult , Amino Acid Sequence , CD8-Positive T-Lymphocytes/virology , Chronic Disease , Cohort Studies , Epitopes, T-Lymphocyte/genetics , Evolution, Molecular , Female , Gene Expression Regulation , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Male , Middle Aged , Mutation , Reading Frames , Signal Transduction , Viral Load , pol Gene Products, Human Immunodeficiency Virus/immunology
14.
J Infect Dis ; 217(2): 257-262, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29202190

ABSTRACT

Interferon-induced transmembrane 3 (IFITM3) is known to restrict the entry of a range of enveloped viruses. The single nucleotide polymorphism rs12252-C within IFITM3 has been shown to be associated with severe influenza A virus infection. It has been suggested that rs12252-C results in expression of a truncated IFITM3 protein lacking the first 21 amino acids. By performing high-throughput RNA sequencing on primary dendritic cells and peripheral blood mononuclear cells isolated from pandemic H1N1 influenza and human immunodeficiency virus-1 (HIV-1) infected patients we show that full-length IFITM3 mRNA is dominantly expressed (>99%) across all rs12252 genotypes. Full-length IFITM3 protein can be detected in all genotypes.


Subject(s)
Influenza, Human/genetics , Influenza, Human/pathology , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Dendritic Cells/immunology , Humans , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/virology , Leukocytes, Mononuclear , Sequence Analysis, RNA , United Kingdom
15.
PLoS Pathog ; 12(8): e1005805, 2016 08.
Article in English | MEDLINE | ID: mdl-27486665

ABSTRACT

The loss of HIV-specific CD8+ T cell cytolytic function is a primary factor underlying progressive HIV infection, but whether HIV-specific CD8+ T cells initially possess cytolytic effector capacity, and when and why this may be lost during infection, is unclear. Here, we assessed CD8+ T cell functional evolution from primary to chronic HIV infection. We observed a profound expansion of perforin+ CD8+ T cells immediately following HIV infection that quickly waned after acute viremia resolution. Selective expression of the effector-associated transcription factors T-bet and eomesodermin in cytokine-producing HIV-specific CD8+ T cells differentiated HIV-specific from bulk memory CD8+ T cell effector expansion. As infection progressed expression of perforin was maintained in HIV-specific CD8+ T cells with high levels of T-bet, but not necessarily in the population of T-betLo HIV-specific CD8+ T cells that expand as infection progresses. Together, these data demonstrate that while HIV-specific CD8+ T cells in acute HIV infection initially possess cytolytic potential, progressive transcriptional dysregulation leads to the reduced CD8+ T cell perforin expression characteristic of chronic HIV infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , HIV Infections/immunology , Immunity, Cellular , Adult , CD8-Positive T-Lymphocytes/pathology , Chronic Disease , Female , HIV Infections/pathology , Humans , Male , Middle Aged , Perforin/immunology , T-Box Domain Proteins/immunology
16.
Mol Ther ; 25(2): 494-503, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28153096

ABSTRACT

To be effective against HIV type 1 (HIV-1), vaccine-induced T cells must selectively target epitopes, which are functionally conserved (present in the majority of currently circulating and reactivated HIV-1 strains) and, at the same time, beneficial (responses to which are associated with better clinical status and control of HIV-1 replication), and rapidly reach protective frequencies upon exposure to the virus. Heterologous prime-boost regimens using virally vectored vaccines are currently the most promising vaccine strategies; nevertheless, induction of robust long-term memory remains challenging. To this end, lentiviral vectors induce high frequencies of memory cells due to their low-inflammatory nature, while typically inducing only low anti-vector immune responses. Here, we describe construction of novel candidate vaccines ZVex.tHIVconsv1 and ZVex.tHIVconsv2, which are based on an integration-deficient lentiviral vector platform with preferential transduction of human dendritic cells and express a bivalent mosaic of conserved-region T cell immunogens with a high global HIV-1 match. Each of the two mosaic vaccines was individually immunogenic. When administered together in heterologous prime-boost regimens with chimpanzee adenovirus and/or poxvirus modified vaccinia virus Ankara (MVA) vaccines to BALB/c and outbred CD1-Swiss mice, they induced a median frequency of over 6,000 T cells/106 splenocytes, which were plurifunctional, broadly specific, and cross-reactive. These results support further development of this vaccine concept.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Genetic Vectors/genetics , HIV Infections/immunology , HIV-1/genetics , HIV-1/immunology , Lentivirus/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , AIDS Vaccines/genetics , AIDS Vaccines/immunology , Animals , Conserved Sequence , Disease Models, Animal , Epitopes/genetics , Epitopes/immunology , Female , Gene Order , HIV Infections/virology , Humans , Immunity, Cellular , Mice , Peptides/genetics , Peptides/immunology
17.
Retrovirology ; 14(1): 46, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29017536

ABSTRACT

BACKGROUND: Mutations rapidly accumulate in the HIV-1 genome after infection. Some of those mutations are selected by host immune responses and often cause viral fitness losses. This study is to investigate whether strongly selected mutations that are not associated with immune responses result in fitness losses. RESULTS: Strongly selected mutations were identified by analyzing 5'-half HIV-1 genome (gag/pol) sequences from longitudinal samples of subject CH0131. The K43R mutation in the gag gene was first detected at day 91 post screening and was fixed in the viral population at day 273 while the synonymous N323tc mutation was first detected at day 177 and fixed at day 670. No conventional or cryptic T cell responses were detected against either mutation sites by ELISpot analysis. However, when fitness costs of both mutations were measured by introducing each mutation into their cognate transmitted/founder (T/F) viral genome, the K43R mutation caused a significant fitness loss while the N323tc mutation had little impact on viral fitness. CONCLUSIONS: The rapid fixation, the lack of detectable immune responses and the significant fitness cost of the K43R mutation suggests that it was strongly selected by host factors other than T cell responses and neutralizing antibodies.


Subject(s)
Antibodies, Neutralizing/immunology , CD8-Positive T-Lymphocytes/immunology , Genome, Viral/genetics , HIV Infections/immunology , HIV-1/genetics , gag Gene Products, Human Immunodeficiency Virus/genetics , Cell Culture Techniques , Enzyme-Linked Immunospot Assay , Epitopes, T-Lymphocyte/immunology , Genetic Fitness/genetics , HIV Infections/virology , HIV-1/immunology , Humans , Immune Evasion/genetics , Mutation , Selection, Genetic/genetics , Virus Replication , gag Gene Products, Human Immunodeficiency Virus/immunology
18.
Mol Ther ; 24(4): 832-42, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26743582

ABSTRACT

An effective human immunodeficiency virus type 1 (HIV-1) vaccine is the best solution for halting the acquired immune deficiency syndrome epidemic. Here, we describe the design and preclinical immunogenicity of T-cell vaccine expressing novel immunogens tHIVconsvX, vectored by DNA, simian (chimpanzee) adenovirus, and poxvirus modified vaccinia virus Ankara (MVA), a combination highly immunogenic in humans. The tHIVconsvX immunogens combine the three leading strategies for elicitation of effective CD8(+) T cells: use of regions of HIV-1 proteins functionally conserved across all M group viruses (to make HIV-1 escape costly on viral fitness), inclusion of bivalent complementary mosaic immunogens (to maximize global epitope matching and breadth of responses, and block common escape paths), and inclusion of epitopes known to be associated with low viral load in infected untreated people (to induce field-proven protective responses). tHIVconsvX was highly immunogenic in two strains of mice. Furthermore, the magnitude and breadth of CD8(+) T-cell responses to tHIVconsvX-derived peptides in treatment-naive HIV-1(+) patients significantly correlated with high CD4(+) T-cell count and low viral load. Overall, the tHIVconsvX design, combining the mosaic and conserved-region approaches, provides an indisputably better coverage of global HIV-1 variants than previous T-cell vaccines. These immunogens delivered in a highly immunogenic framework of adenovirus prime and MVA boost are ready for clinical development.


Subject(s)
AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV Infections/therapy , Adenoviruses, Simian/immunology , Animals , CD4 Lymphocyte Count , HIV-1/physiology , HeLa Cells , Humans , Mice , Vaccinia virus/immunology , Viral Load
19.
J Immunol ; 192(8): 3898-907, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24639347

ABSTRACT

4-1BB is expressed on invariant (i)NKT cells, but its role is unclear. We showed previously that iNKT cells are involved in control of monocyte numbers during influenza A virus (IAV) infection and now question the role of the 4-1BB costimulatory pathway in the cross-talk between these cells. We found that iNKT cells and monocytes interact to promote expression of 4-1BB and 4-1BBL, respectively. Blockade of 4-1BB/L pathway under resting coculture conditions increased apoptosis of iNKT cells and monocytes. However, activation of iNKT cells overrides this survival signal, causing marked apoptosis of monocytes independent of 4-1BB/L. Blocking 4-1BBL in alpha-galactosylceramide-activated iNKT-monocyte cocultures reduced iNKT proliferation and abrogated monocytic IL-12 production. In vivo, expression of 4-1BB and 4-1BBL is increased on iNKT cells and Ly6C(hi) monocytes, respectively, during IAV infection, and there were lower frequencies of apoptosing Ly6C(hi) monocytes in the blood of iNKT knockout mice and higher numbers of monocytes in lungs compared with infected wild-type mice. Adoptive transfer of iNKT cells into the lungs of these mice reduced lung Ly6C(hi) monocytes levels, even when iNKT cells were preincubated with 4-1BB blocking Abs. These findings suggest that under resting conditions, 4-1BB/L engagement during iNKT-monocyte interaction promotes survival of these cells. When iNKT cells are activated, whether by alpha-galactosylceramide or during IAV infection, iNKT cells induced apoptosis of monocytes via a 4-1BB/L-independent mechanism, reducing monocyte numbers. 4-1BB/L costimulation amplified monocyte-mediated proliferation of iNKT cells, indirectly providing a method for monocytes to control their own numbers during infection.


Subject(s)
4-1BB Ligand/metabolism , Monocytes/metabolism , Natural Killer T-Cells/metabolism , Signal Transduction , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , Animals , Apoptosis/immunology , Cell Communication/immunology , Cell Proliferation , Cell Survival/immunology , Coculture Techniques , Cytokines/biosynthesis , Humans , Influenza A virus/immunology , Lymphocyte Activation/immunology , Mice , Monocytes/immunology , Natural Killer T-Cells/immunology
20.
Am J Respir Crit Care Med ; 191(12): 1422-31, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25844934

ABSTRACT

RATIONALE: A high proportion of influenza infections are asymptomatic. Animal and human challenge studies and observational studies suggest T cells protect against disease among those infected, but the impact of T-cell immunity at the population level is unknown. OBJECTIVES: To investigate whether naturally preexisting T-cell responses targeting highly conserved internal influenza proteins could provide cross-protective immunity against pandemic and seasonal influenza. METHODS: We quantified influenza A(H3N2) virus-specific T cells in a population cohort during seasonal and pandemic periods between 2006 and 2010. Follow-up included paired serology, symptom reporting, and polymerase chain reaction (PCR) investigation of symptomatic cases. MEASUREMENTS AND MAIN RESULTS: A total of 1,414 unvaccinated individuals had baseline T-cell measurements (1,703 participant observation sets). T-cell responses to A(H3N2) virus nucleoprotein (NP) dominated and strongly cross-reacted with A(H1N1)pdm09 NP (P < 0.001) in participants lacking antibody to A(H1N1)pdm09. Comparison of paired preseason and post-season sera (1,431 sets) showed 205 (14%) had evidence of infection based on fourfold influenza antibody titer rises. The presence of NP-specific T cells before exposure to virus correlated with less symptomatic, PCR-positive influenza A (overall adjusted odds ratio, 0.27; 95% confidence interval, 0.11-0.68; P = 0.005, during pandemic [P = 0.047] and seasonal [P = 0.049] periods). Protection was independent of baseline antibodies. Influenza-specific T-cell responses were detected in 43%, indicating a substantial population impact. CONCLUSIONS: Naturally occurring cross-protective T-cell immunity protects against symptomatic PCR-confirmed disease in those with evidence of infection and helps to explain why many infections do not cause symptoms. Vaccines stimulating T cells may provide important cross-protective immunity.


Subject(s)
Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/epidemiology , Influenza, Human/immunology , Pandemics/statistics & numerical data , Seasons , T-Lymphocytes/immunology , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , England/epidemiology , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Follow-Up Studies , Humans , Male , Middle Aged , Polymerase Chain Reaction , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL