ABSTRACT
Theaflavins, flavonoids found in black tea, exhibit a variety of health-promoting activities, but the mechanisms by which they act are not clear. Here, we assess the effects of black tea extract and isolated theaflavins on Dictyostelium discoideum, a model organism exhibiting an unusual life cycle relying on conserved pathways involved in human disease. Dictyostelium has been used to characterize the activities of numerous bioactive small molecules, including catechins, from which theaflavins are produced during the preparation of black tea. We show that theaflavins block growth, development, and motility in Dictyostelium, results that suggest catechins and theaflavins exert similar activities in this organism.
Subject(s)
Biflavonoids/pharmacology , Camellia sinensis/chemistry , Catechin/pharmacology , Catechols/pharmacology , Dictyostelium/drug effects , Axenic Culture , Biflavonoids/chemistry , Biflavonoids/isolation & purification , Catechin/chemistry , Catechin/isolation & purification , Catechols/chemistry , Catechols/isolation & purification , Cell Movement/drug effects , Cell Movement/physiology , Dictyostelium/growth & development , Plant Extracts/chemistry , Structure-Activity RelationshipABSTRACT
BACKGROUND: Universities are vulnerable to infectious disease outbreaks, making them ideal environments to study transmission dynamics and evaluate mitigation and surveillance measures. Here, we analyze multimodal COVID-19-associated data collected during the 2020-2021 academic year at Colorado Mesa University and introduce a SARS-CoV-2 surveillance and response framework. METHODS: We analyzed epidemiological and sociobehavioral data (demographics, contact tracing, and WiFi-based co-location data) alongside pathogen surveillance data (wastewater and diagnostic testing, and viral genomic sequencing of wastewater and clinical specimens) to characterize outbreak dynamics and inform policy. We applied relative risk, multiple linear regression, and social network assortativity to identify attributes or behaviors associated with contracting SARS-CoV-2. To characterize SARS-CoV-2 transmission, we used viral sequencing, phylogenomic tools, and functional assays. FINDINGS: Athletes, particularly those on high-contact teams, had the highest risk of testing positive. On average, individuals who tested positive had more contacts and longer interaction durations than individuals who never tested positive. The distribution of contacts per individual was overdispersed, although not as overdispersed as the distribution of phylogenomic descendants. Corroboration via technical replicates was essential for identification of wastewater mutations. CONCLUSIONS: Based on our findings, we formulate a framework that combines tools into an integrated disease surveillance program that can be implemented in other congregate settings with limited resources. FUNDING: This work was supported by the National Science Foundation, the Hertz Foundation, the National Institutes of Health, the Centers for Disease Control and Prevention, the Massachusetts Consortium on Pathogen Readiness, the Howard Hughes Medical Institute, the Flu Lab, and the Audacious Project.
Subject(s)
COVID-19 , SARS-CoV-2 , United States , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Disease Outbreaks , Universities , Contact TracingABSTRACT
Members of the Ras superfamily of small GTPases and the heterotrimeric G protein gamma subunit are methylated on their carboxy-terminal cysteine residues by isoprenylcysteine methyltransferase. In Dictyostelium discoideum, small GTPase methylation occurs seconds after stimulation of starving cells by cAMP and returns quickly to basal levels, suggesting an important role in cAMP-dependent signaling. Deleting the isoprenylcysteine methyltransferase-encoding gene causes dramatic defects. Starving mutant cells do not propagate cAMP waves in a sustained manner, and they do not aggregate. Motility is rescued when cells are pulsed with exogenous cAMP, or coplated with wild-type cells, but the rescued cells exhibit altered polarity. cAMP-pulsed methyltransferase-deficient cells that have aggregated fail to differentiate, but mutant cells plated in a wild-type background are able to do so. Localization of and signaling by RasG is altered in the mutant. Localization of the heterotrimeric Ggamma protein subunit was normal, but signaling was altered in mutant cells. These data indicate that isoprenylcysteine methylation is required for intercellular signaling and development in Dictyostelium.
Subject(s)
Dictyostelium/growth & development , Protein Methyltransferases/metabolism , Animals , Cell-Free System , Chemotaxis , Cloning, Molecular , Cyclic AMP/metabolism , Dictyostelium/cytology , Dictyostelium/enzymology , Dictyostelium/genetics , Food Deprivation , Gene Deletion , Gene Expression Regulation , Heterotrimeric GTP-Binding Proteins/metabolism , Methylation , Phenotype , Protein Transport , Protozoan Proteins/metabolism , Receptors, Cyclic AMP/metabolism , Signal TransductionABSTRACT
Catechins, flavanols found at high levels in green tea, have received significant attention due to their potential health benefits related to cancer, autoimmunity and metabolic disease, but little is known about the mechanisms by which these compounds affect cellular behavior. Here, we assess whether the model organism Dictyostelium discoideum is a useful tool with which to characterize the effects of catechins. Epigallocatechin gallate (EGCG), the most abundant and potent catechin in green tea, has significant effects on the Dictyostelium life cycle. In the presence of EGCG aggregation is delayed, cells do not stream and development is typically stalled at the loose aggregate stage. The developmental effects very likely result from defects in motility, as EGCG reduces both random movement and chemotaxis of Dictyostelium amoebae. These results suggest that catechins and their derivatives may be useful tools with which to better understand cell motility and development in Dictyostelium and that this organism is a useful model to further characterize the activities of catechins.
Subject(s)
Catechin/analogs & derivatives , Cell Movement/drug effects , Chemotaxis/drug effects , Dictyostelium/cytology , Dictyostelium/drug effects , Catechin/pharmacology , Cyclic AMP/metabolism , Reverse Transcriptase Polymerase Chain ReactionABSTRACT
B82L mouse fibroblasts respond to fibronectin or vitronectin via a syndecan-1-mediated activation of the alphavbeta5 integrin. Cells attached to syndecan-1-specific antibody display only filopodial extension. However, the syndecan-anchored cells extend lamellipodia when the antibody-substratum is supplemented with serum, or low concentrations of adsorbed vitronectin or fibronectin, that are not sufficient to activate the integrin when plated alone. Integrin activation is blocked by treatment with (Arg-Gly-Asp)-containing peptides and function-blocking antibodies that target alphav integrins, as well as by siRNA-mediated silencing of beta5 integrin expression. In addition, alphavbeta5-mediated cell attachment and spreading on high concentrations of vitronectin is blocked by competition with recombinant syndecan-1 ectodomain core protein and by downregulation of mouse syndecan-1 expression by mouse-specific siRNA. Taking advantage of the species-specificity of the siRNA, rescue experiments in which human syndecan-1 constructs are expressed trace the activation site to the syndecan-1 ectodomain. Moreover, both full-length mouse and human syndecan-1 co-immunoprecipitate with the beta5 integrin subunit, but fail to do so if the syndecan is displaced by competition with soluble, recombinant syndecan-1 ectodomain. These results suggest that the ectodomain of the syndecan-1 core protein contains an active site that assembles into a complex with the alphavbeta5 integrin and regulates alphavbeta5 integrin activity.
Subject(s)
Fibroblasts/metabolism , Integrins/metabolism , Membrane Glycoproteins/metabolism , Proteoglycans/metabolism , Receptors, Vitronectin/metabolism , Animals , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cell Line , Cells, Cultured , Down-Regulation/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Fibronectins/antagonists & inhibitors , Fibronectins/pharmacology , Humans , Membrane Glycoproteins/pharmacology , Mice , Molecular Sequence Data , Oligopeptides/pharmacology , Proteoglycans/pharmacology , RNA, Small Interfering/pharmacology , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Syndecan-1 , Syndecans , Vitronectin/antagonists & inhibitors , Vitronectin/pharmacologyABSTRACT
Raji cells expressing syndecan-1 (Raji-S1) adhere and spread when plated on heparan sulfate-binding extracellular matrix ligands or monoclonal antibody 281.2, an antibody directed against the syndecan-1 extracellular domain. Cells plated on monoclonal antibody 281.2 initially extend a broad lamellipodium, a response accompanied by membrane ruffling at the cell margin. Membrane ruffling then becomes polarized, leading to an elongated cell morphology. Previous work demonstrated that the syndecan-1 cytoplasmic domain is not required for these activities, suggesting important roles for the syndecan-1 transmembrane and/or extracellular domains in the assembly of a signaling complex necessary for spreading. Work described here demonstrates that truncation of the syndecan-1 extracellular domain does not affect the initial lamellipodial extension in the Raji-S1 cells but does inhibit the active membrane ruffling that is necessary for cell polarization. Replacement of the entire syndecan-1 transmembrane domain with leucine residues completely blocks the cell spreading. These data demonstrate that the syndecan-1 transmembrane and extracellular domains have important but distinct roles in Raji-S1 cell spreading; the extracellular domain mediates an interaction that is necessary for dynamic cytoskeletal rearrangements whereas an interaction of the transmembrane domain is required for the initial spreading response.