Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Pharmacol Exp Ther ; 388(2): 637-646, 2024 01 17.
Article in English | MEDLINE | ID: mdl-37977816

ABSTRACT

Botulinum neurotoxin (BoNT) is a potent protein toxin that causes muscle paralysis and death by asphyxiation. Treatments for symptomatic botulism are intubation and supportive care until respiratory function recovers. Aminopyridines have recently emerged as potential treatments for botulism. The clinically approved drug 3,4-diaminopyridine (3,4-DAP) rapidly reverses toxic signs of botulism and has antidotal effects when continuously administered in rodent models of lethal botulism. Although the therapeutic effects of 3,4-DAP likely result from the reversal of diaphragm paralysis, the corresponding effects on respiratory physiology are not understood. Here, we combined unrestrained whole-body plethysmography (UWBP) with arterial blood gas measurements to study the effects of 3,4-DAP, and other aminopyridines, on ventilation and respiration at terminal stages of botulism in mice. Treatment with clinically relevant doses of 3,4-DAP restored ventilation in a dose-dependent manner, producing significant improvements in ventilatory parameters within 10 minutes. Concomitant with improved ventilation, 3,4-DAP treatment reversed botulism-induced respiratory acidosis, restoring blood levels of CO2, pH, and lactate to normal physiologic levels. Having established that 3,4-DAP-mediated improvements in ventilation were directly correlated with improved respiration, we used UWBP to quantitatively evaluate nine additional aminopyridines in BoNT/A-intoxicated mice. Multiple aminopyridines were identified with comparable or enhanced therapeutic efficacies compared with 3,4-DAP, including aminopyridines that selectively improved tidal volume versus respiratory rate and vice versa. In addition to contributing to a growing body of evidence supporting the use of aminopyridines to treat clinical botulism, these data lay the groundwork for the development of aminopyridine derivatives with improved pharmacological properties. SIGNIFICANCE STATEMENT: There is a critical need for fast-acting treatments to reverse respiratory paralysis in patients with botulism. This study used unrestrained, whole-body plethysmography and arterial blood gas analysis to show that aminopyridines rapidly restore ventilation and respiration and reverse respiratory acidosis when administered to mice at terminal stages of botulism. In addition to supporting the use of aminopyridines as first-line treatments for botulism symptoms, these data are expected to contribute to the development of new aminopyridine derivatives with improved pharmacological properties.


Subject(s)
Acidosis, Respiratory , Botulinum Toxins, Type A , Botulism , Mice , Humans , Animals , Botulism/drug therapy , Aminopyridines/pharmacology , Amifampridine/therapeutic use , Acidosis, Respiratory/drug therapy , Botulinum Toxins, Type A/therapeutic use , Botulinum Toxins, Type A/toxicity , Paralysis/drug therapy , Respiration
2.
J Pharmacol Exp Ther ; 388(2): 526-535, 2024 01 17.
Article in English | MEDLINE | ID: mdl-37977813

ABSTRACT

Sulfur mustard (SM) is a highly reactive organic chemical has been used as a chemical warfare agent and terrorist threat since World War I. The cornea is highly sensitive to SM toxicity and exposure to low vapor doses can cause incapacitating acute injuries. Exposure to higher doses can elicit persistent secondary keratopathies that cause reduced quality of life and impaired or lost vision. Despite a century of research, there are no specific treatments for acute or persistent ocular SM injuries. SM cytotoxicity emerges, in part, through DNA alkylation and double-strand breaks (DSBs). Because DSBs can naturally be repaired by DNA damage response pathways with low efficiency, we hypothesized that enhancing the homologous recombination pathway could pose a novel approach to mitigate SM injury. Here, we demonstrate that a dilithium salt of adenosine diphosphoribose (INV-102) increases protein levels of p53 and Sirtuin 6, upregulates transcription of BRCA1/2, enhances γH2AX focus formation, and promotes assembly of repair complexes at DSBs. Based on in vitro evidence showing INV-102 enhancement of DNA damage response through both p53-dependent and p53-independent pathways, we next tested INV-102 in a rabbit preclinical model of corneal injury. In vivo studies demonstrate a marked reduction in the incidence and severity of secondary keratopathies in INV-102-treated eyes compared with vehicle-treated eyes when treatment was started 24 hours after SM vapor exposure. These results suggest DNA repair mechanisms are a viable therapeutic target for SM injury and suggest topical treatment with INV-102 is a promising approach for SM as well as other conditions associated with DSBs. SIGNIFICANCE STATEMENT: Sulfur mustard gas corneal injury currently has no therapeutic treatment. This study aims to show the therapeutic potential of activating the body's natural DNA damage response to activate tissue repair.


Subject(s)
Chemical Warfare Agents , Corneal Injuries , Mustard Gas , Animals , Rabbits , Mustard Gas/toxicity , BRCA1 Protein , Tumor Suppressor Protein p53 , Quality of Life , BRCA2 Protein , Corneal Injuries/chemically induced , Corneal Injuries/drug therapy , Chemical Warfare Agents/toxicity , DNA Repair , DNA Damage
3.
Exp Eye Res ; 228: 109395, 2023 03.
Article in English | MEDLINE | ID: mdl-36731603

ABSTRACT

Sulfur mustard (SM) remains a highly dangerous chemical weapon capable of producing mass casualties through liquid or vapor exposure. The cornea is highly sensitive to SM toxicity and exposure to low vapor doses can cause incapacitating acute injuries. At higher doses, corneas fail to fully heal and subsequently develop a constellation of symptoms known as mustard gas keratopathy (MGK) that causes reduced quality of life and impaired or lost vision. Despite a century of research, there are no specific treatments for acute or persistent ocular SM injuries. Here I summarize toxicological, clinical and pathophysiological mechanisms of SM vapor injury in the cornea, describe a preclinical model of ocular SM vapor exposure for reproducible therapeutic studies, and propose new approaches to improve evaluation of therapeutic effects. I also describe recent findings illustrating the delayed development of a transient but severe recurrent corneal lesion that, in turn, triggers the emergence of secondary keratopathies characteristic of the chronic form of MGK. Development of this recurrent lesion is SM dose-dependent, although the severity of the recurrent lesion appears SM dose-independent. Similar recurrent lesions have been reported in multiple species, including humans. Given the mechanistic relationship between the recurrent lesion and chronic, secondary keratopathies, I hypothesize that preventing the development of the recurrent lesion represents a novel and potentially valuable therapeutic approach for treatment of severe corneal SM injuries. Although ocular exposure to SM vapor continues to be a challenging therapeutic target, establishing consistent and reproducible models of corneal injury that enhance mechanistic and pathophysiological understanding will help satisfy regulatory requirements and accelerate the development of effective therapies.


Subject(s)
Chemical Warfare Agents , Corneal Diseases , Corneal Injuries , Mustard Gas , Humans , Mustard Gas/toxicity , Chemical Warfare Agents/toxicity , Quality of Life , Corneal Diseases/pathology
4.
Int J Mol Sci ; 24(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37373093

ABSTRACT

Sulfur mustard (SM) is a highly toxic chemical agent that causes severe tissue damage, particularly to the eyes, lungs, and skin. Despite advances in treatment, there is a need for more effective therapies for SM-induced tissue injury. Stem cell and exosome therapies are emerging as promising approaches for tissue repair and regeneration. Stem cells can differentiate into multiple cell types and promote tissue regeneration, while exosomes are small vesicles that can deliver therapeutic cargo to target cells. Several preclinical studies demonstrated the potential of stem cell, exosome, or combination therapy for various tissue injury, showing improvements in tissue repairing, inflammation, and fibrosis. However, there are also challenges associated with these therapies, such as the requirement for standardized methods for exosome isolation and characterization, the long-term safety and efficacy and reduced SM-induced tissue injury of these therapies. Stem cell or exosome therapy was used for SM-induced eye and lung injury. Despite the limited data on the use for SM-induced skin injury, this therapy is a promising area of research and may offer new treatment options in the future. In this review, we focused on optimizing these therapies, evaluating their safety and efficacy, and comparing their efficacy to other emerging therapeutic approaches potentially for SM-induced tissue injury in the eye, lung, and skin.


Subject(s)
Chemical Warfare Agents , Exosomes , Mustard Gas , Mustard Gas/toxicity , Skin , Stem Cells , Sulfur/pharmacology , Chemical Warfare Agents/pharmacology
5.
Mol Med ; 28(1): 61, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35659174

ABSTRACT

Botulinum neurotoxins (BoNTs) are highly potent, select agent toxins that inhibit neurotransmitter release at motor nerve terminals, causing muscle paralysis and death by asphyxiation. Other than post-exposure prophylaxis with antitoxin, the only treatment option for symptomatic botulism is intubation and supportive care until recovery, which can require weeks or longer. In previous studies, we reported the FDA-approved drug 3,4-diaminopyridine (3,4-DAP) reverses early botulism symptoms and prolongs survival in lethally intoxicated mice. However, the symptomatic benefits of 3,4-DAP are limited by its rapid clearance. Here we investigated whether 3,4-DAP could sustain symptomatic benefits throughout the full course of respiratory paralysis in lethally intoxicated rats. First, we confirmed serial injections of 3,4-DAP stabilized toxic signs and prolonged survival in rats challenged with 2.5 LD50 BoNT/A. Rebound of toxic signs and death occurred within hours after the final 3,4-DAP treatment, consistent with the short half-life of 3,4-DAP in rats. Based on these data, we next investigated whether the therapeutic benefits of 3,4-DAP could be sustained throughout the course of botulism by continuous infusion. To ensure administration of 3,4-DAP at clinically relevant doses, three infusion dose rates (0.5, 1.0 and 1.5 mg/kg∙h) were identified that produced steady-state serum levels of 3,4-DAP consistent with clinical dosing. We then compared dose-dependent effects of 3,4-DAP on toxic signs and survival in rats intoxicated with 2.5 LD50 BoNT/A. In contrast to saline vehicle, which resulted in 100% mortality, infusion of 3,4-DAP at ≥ 1.0 mg/kg∙h from 1 to 14 d after intoxication produced 94.4% survival and full resolution of toxic signs, without rebound of toxic signs after infusion was stopped. In contrast, withdrawal of 3,4-DAP infusion at 5 d resulted in re-emergence of toxic sign and death within 12 h, confirming antidotal outcomes require sustained 3,4-DAP treatment for longer than 5 d after intoxication. We exploited this novel survival model of lethal botulism to explore neurophysiological parameters of diaphragm paralysis and recovery. While neurotransmission was nearly eliminated at 5 d, neurotransmission was significantly improved at 21 d in 3,4-DAP-infused survivors, although still depressed compared to naïve rats. 3,4-DAP is the first small molecule to reverse systemic paralysis and promote survival in animal models of botulism, thereby meeting a critical treatment need that is not addressed by post-exposure prophylaxis with conventional antitoxin. These data contribute to a growing body of evidence supporting the use of 3,4-DAP to treat clinical botulism.


Subject(s)
Antitoxins , Botulism , Amifampridine/therapeutic use , Animals , Antidotes/pharmacology , Antidotes/therapeutic use , Antitoxins/therapeutic use , Botulism/drug therapy , Mice , Paralysis/drug therapy , Rats
6.
Arch Toxicol ; 94(11): 3877-3891, 2020 11.
Article in English | MEDLINE | ID: mdl-32691075

ABSTRACT

Organophosphorus (OP) compounds inhibit central and peripheral acetylcholinesterase (AChE) activity, overstimulating cholinergic receptors and causing autonomic dysfunction (e.g., bronchoconstriction, excess secretions), respiratory impairment, seizure and death at high doses. Current treatment for OP poisoning in the United States includes reactivation of OP-inhibited AChE by the pyridinium oxime 2-pyridine aldoxime (2-PAM). However, 2-PAM has a narrow therapeutic index and its efficacy is confined to a limited number of OP agents. The bis-pyridinium oxime MMB4, which is a more potent reactivator than 2-PAM with improved pharmaceutical properties and therapeutic range, is under consideration as a potential replacement for 2-PAM. Similar to other pyridinium oximes, high doses of MMB4 lead to off-target effects culminating in respiratory depression and death. To understand the toxic mechanisms contributing to respiratory depression, we evaluated the effects of MMB4 (0.25-16 mM) on functional and neurophysiological parameters of diaphragm and limb muscle function in rabbits and rats. In both species, MMB4 depressed nerve-elicited muscle contraction by blocking muscle endplate nicotinic receptor currents while simultaneously prolonging endplate potentials by inhibiting AChE. MMB4 increased quantal content, endplate potential rundown and tetanic fade during high frequency stimulation in rat but not rabbit muscles, suggesting species-specific effects on feedback mechanisms involved in sustaining neurotransmission. These data reveal multifactorial effects of MMB4 on cholinergic neurotransmission, with the primary toxic modality being reduced muscle nicotinic endplate currents. Evidence of species-specific effects on neuromuscular function illustrates the importance of comparative toxicology when studying pyridinium oximes and, by inference, other quaternary ammonium compounds.


Subject(s)
Acetylcholinesterase/drug effects , Muscles/drug effects , Organophosphate Poisoning/drug therapy , Oximes/adverse effects , Synaptic Transmission/drug effects , Animals , Cholinesterase Reactivators/adverse effects , Dose-Response Relationship, Drug , Female , Male , Pralidoxime Compounds/therapeutic use , Rabbits , Rats , Rats, Sprague-Dawley , Respiratory Insufficiency/chemically induced , Species Specificity
7.
Int J Mol Sci ; 21(22)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33218099

ABSTRACT

Botulinum neurotoxins (BoNTs) are highly potent, neuroparalytic protein toxins that block the release of acetylcholine from motor neurons and autonomic synapses. The unparalleled toxicity of BoNTs results from the highly specific and localized cleavage of presynaptic proteins required for nerve transmission. Currently, the only pharmacotherapy for botulism is prophylaxis with antitoxin, which becomes progressively less effective as symptoms develop. Treatment for symptomatic botulism is limited to supportive care and artificial ventilation until respiratory function spontaneously recovers, which can take weeks or longer. Mechanistic insights into intracellular toxin behavior have progressed significantly since it was shown that toxins exploit synaptic endocytosis for entry into the nerve terminal, but fundamental questions about host-toxin interactions remain unanswered. Chief among these are mechanisms by which BoNT is internalized into neurons and trafficked to sites of molecular toxicity. Elucidating how receptor-bound toxin is internalized and conditions under which the toxin light chain engages with target SNARE proteins is critical for understanding the dynamics of intoxication and identifying novel therapeutics. Here, we discuss the implications of newly discovered modes of synaptic vesicle recycling on BoNT uptake and intraneuronal trafficking.


Subject(s)
Botulinum Toxins/metabolism , Drug Delivery Systems/methods , Motor Neurons/metabolism , Presynaptic Terminals/metabolism , Animals , Antitoxins/pharmacology , Botulism/metabolism , Botulism/prevention & control , Humans , Motor Neurons/drug effects , Presynaptic Terminals/drug effects , Protein Transport/drug effects , Synaptic Transmission/drug effects
8.
Toxicol Appl Pharmacol ; 341: 77-86, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29366638

ABSTRACT

Botulinum neurotoxins (BoNTs) are exceedingly potent neurological poisons that prevent neurotransmitter release from peripheral nerve terminals by cleaving presynaptic proteins required for synaptic vesicle fusion. The ensuing neuromuscular paralysis causes death by asphyxiation. Although no antidotal treatments exist to block toxin activity within the nerve terminal, aminopyridine antagonists of voltage-gated potassium channels have been proposed as symptomatic treatments for botulism toxemia. However, clinical evaluation of aminopyridines as symptomatic treatments for botulism has been inconclusive, in part because mechanisms responsible for reversal of paralysis in BoNT-poisoned nerve terminals are not understood. Here we measured the effects of 3,4-diaminopyridine (DAP) on phrenic nerve-elicited diaphragm contraction and end-plate potentials at various times after intoxication with BoNT serotypes A, B, or E. We found that DAP-mediated increases in quantal content promote neurotransmission from intoxicated nerve terminals through two functionally distinguishable mechanisms. First, DAP increases the probability of neurotransmission at non-intoxicated release sites. This mechanism is serotype-independent, becomes less effective as nerve terminals become progressively impaired, and remains susceptible to ongoing intoxication. Second, DAP elicits persistent production of toxin-resistant endplate potentials from nerve terminals fully intoxicated by BoNT/A, but not serotypes B or E. Since this effect appears specific to BoNT/A intoxication, we propose that DAP treatment enables BoNT/A-cleaved SNAP-25 to productively engage in fusogenic release by increasing the opportunity for low-efficiency fusion events. These findings have important implications for DAP as a botulism therapeutic by defining conditions under which DAP may be clinically effective in reversing botulism symptoms.


Subject(s)
4-Aminopyridine/analogs & derivatives , Botulinum Toxins, Type A/toxicity , Diaphragm/drug effects , Respiratory Paralysis/chemically induced , Respiratory Paralysis/drug therapy , 4-Aminopyridine/pharmacology , 4-Aminopyridine/therapeutic use , Amifampridine , Animals , Diaphragm/physiology , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/therapeutic use , Respiratory Paralysis/physiopathology
9.
Stat Appl Genet Mol Biol ; 14(3): 227-41, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25781714

ABSTRACT

The use of fold-change (FC) to prioritize differentially expressed genes (DEGs) for post-hoc characterization is a common technique in the analysis of RNA sequencing datasets. However, the use of FC can overlook certain population of DEGs, such as high copy number transcripts which undergo metabolically expensive changes in expression yet fail to exceed the ratiometric FC cut-off, thereby missing potential important biological information. Here we evaluate an alternative approach to prioritizing RNAseq data based on absolute changes in normalized transcript counts (ΔT) between control and treatment conditions. In five pairwise comparisons with a wide range of effect sizes, rank-ordering of DEGs based on the magnitude of ΔT produced a power curve-like distribution, in which 4.7-5.0% of transcripts were responsible for 36-50% of the cumulative change. Thus, differential gene expression is characterized by the high production-cost expression of a small number of genes (large ΔT genes), while the differential expression of the majority of genes involves a much smaller metabolic investment by the cell. To determine whether the large ΔT datasets are representative of coordinated changes in the transcriptional program, we evaluated large ΔT genes for enrichment of gene ontologies (GOs) and predicted protein interactions. In comparison to randomly selected DEGs, the large ΔT transcripts were significantly enriched for both GOs and predicted protein interactions. Furthermore, enrichments were were consistent with the biological context of each comparison yet distinct from those produced using equal-sized populations of large FC genes, indicating that the large ΔT genes represent an orthagonal transcriptional response. Finally, the composition of the large ΔT gene sets were unique to each pairwise comparison, indicating that they represent coherent and context-specific responses to biological conditions rather than the non-specific upregulation of a family of genes. These findings suggest that the large ΔT genes are not a product of random or stochastic phenomenon, but rather represent biologically meaningful changes in the transcriptional program. They furthermore imply that high abundance transcripts are associated with particularly cellular states, and as cells change in response to internal or external conditions, the relative distribution of the abundant transcripts changes accordingly. Thus, prioritization of DEGs based on the concept of metabolic cost is a simple yet powerful method to identify biologically important transcriptional changes and provide novel insights into cellular behaviors.


Subject(s)
Computational Biology/methods , Sequence Analysis, RNA/methods , Transcription, Genetic , Animals , Datasets as Topic , Embryonic Stem Cells , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Mice , Molecular Sequence Annotation , Reproducibility of Results , Transcriptome
10.
Front Microbiol ; 15: 1342328, 2024.
Article in English | MEDLINE | ID: mdl-38655085

ABSTRACT

Introduction: Our study undertakes a detailed exploration of gene expression dynamics within human lung organ tissue equivalents (OTEs) in response to Influenza A virus (IAV), Human metapneumovirus (MPV), and Parainfluenza virus type 3 (PIV3) infections. Through the analysis of RNA-Seq data from 19,671 genes, we aim to identify differentially expressed genes under various infection conditions, elucidating the complexities of virus-host interactions. Methods: We employ Generalized Linear Models (GLMs) with Quasi-Likelihood (QL) F-tests (GLMQL) and introduce the novel Magnitude-Altitude Score (MAS) and Relaxed Magnitude-Altitude Score (RMAS) algorithms to navigate the intricate landscape of RNA-Seq data. This approach facilitates the precise identification of potential biomarkers, highlighting the host's reliance on innate immune mechanisms. Our comprehensive methodological framework includes RNA extraction, library preparation, sequencing, and Gene Ontology (GO) enrichment analysis to interpret the biological significance of our findings. Results: The differential expression analysis unveils significant changes in gene expression triggered by IAV, MPV, and PIV3 infections. The MAS and RMAS algorithms enable focused identification of biomarkers, revealing a consistent activation of interferon-stimulated genes (e.g., IFIT1, IFIT2, IFIT3, OAS1) across all viruses. Our GO analysis provides deep insights into the host's defense mechanisms and viral strategies exploiting host cellular functions. Notably, changes in cellular structures, such as cilium assembly and mitochondrial ribosome assembly, indicate a strategic shift in cellular priorities. The precision of our methodology is validated by a 92% mean accuracy in classifying respiratory virus infections using multinomial logistic regression, demonstrating the superior efficacy of our approach over traditional methods. Discussion: This study highlights the intricate interplay between viral infections and host gene expression, underscoring the need for targeted therapeutic interventions. The stability and reliability of the MAS/RMAS ranking method, even under stringent statistical corrections, and the critical importance of adequate sample size for biomarker reliability are significant findings. Our comprehensive analysis not only advances our understanding of the host's response to viral infections but also sets a new benchmark for the identification of biomarkers, paving the way for the development of effective diagnostic and therapeutic strategies.

11.
Front Genet ; 15: 1327984, 2024.
Article in English | MEDLINE | ID: mdl-38957806

ABSTRACT

In this study, we delved into the comparative analysis of gene expression data across RNA-Seq and NanoString platforms. While RNA-Seq covered 19,671 genes and NanoString targeted 773 genes associated with immune responses to viruses, our primary focus was on the 754 genes found in both platforms. Our experiment involved 16 different infection conditions, with samples derived from 3D airway organ-tissue equivalents subjected to three virus types, influenza A virus (IAV), human metapneumovirus (MPV), and parainfluenza virus 3 (PIV3). Post-infection measurements, after UV (inactive virus) and Non-UV (active virus) treatments, were recorded at 24-h and 72-h intervals. Including untreated and Mock-infected OTEs as control groups enabled differentiating changes induced by the virus from those arising due to procedural elements. Through a series of methodological approaches (including Spearman correlation, Distance correlation, Bland-Altman analysis, Generalized Linear Models Huber regression, the Magnitude-Altitude Score (MAS) algorithm and Gene Ontology analysis) the study meticulously contrasted RNA-Seq and NanoString datasets. The Magnitude-Altitude Score algorithm, which integrates both the amplitude of gene expression changes (magnitude) and their statistical relevance (altitude), offers a comprehensive tool for prioritizing genes based on their differential expression profiles in specific viral infection conditions. We observed a strong congruence between the platforms, especially in identifying key antiviral defense genes. Both platforms consistently highlighted genes including ISG15, MX1, RSAD2, and members of the OAS family (OAS1, OAS2, OAS3). The IFIT proteins (IFIT1, IFIT2, IFIT3) were emphasized for their crucial role in counteracting viral replication by both platforms. Additionally, CXCL10 and CXCL11 were pinpointed, shedding light on the organ tissue equivalent's innate immune response to viral infections. While both platforms provided invaluable insights into the genetic landscape of organoids under viral infection, the NanoString platform often presented a more detailed picture in situations where RNA-Seq signals were more subtle. The combined data from both platforms emphasize their joint value in advancing our understanding of viral impacts on lung organoids.

12.
Front Med ; 18(2): 258-284, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38216854

ABSTRACT

Exosome therapy holds great promise as a novel approach to improve acute skin wound healing. This review provides a comprehensive overview of the current understanding of exosome biology and its potential applications in acute skin wound healing and beyond. Exosomes, small extracellular vesicles secreted by various stem cells, have emerged as potent mediators of intercellular communication and tissue repair. One advantage of exosome therapy is its ability to avoid potential risks associated with stem cell therapy, such as immune rejection or stem cells differentiating into unwanted cell types. However, further research is necessary to optimize exosome therapy, not only in the areas of exosome isolation, characterization, and engineering, but also in determining the optimal dose, timing, administration, and frequency of exosome therapy. Thus, optimization of exosome therapy is critical for the development of more effective and safer exosome-based therapies for acute skin wound healing and other diseases induced by cancer, ischemia, or inflammation. This review provides valuable insights into the potential of exosome therapy and highlights the need for further research to optimize exosome therapy for clinical use.


Subject(s)
Exosomes , Skin , Wound Healing , Humans , Exosomes/transplantation , Exosomes/metabolism , Skin/injuries , Animals
13.
BMC Neurosci ; 14: 49, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23597229

ABSTRACT

BACKGROUND: Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. RESULTS: We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 µM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. CONCLUSION: Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Differentiation/drug effects , Cell Size/drug effects , Tretinoin/pharmacology , Calcimycin/pharmacology , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels, N-Type/metabolism , Calcium Ionophores/pharmacology , Cell Line, Tumor , Chemical Warfare Agents/pharmacology , Choline O-Acetyltransferase/metabolism , Gene Expression Regulation/drug effects , Glycine/metabolism , Humans , Nerve Tissue Proteins/metabolism , Neuroblastoma/pathology , Neurotransmitter Agents/metabolism , Phosgene/pharmacology , Potassium Chloride/pharmacology , Receptors, Cholinergic/metabolism , Synapses/drug effects , Synapsins/metabolism , Tritium/metabolism , Tubulin/metabolism
14.
Front Cell Neurosci ; 17: 1226194, 2023.
Article in English | MEDLINE | ID: mdl-37650071

ABSTRACT

Introduction: Botulinum neurotoxin (BoNT) causes neuroparalytic disease and death by blocking neuromuscular transmission. There are no specific therapies for clinical botulism and the only treatment option is supportive care until neuromuscular function spontaneously recovers, which can take weeks or months after exposure. The highly specialized neuromuscular junction (NMJ) between phrenic motor neurons and diaphragm muscle fibers is the main clinical target of BoNT. Due to the difficulty in eliciting respiratory paralysis without a high mortality rate, few studies have characterized the neurophysiological mechanisms involved in diaphragm recovery from intoxication. Here, we develop a mouse model of botulism that involves partial paralysis of respiratory muscles with low mortality rates, allowing for longitudinal analysis of recovery. Methods and results: Mice challenged by systemic administration of 0.7 LD50 BoNT/A developed physiological signs of botulism, such as respiratory depression and reduced voluntary running activity, that persisted for an average of 8-12 d. Studies in isolated hemidiaphragm preparations from intoxicated mice revealed profound reductions in nerve-elicited, tetanic and twitch muscle contraction strengths that recovered to baseline 21 d after intoxication. Despite apparent functional recovery, neurophysiological parameters remained depressed for 28 d, including end plate potential (EPP) amplitude, EPP success rate, quantal content (QC), and miniature EPP (mEPP) frequency. However, QC recovered more quickly than mEPP frequency, which could explain the discrepancy between muscle function studies and neurophysiological recordings. Hypothesizing that differential modulation of voltage-gated calcium channels (VGCC) contributed to the uncoupling of QC from mEPP frequency, pharmacological inhibition studies were used to study the contributions of different VGCCs to neurophysiological function. We found that N-type VGCC and P/Q-type VGCC partially restored QC but not mEPP frequency during recovery from paralysis, potentially explaining the accelerated recovery of evoked release versus spontaneous release. We identified additional changes that presumably compensate for reduced acetylcholine release during recovery, including increased depolarization of muscle fiber resting membrane potential and increased quantal size. Discussion: In addition to identifying multiple forms of compensatory plasticity that occur in response to reduced NMJ function, it is expected that insights into the molecular mechanisms involved in recovery from neuromuscular paralysis will support new host-targeted treatments for multiple neuromuscular diseases.

15.
BMC Neurosci ; 13: 127, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-23095170

ABSTRACT

BACKGROUND: Recently, there has been a strong emphasis on identifying an in vitro model for neurotoxicity research that combines the biological relevance of primary neurons with the scalability, reproducibility and genetic tractability of continuous cell lines. Derived neurons should be homotypic, exhibit neuron-specific gene expression and morphology, form functioning synapses and consistently respond to neurotoxins in a fashion indistinguishable from primary neurons. However, efficient methods to produce neuronal populations that are suitable alternatives to primary neurons have not been available. METHODS: With the objective of developing a more facile, robust and efficient method to generate enriched glutamatergic neuronal cultures, we evaluated the neurogenic capacity of three mouse embryonic stem cell (ESC) lines (R1, C57BL/6 and D3) adapted to feeder-independent suspension culture. Neurogenesis and neuronal maturation were characterized as a function of time in culture using immunological, genomic, morphological and functional metrics. The functional responses of ESNs to neurotropic toxins with distinctly different targets and mechanisms of toxicity, such as glutamate, α-latrotoxin (LTX), and botulinum neurotoxin (BoNT), were also evaluated. RESULTS: Suspension-adapted ESCs expressed markers of pluripotency through at least 30 passages, and differentiation produced 97×106 neural progenitor cells (NPCs) per 10-cm dish. Greater than 99% of embryonic stem cell-derived neurons (ESNs) expressed neuron-specific markers by 96 h after plating and rapidly developed complex axodendritic arbors and appropriate compartmentalization of neurotypic proteins. Expression profiling demonstrated the presence of transcripts necessary for neuronal function and confirmed that ESN populations were predominantly glutamatergic. Furthermore, ESNs were functionally receptive to all toxins with sensitivities and responses consistent with primary neurons. CONCLUSIONS: These findings demonstrate a cost-effective, scalable and flexible method to produce a highly enriched glutamatergic neuron population. The functional characterization of pathophysiological responses to neurotropic toxins and the compatibility with multi-well plating formats were used to demonstrate the suitability of ESNs as a discovery platform for molecular mechanisms of action, moderate-throughput analytical approaches and diagnostic screening. Furthermore, for the first time we demonstrate a cell-based model that is sensitive to all seven BoNT serotypes with EC50 values comparable to those reported in primary neuron populations. These data providing compelling evidence that ESNs offer a neuromimetic platform suitable for the evaluation of molecular mechanisms of neurotoxicity.


Subject(s)
Cell Culture Techniques/methods , Embryonic Stem Cells/physiology , Glutamic Acid/metabolism , Neurons/metabolism , Toxicology/methods , Animals , Botulinum Toxins, Type A/toxicity , Calcium/metabolism , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Line , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Glutamic Acid/toxicity , Mice , Nerve Tissue Proteins/metabolism , Neurogenesis/drug effects , Neurogenesis/physiology , Neurons/cytology , Neurons/drug effects , Neurons/physiology , Neurotoxins/toxicity , Spider Venoms/toxicity
16.
Pharmaceutics ; 14(8)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36015295

ABSTRACT

Epithelial tissue injury can occur on any surface site of the body, particularly in the skin or urethral mucosa tissue, due to trauma, infection, inflammation, and toxic compounds. Both internal and external body epithelial tissue injuries can significantly affect patients' quality of life, increase healthcare spending, and increase the global economic burden. Transplantation of epithelial tissue grafts is an effective treatment strategy in clinical settings. Autologous bio-engineered epithelia are common clinical skin substitutes that have the specific advantages of avoiding tissue rejection, obviating ethical concerns, reducing the risk of infection, and decreasing scarring compared to donor grafts. However, epithelial cells are often obtained from the individual's skin and mucosa through invasive methods, which cause further injury or damage. Urine-derived stem cells (USC) of kidney origin, obtained via non-invasive acquisition, possess high stemness properties, self-renewal ability, trophic effects, multipotent differentiation potential, and immunomodulatory ability. These cells show versatile potential for tissue regeneration, with extensive evidence supporting their use in the repair of epidermal and urothelial injuries. We discuss the collection, isolation, culture, characterization, and differentiation of USC. We also discuss the use of USC for cellular therapies as well as the administration of USC-derived paracrine factors for epidermal and urothelial tissue repair. Specifically, we will discuss 3D constructions involving multiple types of USC-loaded hydrogels and USC-seeded scaffolds for use in cosmetic production testing, drug development, and disease modeling. In conclusion, urine-derived stem cells are a readily accessible autologous stem cell source well-suited for developing personalized medical treatments in epithelial tissue regeneration and drug testing.

17.
Sci Rep ; 12(1): 11664, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803998

ABSTRACT

Single domain antibodies (sdAbs), also called nanobodies, have substantial biophysical advantages over conventional antibodies and are increasingly being employed as components of immunotherapeutic agents. One particularly favorable property is the ability to link different sdAbs into heteromultimers. This feature allows production of single molecules capable of simultaneously targeting more than one antigen. In addition, cooperative binding of multiple linked sdAbs to non-overlapping epitopes on the same target can produce synergistic improvements in target affinity, variant specificity, and in vivo potencies. Here we seek to test the option of increased component sdAbs in these heteromultimers by testing different sdAb heterohexamers in which each of the six camelid sdAb components (VHHs) can neutralize one of three different Botulinum neurotoxin (BoNT) serotypes, A, B or E. Each heterohexamer bound all three targeted BoNT serotypes and protected mice from at least 100 MIPLD50 of each serotype. To test the potential of mRNA therapeutics encoding long sdAb heteromultimers, one heterohexamer was encoded as replicating RNA (repRNA), formulated with a cationic nanocarrier, and delivered to mice via intramuscular injection. Heterohexamer antitoxin serum expression levels were easily detected by 8 h post-treatment, peaked at 5-10 nM around two days, and persisted for more than three days. Mice treated with the formulated repRNA one day post-treatment survived challenge with 100 MIPLD50 of each toxin serotype, demonstrating the function of all six component VHHs. Use of long sdAb multimers, administered as proteins or repRNA, offer the potential for substantially improved versatility in the development of antibody-based therapeutics.


Subject(s)
Antitoxins , Botulinum Toxins , Single-Domain Antibodies , Animals , Botulinum Toxins/genetics , Mice , RNA , Serogroup , Single-Domain Antibodies/genetics
18.
Biochem Biophys Res Commun ; 405(1): 85-90, 2011 Feb 04.
Article in English | MEDLINE | ID: mdl-21215258

ABSTRACT

There are no pharmacological treatments to rescue botulinum neurotoxin (BoNT)-mediated paralysis of neuromuscular signaling. In part, this failure can be attributed to the lack of a cell culture model system that is neuron-based, allowing detailed elucidation of the mechanisms underlying BoNT pathogenesis, yet still compatible with modern cellular and molecular approaches. We have developed a method to derive highly enriched, glutamatergic neurons from suspension-cultured murine embryonic stem (ES) cells. Hypothesizing that ES cell-derived neurons (ESNs) might comprise a novel platform to investigate the neurotoxicology of BoNTs, we evaluated the susceptibility of ESNs to BoNT/A and BoNT/E using molecular and functional assays. ESNs express neuron-specific proteins, develop synapses and release glutamate in a calcium-dependent manner under depolarizing conditions. They express the BoNT substrate SNARE proteins SNAP25, VAMP2 and syntaxin, and treatment with BoNT/A and BoNT/E holotoxin results in proteolysis of SNAP25 within 24 h with EC50s of 0.81 and 68.6 pM, respectively. Intoxication with BoNT/A results in the functional inhibition of potassium-induced, calcium-dependent glutamate release. ESNs remain viable and susceptible to intoxication for up to 90 days after plating, enabling longitudinal screens exploring toxin-specific mechanisms underlying persistence of synaptic blockade. The evidence suggests that derived neurons are a novel, biologically relevant model system that combines the verisimilitude of primary neurons with the genetic tractability and scalable expansion of a continuous cell line, and thus should significantly accelerate BoNT research and drug discovery while dramatically decreasing animal use.


Subject(s)
Botulinum Toxins, Type A/toxicity , Botulinum Toxins/toxicity , Embryonic Stem Cells/cytology , Neurons/cytology , Neurons/drug effects , Animals , Calcium/metabolism , Exocytosis/drug effects , Glutamic Acid/metabolism , Mice , Models, Biological , Neurogenesis , Protein Biosynthesis , Synapses/drug effects , Synapses/physiology , Tissue Culture Techniques
19.
Toxicol Lett ; 341: 33-42, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33497768

ABSTRACT

Sulfur mustard (SM) is a lipid soluble alkylating agent that causes genotoxic injury. The eye is highly sensitive to SM toxicity and exposures exceeding 400 mg min/m3 can elicit irreversible corneal pathophysiologies. Development of medical countermeasures for ocular SM exposure has been hindered by a limited understanding of dose-dependent effects of SM on corneal injury. Here, clinical, histological and ultrastructural analyses were used to characterize the effects of SM dose on corneal injury progression. Corneas were evaluated for up to 20 wk following exposure to saturated SM vapor for 30-150 s, which corresponds to 300-1,500 mg min/m3. In acute studies, a ceiling effect on corneal edema developed at doses associated with full-thickness corneal lesions, implicating endothelial toxicity in corneal swelling. Recurrent edematous lesions (RELs) transiently emerged after 2 wk in a dose-dependent fashion, followed by the development of secondary corneal pathophysiologies such as neovascularization, stromal scarring and endothelial abnormalities. RELs appeared in 96 % of corneas exposed for ≥ 90 s, 52 % of corneas exposed for 60 s and 0 % of corneas exposed for 30 s. While REL latency was variable in corneas exposed for 60 s, REL emergence was synchronized at exposures ≥ 90 s. Corneas did not exhibit more than one REL, suggesting RELs are part of a programmed pathophysiological response to severe alkylating lesions. In post-mortem studies at 12 wk, corneal edema was positively correlated to severity of endothelial pathologies, consistent with previous findings that endothelial toxicity influences long-term outcomes. These results provide novel insight into long-term corneal pathophysiological responses to acute toxicity and identify exposure conditions suitable for therapeutic testing.


Subject(s)
Chemical Warfare Agents/toxicity , Cornea/drug effects , Corneal Injuries/chemically induced , Mustard Gas/toxicity , Animals , Cornea/pathology , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Mustard Gas/administration & dosage , Rabbits
20.
Sci Transl Med ; 13(575)2021 01 06.
Article in English | MEDLINE | ID: mdl-33408188

ABSTRACT

Botulism is caused by a potent neurotoxin that blocks neuromuscular transmission, resulting in death by asphyxiation. Currently, the therapeutic options are limited and there is no antidote. Here, we harness the structural and trafficking properties of an atoxic derivative of botulinum neurotoxin (BoNT) to transport a function-blocking single-domain antibody into the neuronal cytosol where it can inhibit BoNT serotype A (BoNT/A1) molecular toxicity. Post-symptomatic treatment relieved toxic signs of botulism and rescued mice, guinea pigs, and nonhuman primates after lethal BoNT/A1 challenge. These data demonstrate that atoxic BoNT derivatives can be harnessed to deliver therapeutic protein moieties to the neuronal cytoplasm where they bind and neutralize intracellular targets in experimental models. The generalizability of this platform might enable delivery of antibodies and other protein-based therapeutics to previously inaccessible intraneuronal targets.


Subject(s)
Botulinum Toxins, Type A , Botulism , Single-Domain Antibodies , Animals , Botulism/drug therapy , Guinea Pigs , Mice , Models, Animal , Neurotoxins
SELECTION OF CITATIONS
SEARCH DETAIL