Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 15: 1373537, 2024.
Article in English | MEDLINE | ID: mdl-38812520

ABSTRACT

Sex-based differences in immune cell composition and function can contribute to distinct adaptive immune responses. Prior work has quantified these differences in peripheral blood, but little is known about sex differences within human lymphoid tissues. Here, we characterized the composition and phenotypes of adaptive immune cells from male and female ex vivo tonsils and evaluated their responses to influenza antigens using an immune organoid approach. In a pediatric cohort, female tonsils had more memory B cells compared to male tonsils direct ex vivo and after stimulation with live-attenuated but not inactivated vaccine, produced higher influenza-specific antibody responses. Sex biases were also observed in adult tonsils but were different from those measured in children. Analysis of peripheral blood immune cells from in vivo vaccinated adults also showed higher frequencies of tissue homing CD4 T cells in female participants. Together, our data demonstrate that distinct memory B and T cell profiles are present in male vs. female lymphoid tissues and peripheral blood respectively and suggest that these differences may in part explain sex biases in response to vaccines and viruses.


Subject(s)
Palatine Tonsil , Humans , Female , Male , Child , Palatine Tonsil/immunology , Adult , Influenza Vaccines/immunology , Influenza, Human/immunology , Sex Characteristics , Child, Preschool , Adolescent , Antibodies, Viral/blood , Antibodies, Viral/immunology , Memory B Cells/immunology , Organ Specificity/immunology , Young Adult , Sex Factors , CD4-Positive T-Lymphocytes/immunology , B-Lymphocytes/immunology , Immunologic Memory
2.
JCI Insight ; 5(10)2020 05 21.
Article in English | MEDLINE | ID: mdl-32434986

ABSTRACT

A complete understanding of human immune responses to Ebola virus infection is limited by the availability of specimens and the requirement for biosafety level 4 (BSL-4) containment. In an effort to bridge this gap, we evaluated cryopreserved PBMCs from 4 patients who survived Ebola virus disease (EVD) using an established mass cytometry antibody panel to characterize various cell populations during both the acute and convalescent phases. Acute loss of nonclassical monocytes and myeloid DCs, especially CD1c+ DCs, was noted. Classical monocyte proliferation and CD38 upregulation on plasmacytoid DCs coincided with declining viral load. Unsupervised analysis of cell abundance demonstrated acute declines in monocytic, NK, and T cell populations, but some populations, many of myeloid origin, increased in abundance during the acute phase, suggesting emergency hematopoiesis. Despite cell losses during the acute phase, upregulation of Ki-67 correlated with recovery of cell populations over time. These data provide insights into the human immune response during EVD.


Subject(s)
Convalescence , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Leukocytes, Mononuclear/immunology , Hemorrhagic Fever, Ebola/pathology , Humans , Ki-67 Antigen/immunology , Leukocytes, Mononuclear/pathology , Viral Load
3.
J Clin Invest ; 128(4): 1397-1412, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29369823

ABSTRACT

Lupus nephritis (LN) often results in progressive renal dysfunction. The inactive rhomboid 2 (iRhom2) is a newly identified key regulator of A disintegrin and metalloprotease 17 (ADAM17), whose substrates, such as TNF-α and heparin-binding EGF (HB-EGF), have been implicated in the pathogenesis of chronic kidney diseases. Here, we demonstrate that deficiency of iRhom2 protects the lupus-prone Fcgr2b-/- mice from developing severe kidney damage without altering anti-double-stranded DNA (anti-dsDNA) Ab production by simultaneously blocking HB-EGF/EGFR and TNF-α signaling in the kidney tissues. Unbiased transcriptome profiling of kidneys and kidney macrophages revealed that TNF-α and HB-EGF/EGFR signaling pathways are highly upregulated in Fcgr2b-/- mice, alterations that were diminished in the absence of iRhom2. Pharmacological blockade of either TNF-α or EGFR signaling protected Fcgr2b-/- mice from severe renal damage. Finally, kidneys from LN patients showed increased iRhom2 and HB-EGF expression, with interstitial HB-EGF expression significantly associated with chronicity indices. Our data suggest that activation of iRhom2/ADAM17-dependent TNF-α and EGFR signaling plays a crucial role in mediating irreversible kidney damage in LN, thereby uncovering a target for selective and simultaneous dual inhibition of 2 major pathological pathways in the effector arm of the disease.


Subject(s)
Carrier Proteins/biosynthesis , ErbB Receptors/metabolism , Kidney/metabolism , Lupus Nephritis/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Animals , Carrier Proteins/genetics , Disease Models, Animal , ErbB Receptors/genetics , Gene Expression Regulation , Heparin-binding EGF-like Growth Factor/genetics , Heparin-binding EGF-like Growth Factor/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Kidney/pathology , Lupus Nephritis/genetics , Lupus Nephritis/pathology , Mice , Mice, Knockout , Receptors, IgG/genetics , Receptors, IgG/metabolism , Tumor Necrosis Factor-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL