Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Immunol ; 212(1): 24-34, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37975667

ABSTRACT

Influenza viruses infect 5-30% of the world's population annually, resulting in millions of incidents of hospitalization and thousands of mortalities worldwide every year. Although annual vaccination has significantly reduced hospitalization rates in vulnerable populations, the current vaccines are estimated to offer a wide range of protection from 10 to 60% annually. Such incomplete immunity may be related to both poor antigenic coverage of circulating strains, as well as to the insufficient induction of protective immunity. Beyond the role of hemagglutinin (HA) and neuraminidase (NA), vaccine-induced Abs have the capacity to induce a broader array of Ab effector functions, including Ab-dependent cellular cytotoxicity, that has been implicated in universal immunity against influenza viruses. However, whether different vaccine platforms can induce functional humoral immunity in a distinct manner remains incompletely defined. In this study, we compared vaccine-induced humoral immune responses induced by two seasonal influenza vaccines in Homo sapiens, the i.m. inactivated vaccine (IIV/Fluzone) and the live attenuated mucosal vaccine (LAIV/FluMist). Whereas the inactivated influenza vaccine induced superior Ab titers and FcγR binding capacity to diverse HA and NA Ags, the live attenuated influenza mucosal vaccine induced a more robust functional humoral immune response against both the HA and NA domains. Multivariate Ab analysis further highlighted the significantly different overall functional humoral immune profiles induced by the two vaccines, marked by differences in IgG titers, FcR binding, and both NK cell-recruiting and opsonophagocytic Ab functions. These results highlight the striking differences in Ab Fc-effector profiles induced systemically by two distinct influenza vaccine platforms.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae , Humans , Immunity, Humoral , Seasons , Vaccination , Hemagglutinins , Vaccines, Attenuated , Vaccines, Inactivated , Antibodies, Viral
2.
PLoS Pathog ; 18(8): e1010543, 2022 08.
Article in English | MEDLINE | ID: mdl-35969644

ABSTRACT

Although picornaviruses are conventionally considered 'nonenveloped', members of multiple picornaviral genera are released nonlytically from infected cells in extracellular vesicles. The mechanisms underlying this process are poorly understood. Here, we describe interactions of the hepatitis A virus (HAV) capsid with components of host endosomal sorting complexes required for transport (ESCRT) that play an essential role in release. We show release of quasi-enveloped virus (eHAV) in exosome-like vesicles requires a conserved export signal located within the 8 kDa C-terminal VP1 pX extension that functions in a manner analogous to late domains of canonical enveloped viruses. Fusing pX to a self-assembling engineered protein nanocage (EPN-pX) resulted in its ESCRT-dependent release in extracellular vesicles. Mutational analysis identified a 24 amino acid peptide sequence located within the center of pX that was both necessary and sufficient for nanocage release. Deleting a YxxL motif within this sequence ablated eHAV release, resulting in virus accumulating intracellularly. The pX export signal is conserved in non-human hepatoviruses from a wide range of mammalian species, and functional in pX sequences from bat hepatoviruses when fused to the nanocage protein, suggesting these viruses are released as quasi-enveloped virions. Quantitative proteomics identified multiple ESCRT-related proteins associating with EPN-pX, including ALG2-interacting protein X (ALIX), and its paralog, tyrosine-protein phosphatase non-receptor type 23 (HD-PTP), a second Bro1 domain protein linked to sorting of ubiquitylated cargo into multivesicular endosomes. RNAi-mediated depletion of either Bro1 domain protein impeded eHAV release. Super-resolution fluorescence microscopy demonstrated colocalization of viral capsids with endogenous ALIX and HD-PTP. Co-immunoprecipitation assays using biotin-tagged peptides and recombinant proteins revealed pX interacts directly through the export signal with N-terminal Bro1 domains of both HD-PTP and ALIX. Our study identifies an exceptionally potent viral export signal mediating extracellular release of virus-sized protein assemblies and shows release requires non-redundant activities of both HD-PTP and ALIX.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Hepatitis A virus , Animals , Calcium-Binding Proteins/metabolism , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Cycle Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Hepatitis A virus/genetics , Hepatitis A virus/metabolism , Mammals , Viral Proteins/metabolism
3.
Mol Cell ; 61(1): 39-53, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26725010

ABSTRACT

The transition from transcription initiation to elongation at promoters of primary response genes (PRGs) in metazoan cells is controlled by inducible transcription factors, which utilize P-TEFb to phosphorylate RNA polymerase II (Pol II) in response to stimuli. Prior to stimulation, a fraction of P-TEFb is recruited to promoter-proximal regions in a catalytically inactive state bound to the 7SK small nuclear ribonucleoprotein (snRNP) complex. However, it remains unclear how and why the 7SK snRNP is assembled at these sites. Here we report that the transcriptional regulator KAP1 continuously tethers the 7SK snRNP to PRG promoters to facilitate P-TEFb recruitment and productive elongation in response to stimulation. Remarkably, besides PRGs, genome-wide studies revealed that KAP1 and 7SK snRNP co-occupy most promoter-proximal regions containing paused Pol II. Collectively, we provide evidence of an unprecedented mechanism controlling 7SK snRNP delivery to promoter-proximal regions to facilitate "on-site" P-TEFb activation and Pol II elongation.


Subject(s)
Gene Expression Regulation, Viral , HIV/metabolism , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Repressor Proteins/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , Transcription Elongation, Genetic , Binding Sites , Enzyme Activation , HCT116 Cells , HEK293 Cells , HIV/genetics , Humans , Jurkat Cells , Multiprotein Complexes , Positive Transcriptional Elongation Factor B/metabolism , RNA Interference , RNA Polymerase II/genetics , Repressor Proteins/genetics , Ribonucleoproteins, Small Nuclear/genetics , Time Factors , Transfection , Tripartite Motif-Containing Protein 28 , Virus Activation
4.
PLoS Pathog ; 15(2): e1007536, 2019 02.
Article in English | MEDLINE | ID: mdl-30716130

ABSTRACT

Extracellular signaling is a mechanism that higher eukaryotes have evolved to facilitate organismal homeostasis. Recent years have seen an emerging interest in the role of secreted microvesicles, termed extracellular vesicles (EV) or exosomes in this signaling network. EV contents can be modified by the cell in response to stimuli, allowing them to relay information to neighboring cells, influencing their physiology. Here we show that the tumor virus Kaposi's Sarcoma-associated herpesvirus (KSHV) hijacks this signaling pathway to induce cell proliferation, migration, and transcriptome reprogramming in cells not infected with the virus. KSHV-EV activates the canonical MEK/ERK pathway, while not alerting innate immune regulators, allowing the virus to exert these changes without cellular pathogen recognition. Collectively, we propose that KSHV establishes a niche favorable for viral spread and cell transformation through cell-derived vesicles, all while avoiding detection.


Subject(s)
Cellular Reprogramming/physiology , Extracellular Vesicles/physiology , Herpesvirus 8, Human/metabolism , Cell Movement , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Cellular Reprogramming/genetics , Endothelial Cells/physiology , Herpesvirus 8, Human/genetics , Host-Pathogen Interactions , Human Umbilical Vein Endothelial Cells , Humans , Lymphoma/genetics , Lymphoma/metabolism , Sarcoma, Kaposi/metabolism , Sarcoma, Kaposi/virology , Signal Transduction , Transcriptome/genetics , Viral Proteins , Virus Latency
5.
mBio ; 15(1): e0303623, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38112418

ABSTRACT

Antibodies represent the primary correlate of immunity following most clinically approved vaccines. However, their mechanisms of action vary from pathogen to pathogen, ranging from neutralization, to opsonophagocytosis, to cytotoxicity. Antibody functions are regulated both by antigen specificity (Fab domain) and by the interaction of their Fc domain with distinct types of Fc receptors (FcRs) present in immune cells. Increasing evidence highlights the critical nature of Fc:FcR interactions in controlling pathogen spread and limiting the disease state. Moreover, variation in Fc-receptor engagement during the course of infection has been demonstrated across a range of pathogens, and this can be further influenced by prior exposure(s)/immunizations, age, pregnancy, and underlying health conditions. Fc:FcR functional variation occurs at the level of antibody isotype and subclass selection as well as post-translational modification of antibodies that shape Fc:FcR-interactions. These factors collectively support a model whereby the immune system actively harnesses and directs Fc:FcR interactions to fight disease. By defining the precise humoral mechanisms that control infections, as well as understanding how these functions can be actively tuned, it may be possible to open new paths for improving existing or novel vaccines.


Subject(s)
Antibodies , Receptors, Fc , Receptors, Fc/metabolism , Immunity , Immunoglobulin Isotypes , Protein Processing, Post-Translational
6.
Open Forum Infect Dis ; 11(4): ofae144, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38567194

ABSTRACT

Background: The bivalent COVID-19 mRNA boosters became available in fall 2022 and were recommended alongside the seasonal influenza vaccine. However, the immunogenicity of concurrent vs separate administration of these vaccines remains unclear. Methods: Here, we analyzed antibody responses in health care workers who received the bivalent COVID-19 booster and the influenza vaccine on the same day or on different days through systems serology. Antibody-binding and functional responses were characterized at peak responses and after 6 months following vaccination. Results: IgG1 and neutralization responses to SARS-CoV-2 XBB.1.5 were higher at peak and after 6 months following concurrent administration as compared with separate administration of the COVID-19 and influenza vaccines. While similar results were not observed for influenza responses, no interference was noted with concurrent administration. Conclusions: These data suggest that concurrent administration of these vaccines may yield higher and more durable SARS-CoV-2 neutralizing antibody responses while maintaining responses against influenza.

7.
bioRxiv ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38464001

ABSTRACT

Antibodies represent a primary mediator of protection against respiratory viruses such as SARS-CoV-2. Serum neutralizing antibodies (NAbs) are often considered a primary correlate of protection. However, detailed antibody profiles including characterization of antibody functions in different anatomic compartments are not well understood. Here we show that antibody correlates of protection against SARS-CoV-2 challenge are different in systemic versus mucosal compartments in rhesus macaques. In serum, neutralizing antibodies were the strongest correlate of protection and were linked to Spike-specific binding antibodies and other extra-neutralizing antibody functions that create a larger protective network. In contrast, in bronchiolar lavage (BAL), antibody-dependent cellular phagocytosis (ADCP) proved the strongest correlate of protection rather than NAbs. Within BAL, ADCP was linked to mucosal Spike-specific IgG, IgA/secretory IgA, and Fcγ-receptor binding antibodies. Our results support a model in which antibodies with different functions mediate protection at different anatomic sites. The correlation of ADCP and other Fc functional antibody responses with protection in BAL suggests that these antibody responses may be critical for protection against SARS-CoV-2 Omicron challenge in mucosa.

8.
NPJ Vaccines ; 9(1): 7, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38182593

ABSTRACT

With the continued emergence of variants of concern, the global threat of COVID-19 persists, particularly in low- and middle-income countries with limited vaccine access. Protein-based vaccines, such as SCB-2019, can be produced on a large scale at a low cost while antigen design and adjuvant use can modulate efficacy and safety. While effective humoral immunity against SARS-CoV-2 variants has been shown to depend on both neutralization and Fc-mediated immunity, data on the effectiveness of protein-based vaccines with enhanced Fc-mediated immunity is limited. Here, we assess the humoral profile, including antibody isotypes, subclasses, and Fc receptor binding generated by a boosting with a recombinant trimer-tag protein vaccine SCB-2019. Individuals who were primed with 2 doses of the ChAdOx1 vaccine were equally divided into 4 groups and boosted with following formulations: Group 1: 9 µg SCB-2019 and Alhydrogel; Group 2: 9 µg SCB-2019, CpG 1018, and Alhydrogel; Group 3: 30 µg SCB-2019, CpG 1018, and Alhydrogel; Group 4: ChAdOx1. Group 3 showed enhanced antibody FcγR binding against wild-type and variants compared to Groups 1 and 2, showing a dose-dependent enhancement of immunity conferred by the SCB-2019 vaccine. Moreover, from day 15 after vaccination, Group 3 exhibited higher IgG3 and FcγR binding across variants of concerns, including Omicron and its subvariants, compared to the ChAdOx1-boosted individuals. Overall, this highlights the potential of SCB-2019 as a cost-efficient boosting regimen effective across variants of concerns.

9.
Nat Commun ; 15(1): 905, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291080

ABSTRACT

Although young children generally experience mild symptoms following infection with SARS-CoV-2, severe acute and long-term complications can occur. SARS-CoV-2 mRNA vaccines elicit robust immunoglobulin profiles in children ages 5 years and older, and in adults, corresponding with substantial protection against hospitalizations and severe disease. Whether similar immune responses and humoral protection can be observed in vaccinated infants and young children, who have a developing and vulnerable immune system, remains poorly understood. To study the impact of mRNA vaccination on the humoral immunity of infant, we use a system serology approach to comprehensively profile antibody responses in a cohort of children ages 6 months to 5 years who were vaccinated with the mRNA-1273 COVID-19 vaccine (25 µg). Responses are compared with vaccinated adults (100 µg), in addition to naturally infected toddlers and young children. Despite their lower vaccine dose, vaccinated toddlers elicit a functional antibody response as strong as adults, with higher antibody-dependent phagocytosis compared to adults, without report of side effects. Moreover, mRNA vaccination is associated with a higher IgG3-dependent humoral profile against SARS-CoV-2 compared to natural infection, supporting that mRNA vaccination is effective at eliciting a robust antibody response in toddlers and young children.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Infant , Humans , Child, Preschool , 2019-nCoV Vaccine mRNA-1273 , COVID-19/prevention & control , Vaccination , Immunity, Humoral , RNA, Messenger , Antibodies, Viral
10.
Sci Adv ; 10(8): eadj9945, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394195

ABSTRACT

Messenger RNA (mRNA) vaccines were highly effective against the ancestral SARS-CoV-2 strain, but the efficacy of bivalent mRNA boosters against XBB variants was substantially lower. Here, we show limited durability of neutralizing antibody (NAb) responses against XBB variants and isotype switching to immunoglobulin G4 (IgG4) responses following bivalent mRNA boosting. Bivalent mRNA boosting elicited modest XBB.1-, XBB.1.5-, and XBB.1.16-specific NAbs that waned rapidly within 3 months. In contrast, bivalent mRNA boosting induced more robust and sustained NAbs against the ancestral WA1/2020 strain, suggesting immune imprinting. Following bivalent mRNA boosting, serum antibody responses were primarily IgG2 and IgG4 responses with poor Fc functional activity. In contrast, a third monovalent mRNA immunization boosted all isotypes including IgG1 and IgG3 with robust Fc functional activity. These data show substantial immune imprinting for the ancestral spike and isotype switching to IgG4 responses following bivalent mRNA boosting, with important implications for future booster designs and boosting strategies.


Subject(s)
Antibody Formation , Immunoglobulin G , Antibodies, Neutralizing , Immunization , RNA, Messenger/genetics , mRNA Vaccines
11.
Cell Chem Biol ; 30(7): 701-702, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37478826

ABSTRACT

In this issue, McConnell et al.10 demonstrate that COVID-19 convalescent plasma (CCP)-derived antibodies can neutralize SARS-CoV-2 by proteolytically cleaving the spike protein. The CCP antibody-mediated catalysis has broader implications beyond COVID-19 and can be applicable in understanding the mechanism of antibody-based neutralization of different pathogens.


Subject(s)
Antibodies, Catalytic , COVID-19 , Humans , COVID-19 Serotherapy , SARS-CoV-2 , Antibodies , Antibodies, Neutralizing
12.
bioRxiv ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37745590

ABSTRACT

The bivalent COVID-19 mRNA boosters became available in fall 2022 and were recommended alongside the seasonal influenza vaccine. However, the immunogenicity of concurrent versus separate administration of these vaccines remains unclear. Here, we analyzed antibody responses in healthcare workers who received the bivalent COVID-19 booster and the influenza vaccine on the same day or different days. IgG1 responses to SARS-CoV-2 Spike were higher at peak immunogenicity and 6 months following concurrent administration compared with separate administration of the COVID-19 and influenza vaccines. These data suggest that concurrent administration of these vaccines may yield higher and more durable SARS-CoV-2 antibody responses.

13.
Front Microbiol ; 14: 1171990, 2023.
Article in English | MEDLINE | ID: mdl-37228375

ABSTRACT

Introduction: Placental transfer of maternal antibodies is essential for neonatal immunity over the first months of life. In the setting of maternal HIV infection, HIV-exposed uninfected (HEU) infants are at higher risk of developing severe infections, including active tuberculosis (TB). Given our emerging appreciation for the potential role of antibodies in the control of Mycobacterium tuberculosis (Mtb), the bacteria that causes TB, here we aimed to determine whether maternal HIV status altered the quality of Mtb-specific placental antibody transfer. Methods: Antigen-specific antibody systems serology was performed to comprehensively characterize the Mtb-specific humoral immune response in maternal and umbilical cord blood from HIV infected and uninfected pregnant people in Uganda. Results: Significant differences were noted in overall antibody profiles in HIV positive and negative maternal plasma, resulting in heterogeneous transfer of Mtb-specific antibodies. Altered antibody transfer in HIV infected dyads was associated with impaired binding to IgG Fc-receptors, which was directly linked to HIV viral loads and CD4 counts. Conclusions: These results highlight the importance of maternal HIV status on antibody transfer, providing clues related to alterations in transferred maternal immunity that may render HEU infants more vulnerable to TB than their HIV-unexposed peers.

14.
J Extracell Vesicles ; 12(6): e12327, 2023 06.
Article in English | MEDLINE | ID: mdl-37272197

ABSTRACT

Purifying extracellular vesicles (EVs) has been challenging because EVs are heterogeneous in cargo yet share similar sizes and densities. Most surface marker-based affinity separation methods are limited to research or diagnostic scales. We report that heparin chromatography can separate purified EVs into two distinct subpopulations as ascertained by MS/MS: a non-heparin-binding (NHB) fraction that contains classical EV markers such as tetraspanins and a heparin-binding (HB) fraction enriched in fibronectins and histones. Both fractions were similarly fusogenic but induced different transcriptional responses in endothelial cells. While EVs that were purified by conventional, non-affinity methods alone induced ERK1/2 phosphorylation and Ki67, the NHB fraction did not. This result suggests heparin chromatography as an additional novel fractionation step that is inherently scalable, does not lead to loss of material, and separates inflammatory and pyrogenic EVs from unreactive EVs, which will improve clinical applications.


Subject(s)
Extracellular Vesicles , Heparin , Heparin/pharmacology , Heparin/analysis , Heparin/chemistry , Tandem Mass Spectrometry , Endothelial Cells , Extracellular Vesicles/chemistry , Chromatography, Affinity/methods
15.
Colloids Surf B Biointerfaces ; 225: 113249, 2023 May.
Article in English | MEDLINE | ID: mdl-36905832

ABSTRACT

Extracellular vesicles (EVs) are nano-sized, biocolloidal proteoliposomes that have been shown to be produced by all cell types studied to date and are ubiquitous in the environment. Extensive literature on colloidal particles has demonstrated the implications of surface chemistry on transport behavior. Hence, one may anticipate that physicochemical properties of EVs, particularly surface charge-associated properties, may influence EV transport and specificity of interactions with surfaces. Here we compare the surface chemistry of EVs as expressed by zeta potential (calculated from electrophoretic mobility measurements). The zeta potentials of EVs produced by Pseudomonas fluorescens, Staphylococcus aureus, and Saccharomyces cerevisiae were largely unaffected by changes in ionic strength and electrolyte type, but were affected by changes in pH. The addition of humic acid altered the calculated zeta potential of the EVs, especially for those from S. cerevisiae. Differences in zeta potential were compared between EVs and their respective parent cell with no consistent trend emerging; however, significant differences were discovered between the different cell types and their EVs. These findings imply that, while EV surface charge (as estimated from zeta potential) is relatively insensitive to the evaluated environmental conditions, EVs from different organisms can differ regarding which conditions will cause colloidal instability.


Subject(s)
Extracellular Vesicles , Saccharomyces cerevisiae , Extracellular Vesicles/chemistry , Bacteria
16.
Nat Microbiol ; 8(4): 569-580, 2023 04.
Article in English | MEDLINE | ID: mdl-37012355

ABSTRACT

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical coronavirus disease 2019 outcome. However, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and FcγR-knockout mice, we determined the requirement for Fc effector functions to control SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the pre-clinical mRNA-1273 vaccine, control of Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc-FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains.


Subject(s)
COVID-19 , Vaccines , Animals , Humans , Mice , SARS-CoV-2/genetics , 2019-nCoV Vaccine mRNA-1273 , Receptors, IgG/genetics , BNT162 Vaccine , COVID-19/prevention & control , Antibodies, Viral , Mice, Knockout
17.
Cell Rep ; 42(11): 113292, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38007686

ABSTRACT

The reduced effectiveness of COVID-19 vaccines due to the emergence of variants of concern (VOCs) necessitated the use of vaccine boosters to bolster protection against disease. However, it remains unclear how boosting expands protective breadth when primary vaccine platforms are distinct and how boosters containing VOC spike(s) broaden humoral responses. Here, we report that boosters composed of recombinant spike antigens of ancestral (prototype) and Beta VOCs elicit a robust, pan-VOC, and multi-functional humoral response in non-human primates largely independent of the primary vaccine series platform. Interestingly, Beta-spike-containing boosters stimulate immunoglobulin A (IgA) with a greater breadth of recognition in protein-primed recipients when administered with adjuvant system 03 (AS03). Our results highlight the utility of a component-based booster strategy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for broad humoral recognition, independent of primary vaccine series. This is of high global health importance given the heterogeneity of primary vaccination platforms distributed.


Subject(s)
COVID-19 , Vaccines , Animals , Humans , SARS-CoV-2 , COVID-19 Vaccines , Macaca , Antibody Formation , COVID-19/prevention & control , Antibodies, Viral , Antibodies, Neutralizing
18.
bioRxiv ; 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37577655

ABSTRACT

Altering the route of Bacille Calmette-Guérin (BCG) immunization from low-dose intradermal vaccination to high-dose intravenous (IV) vaccination resulted in a high level of protection against Mycobacterium tuberculosis ( Mtb ) infection, providing an opportunity to uncover immune correlates and mechanisms of protection. In addition to strong T cell immunity, IV BCG vaccination was associated with a robust expansion of humoral immune responses that tracked with bacterial control. However, given the near complete protection afforded by high-dose IV BCG immunization, a precise correlate of immune protection was difficult to define. Here we leveraged plasma and bronchoalveolar lavage fluid (BAL) from a cohort of rhesus macaques that received decreasing doses of IV BCG and aimed to define the correlates of immunity across macaques that experienced immune protection or breakthrough infection following Mtb challenge. We show an IV BCG dose-dependent induction of mycobacterial-specific humoral immune responses, both in the plasma and in the airways. Moreover, antibody responses at peak immunogenicity significantly predicted bacterial control following challenge. Multivariate analyses revealed antibody-mediated complement and NK cell activating humoral networks as key functional signatures associated with protective immunity. Collectively, this work extends our understanding of humoral biomarkers and potential mechanisms of IV BCG mediated protection against Mtb .

19.
mBio ; 14(2): e0344822, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36786605

ABSTRACT

Variants of concern (VOC) in SARS-CoV-2 refer to viruses whose viral genomes differ from the ancestor virus by ≥3 single-nucleotide variants (SNVs) and that show the potential for higher transmissibility and/or worse clinical progression. VOC have the potential to disrupt ongoing public health measures and vaccine efforts. Still, too little is known regarding how frequently new viral variants emerge and under what circumstances. We report a study to determine the degree of SARS-CoV-2 sequence evolution in 94 patients and to estimate the frequency at which highly diverse variants emerge. Two cases accumulated ≥9 SNVs over a 2-week period and one case accumulated 23 SNVs over 3 weeks, including three nonsynonymous mutations in the spike protein (D138H, E554D, D614G). The remainder of the infected patients did not show signs of intra-host evolution. We estimate that in as much as 2% of hospitalized COVID-19 cases, variants with multiple mutations in the spike glycoprotein emerge in as little as 1 month of persistent intra-host virus replication. This suggests the continued local emergence of variants with multiple nonsynonymous SNVs, even in patients without overt immune deficiency. Surveillance by sequencing for (i) viremic COVID-19 patients, (ii) patients suspected of reinfection, and (iii) patients with diminished immune function may offer broad public health benefits. IMPORTANCE New SARS-CoV-2 variants can potentially disrupt ongoing public health measures and vaccine efforts. Still, little is known regarding how frequently new viral variants emerge and under what circumstances. Based on this study, we estimate that in hospitalized COVID-19 cases, variants with multiple mutations may emerge locally in as little as 1 month, even in patients without overt immune deficiency. Surveillance by sequencing for continuously shedding patients, patients suspected of reinfection, and patients with diminished immune function may offer broad public health benefits.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reinfection , Family , Mutation , Spike Glycoprotein, Coronavirus/genetics
20.
Nat Biomed Eng ; 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37679571

ABSTRACT

To elicit optimal immune responses, messenger RNA vaccines require intracellular delivery of the mRNA and the careful use of adjuvants. Here we report a multiply adjuvanted mRNA vaccine consisting of lipid nanoparticles encapsulating an mRNA-encoded antigen, optimized for efficient mRNA delivery and for the enhanced activation of innate and adaptive responses. We optimized the vaccine by screening a library of 480 biodegradable ionizable lipids with headgroups adjuvanted with cyclic amines and by adjuvanting the mRNA-encoded antigen by fusing it with a natural adjuvant derived from the C3 complement protein. In mice, intramuscular or intranasal administration of nanoparticles with the lead ionizable lipid and with mRNA encoding for the fusion protein (either the spike protein or the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) increased the titres of antibodies against SARS-CoV-2 tenfold with respect to the vaccine encoding for the unadjuvanted antigen. Multiply adjuvanted mRNA vaccines may improve the efficacy, safety and ease of administration of mRNA-based immunization.

SELECTION OF CITATIONS
SEARCH DETAIL