ABSTRACT
Populations of the Eastern Highlands of Papua New Guinea (EHPNG, area 11,157 km2) lived in relative isolation from the rest of the world until the mid-20th century, and the region contains a wealth of linguistic and cultural diversity. Notably, several populations of EHPNG were devastated by an epidemic prion disease, kuru, which at its peak in the mid-twentieth century led to some villages being almost depleted of adult women. Until now, population genetic analyses to learn about genetic diversity, migration, admixture, and the impact of the kuru epidemic have been restricted to a small number of variants or samples. Here, we present a population genetic analysis of the region based on genome-wide genotype data of 943 individuals from 21 linguistic groups and 68 villages in EHPNG, including 34 villages in the South Fore linguistic group, the group most affected by kuru. We find a striking degree of genetic population structure in the relatively small region (average FST between linguistic groups 0.024). The genetic population structure correlates well with linguistic grouping, with some noticeable exceptions that reflect the clan system of community organization that has historically existed in EHPNG. We also detect the presence of migrant individuals within the EHPNG region and observe a significant excess of females among migrants compared to among non-migrants in areas of high kuru exposure (p = 0.0145, chi-squared test). This likely reflects the continued practice of patrilocality despite documented fears and strains placed on communities as a result of kuru and its associated skew in female incidence.
Subject(s)
Kuru , Prions , Adult , Female , Humans , Kuru/epidemiology , Kuru/genetics , Kuru/history , Papua New Guinea/epidemiology , Prions/genetics , Genotype , LearningABSTRACT
Mammalian prion diseases are a group of neurodegenerative conditions caused by infection of the central nervous system with proteinaceous agents called prions, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; kuru; inherited prion disease; sheep scrapie; bovine spongiform encephalopathy; and chronic wasting disease. Prions are composed of misfolded and multimeric forms of the normal cellular prion protein (PrP). Prion diseases require host expression of the prion protein gene (PRNP) and a range of other cellular functions to support their propagation and toxicity. Inherited forms of prion disease are caused by mutation of PRNP, whereas acquired and sporadically occurring mammalian prion diseases are controlled by powerful genetic risk and modifying factors. Whereas some PrP amino acid variants cause the disease, others confer protection, dramatically altered incubation times, or changes in the clinical phenotype. Multiple mechanisms, including interference with homotypic protein interactions and the selection of the permissible prion strains in a host, play a role. Several non-PRNP factors have now been uncovered that provide insights into pathways of disease susceptibility or neurotoxicity.
Subject(s)
Mammals/genetics , Prion Diseases/genetics , Prion Proteins/genetics , Animals , Cattle , Disease Models, Animal , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing , Goats/genetics , Humans , Mice , Polymorphism, Genetic , Prion Diseases/etiology , Prion Proteins/metabolism , Selection, Genetic , Sheep/geneticsABSTRACT
Sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, is thought to occur when the cellular prion protein (PrPC) spontaneously misfolds and assembles into prion fibrils, culminating in fatal neurodegeneration. In a genome-wide association study of sCJD, we recently identified risk variants in and around the gene STX6, with evidence to suggest a causal increase of STX6 expression in disease-relevant brain regions. STX6 encodes syntaxin-6, a SNARE protein primarily involved in early endosome to trans-Golgi network retrograde transport. Here we developed and characterised a mouse model with genetic depletion of Stx6 and investigated a causal role of Stx6 expression in mouse prion disease through a classical prion transmission study, assessing the impact of homozygous and heterozygous syntaxin-6 knockout on disease incubation periods and prion-related neuropathology. Following inoculation with RML prions, incubation periods in Stx6-/- and Stx6+/- mice differed by 12 days relative to wildtype. Similarly, in Stx6-/- mice, disease incubation periods following inoculation with ME7 prions also differed by 12 days. Histopathological analysis revealed a modest increase in astrogliosis in ME7-inoculated Stx6-/- animals and a variable effect of Stx6 expression on microglia activation, however no differences in neuronal loss, spongiform change or PrP deposition were observed at endpoint. Importantly, Stx6-/- mice are viable and fertile with no gross impairments on a range of neurological, biochemical, histological and skeletal structure tests. Our results provide some support for a pathological role of Stx6 expression in prion disease, which warrants further investigation in the context of prion disease but also other neurodegenerative diseases considering syntaxin-6 appears to have pleiotropic risk effects in progressive supranuclear palsy and Alzheimer's disease.
Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Mice , Humans , Animals , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/pathology , Prions/genetics , Prions/metabolism , Genome-Wide Association Study , Mice, Transgenic , Brain/metabolism , Prion Diseases/genetics , Prion Diseases/pathology , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolismABSTRACT
BACKGROUND: Genetic testing for Huntington's disease (HD) was initially usually positive but more recently the negative rate has increased: patients with negative HD tests are described as having HD phenocopy syndromes (HDPC). This study examines their clinical characteristics and investigates the genetic causes of HDPC. METHODS: Clinical data from neurogenetics clinics and HDPC gene-panel data were analysed. Additionally, a subset of 50 patients with HDPC underwent whole-genome sequencing (WGS) analysed via Expansion Hunter and Ingenuity Variant Analysis. RESULTS: HDPC prevalence was estimated at 2.3-2.9 per 100 000. No clinical discriminators between patients with HD and HDPC could be identified. In the gene-panel data, deleterious variants and potentially deleterious variants were over-represented in cases versus controls. WGS analysis identified one ATXN1 expansion in a patient with HDPC. CONCLUSIONS: The HDPC phenotype is consistent with HD, but the genotype is distinct. Both established deleterious variants and novel potentially deleterious variants in genes related to neurodegeneration contribute to HDPC.
ABSTRACT
Cerebral amyloid angiopathy (CAA) is an important cerebral small vessel disease associated with brain haemorrhage and cognitive change. The commonest form, sporadic amyloid-ß CAA, usually affects people in mid- to later life. However, early-onset forms, though uncommon, are increasingly recognized and may result from genetic or iatrogenic causes that warrant specific and focused investigation and management. In this review, we firstly describe the causes of early-onset CAA, including monogenic causes of amyloid-ß CAA (APP missense mutations and copy number variants; mutations of PSEN1 and PSEN2) and non-amyloid-ß CAA (associated with ITM2B, CST3, GSN, PRNP and TTR mutations), and other unusual sporadic and acquired causes including the newly-recognized iatrogenic subtype. We then provide a structured approach for investigating early-onset CAA, and highlight important management considerations. Improving awareness of these unusual forms of CAA amongst healthcare professionals is essential for facilitating their prompt diagnosis, and an understanding of their underlying pathophysiology may have implications for more common, late-onset, forms of the disease.
Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Humans , Cerebral Amyloid Angiopathy/genetics , Cerebral Amyloid Angiopathy/complications , Amyloid beta-Peptides/genetics , Mutation , Mutation, Missense , Iatrogenic Disease , Alzheimer Disease/geneticsABSTRACT
Human prion diseases are remarkable for long incubation times followed typically by rapid clinical decline. Seed amplification assays and neurodegeneration biofluid biomarkers are remarkably useful in the clinical phase, but their potential to predict clinical onset in healthy people remains unclear. This is relevant not only to the design of preventive strategies in those at-risk of prion diseases, but more broadly, because prion-like mechanisms are thought to underpin many neurodegenerative disorders. Here, we report the accrual of a longitudinal biofluid resource in patients, controls and healthy people at risk of prion diseases, to which ultrasensitive techniques such as real-time quaking-induced conversion (RT-QuIC) and single molecule array (Simoa) digital immunoassays were applied for preclinical biomarker discovery. We studied 648 CSF and plasma samples, including 16 people who had samples taken when healthy but later developed inherited prion disease (IPD) ('converters'; range from 9.9 prior to, and 7.4 years after onset). Symptomatic IPD CSF samples were screened by RT-QuIC assay variations, before testing the entire collection of at-risk samples using the most sensitive assay. Glial fibrillary acidic protein (GFAP), neurofilament light (NfL), tau and UCH-L1 levels were measured in plasma and CSF. Second generation (IQ-CSF) RT-QuIC proved 100% sensitive and specific for sporadic Creutzfeldt-Jakob disease (CJD), iatrogenic and familial CJD phenotypes, and subsequently detected seeding activity in four presymptomatic CSF samples from three E200K carriers; one converted in under 2 months while two remain asymptomatic after at least 3 years' follow-up. A bespoke HuPrP P102L RT-QuIC showed partial sensitivity for P102L disease. No compatible RT-QuIC assay was discovered for classical 6-OPRI, A117V and D178N, and these at-risk samples tested negative with bank vole RT-QuIC. Plasma GFAP and NfL, and CSF NfL levels emerged as proximity markers of neurodegeneration in the typically slow IPDs (e.g. P102L), with significant differences in mean values segregating healthy control from IPD carriers (within 2 years to onset) and symptomatic IPD cohorts; plasma GFAP appears to change before NfL, and before clinical conversion. In conclusion, we show distinct biomarker trajectories in fast and slow IPDs. Specifically, we identify several years of presymptomatic seeding positivity in E200K, a new proximity marker (plasma GFAP) and sequential neurodegenerative marker evolution (plasma GFAP followed by NfL) in slow IPDs. We suggest a new preclinical staging system featuring clinical, seeding and neurodegeneration aspects, for validation with larger prion at-risk cohorts, and with potential application to other neurodegenerative proteopathies.
Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Humans , tau Proteins/metabolism , BiomarkersABSTRACT
The cause of autosomal-dominant retinitis pigmentosa (adRP), which leads to loss of vision and blindness, was investigated in families lacking a molecular diagnosis. A refined locus for adRP on Chr17q22 (RP17) was delineated through genotyping and genome sequencing, leading to the identification of structural variants (SVs) that segregate with disease. Eight different complex SVs were characterized in 22 adRP-affected families with >300 affected individuals. All RP17 SVs had breakpoints within a genomic region spanning YPEL2 to LINC01476. To investigate the mechanism of disease, we reprogrammed fibroblasts from affected individuals and controls into induced pluripotent stem cells (iPSCs) and differentiated them into photoreceptor precursor cells (PPCs) or retinal organoids (ROs). Hi-C was performed on ROs, and differential expression of regional genes and a retinal enhancer RNA at this locus was assessed by qPCR. The epigenetic landscape of the region, and Hi-C RO data, showed that YPEL2 sits within its own topologically associating domain (TAD), rich in enhancers with binding sites for retinal transcription factors. The Hi-C map of RP17 ROs revealed creation of a neo-TAD with ectopic contacts between GDPD1 and retinal enhancers, and modeling of all RP17 SVs was consistent with neo-TADs leading to ectopic retinal-specific enhancer-GDPD1 accessibility. qPCR confirmed increased expression of GDPD1 and increased expression of the retinal enhancer that enters the neo-TAD. Altered TAD structure resulting in increased retinal expression of GDPD1 is the likely convergent mechanism of disease, consistent with a dominant gain of function. Our study highlights the importance of SVs as a genomic mechanism in unsolved Mendelian diseases.
Subject(s)
Chromosomes, Human, Pair 17/chemistry , Nuclear Proteins/genetics , Phosphoric Diester Hydrolases/genetics , Retinal Cone Photoreceptor Cells/metabolism , Retinitis Pigmentosa/genetics , Transcription Factors/genetics , Adult , Amino Acid Sequence , Cell Differentiation , Cellular Reprogramming , Child , Chromosome Mapping , Cohort Studies , Enhancer Elements, Genetic , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression , Genes, Dominant , Genome, Human , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Male , Nuclear Proteins/metabolism , Organoids/metabolism , Organoids/pathology , Phosphoric Diester Hydrolases/metabolism , Polymorphism, Genetic , Primary Cell Culture , Retinal Cone Photoreceptor Cells/pathology , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology , Transcription Factors/metabolism , Whole Genome SequencingABSTRACT
The cellular prion protein PrPC is necessary for prion replication, and its reduction greatly increases life expectancy in animal models of prion infection. Hence the factors controlling the levels of PrPC may represent therapeutic targets against human prion diseases. Here we performed an arrayed whole-transcriptome RNA interference screen to identify modulators of PrPC expression. We cultured human U251-MG glioblastoma cells in the presence of 64'752 unique siRNAs targeting 21'584 annotated human genes, and measured PrPC using a one-pot fluorescence-resonance energy transfer immunoassay in 51'128 individual microplate wells. This screen yielded 743 candidate regulators of PrPC. When downregulated, 563 of these candidates reduced and 180 enhanced PrPC expression. Recursive candidate attrition through multiple secondary screens yielded 54 novel regulators of PrPC, 9 of which were confirmed by CRISPR interference as robust regulators of PrPC biosynthesis and degradation. The phenotypes of 6 of the 9 candidates were inverted in response to transcriptional activation using CRISPRa. The RNA-binding post-transcriptional repressor Pumilio-1 was identified as a potent limiter of PrPC expression through the degradation of PRNP mRNA. Because of its hypothesis-free design, this comprehensive genetic-perturbation screen delivers an unbiased landscape of the genes regulating PrPC levels in cells, most of which were unanticipated, and some of which may be amenable to pharmacological targeting in the context of antiprion therapies.
Subject(s)
Gene Expression Regulation/physiology , PrPC Proteins/biosynthesis , RNA-Binding Proteins/metabolism , Cell Line , Genome-Wide Association Study , Humans , RNA InterferenceABSTRACT
Epigenetics, meaning the variety of mechanisms underpinning gene regulation and chromatin states, plays a key role in normal development as well as in disease initiation and progression. Epigenetic mechanisms like alteration of DNA methylation, histone modifications, and non-coding RNAs, have been proposed as biomarkers for diagnosis, classification, or monitoring of responsiveness to treatment in many diseases. In prion diseases, the profound associations with human aging, the effects of cell type and differentiation on in vitro susceptibility, and recently identified human risk factors, all implicate causal epigenetic mechanisms. Here, we review the current state of the art of epigenetics in prion diseases and its interaction with genetic determinants. In particular, we will review recent advances made by several groups in the field profiling DNA methylation and microRNA expression in mammalian prion diseases and the potential for these discoveries to be exploited as biomarkers.
Subject(s)
Epigenesis, Genetic , Prion Diseases , Animals , Humans , DNA Methylation/genetics , Biomarkers , Prion Diseases/genetics , Gene Expression , Mammals/geneticsABSTRACT
Inherited prion diseases are caused by autosomal dominant coding mutations in the human prion protein (PrP) gene (PRNP) and account for about 15% of human prion disease cases worldwide. The proposed mechanism is that the mutation predisposes to conformational change in the expressed protein, leading to the generation of disease-related multichain PrP assemblies that propagate by seeded protein misfolding. Despite considerable experimental support for this hypothesis, to-date spontaneous formation of disease-relevant, transmissible PrP assemblies in transgenic models expressing only mutant human PrP has not been demonstrated. Here, we report findings from transgenic mice that express human PrP 117V on a mouse PrP null background (117VV Tg30 mice), which model the PRNP A117V mutation causing inherited prion disease (IPD) including Gerstmann-Sträussler-Scheinker (GSS) disease phenotypes in humans. By studying brain samples from uninoculated groups of mice, we discovered that some mice (≥475 days old) spontaneously generated abnormal PrP assemblies, which after inoculation into further groups of 117VV Tg30 mice, produced a molecular and neuropathological phenotype congruent with that seen after transmission of brain isolates from IPD A117V patients to the same mice. To the best of our knowledge, the 117VV Tg30 mouse line is the first transgenic model expressing only mutant human PrP to show spontaneous generation of transmissible PrP assemblies that directly mirror those generated in an inherited prion disease in humans.
Subject(s)
Amyloid/metabolism , Prions/metabolism , Adult , Aging/metabolism , Animals , Brain/metabolism , Brain/pathology , Codon/genetics , Heterozygote , Homozygote , Humans , Mice, Transgenic , Middle Aged , Prions/isolation & purificationABSTRACT
OBJECTIVE: To use a robust statistical methodology to develop and validate clinical rating scales quantifying longitudinal motor and cognitive dysfunction in sporadic Creutzfeldt-Jakob disease (sCJD) at the bedside. METHODS: Rasch analysis was used to iteratively construct interval scales measuring composite cognitive and motor dysfunction from pooled bedside neurocognitive examinations collected as part of the prospective National Prion Monitoring Cohort study, October 2008-December 2016.A longitudinal clinical examination dataset constructed from 528 patients with sCJD, comprising 1030 Motor Scale and 757 Cognitive Scale scores over 130 patient-years of study, was used to demonstrate scale utility. RESULTS: The Rasch-derived Motor Scale consists of 8 items, including assessments reliant on pyramidal, extrapyramidal and cerebellar systems. The Cognitive Scale comprises 6 items, and includes measures of executive function, language, visual perception and memory. Both scales are unidimensional, perform independently of age or gender and have excellent inter-rater reliability. They can be completed in minutes at the bedside, as part of a normal neurocognitive examination. A composite Examination Scale can be derived by averaging both scores. Several scale uses, in measuring longitudinal change, prognosis and phenotypic heterogeneity are illustrated. CONCLUSIONS: These two novel sCJD Motor and Cognitive Scales and the composite Examination Scale should prove useful to objectively measure phenotypic and clinical change in future clinical trials and for patient stratification. This statistical approach can help to overcome obstacles to assessing clinical change in rapidly progressive, multisystem conditions with limited longitudinal follow-up.
Subject(s)
Creutzfeldt-Jakob Syndrome , Cohort Studies , Creutzfeldt-Jakob Syndrome/diagnosis , Humans , Prospective Studies , Reproducibility of Results , Severity of Illness IndexABSTRACT
In the last 6 years, following the first pathological description of presumed amyloid-beta (Aß) transmission in humans (in 2015) and subsequent experimental confirmation (in 2018), clinical cases of iatrogenic cerebral amyloid angiopathy (CAA)-attributed to the transmission of Aß seeds-have been increasingly recognised and reported. This newly described form of CAA is associated with early disease onset (typically in the third to fifth decade), and often presents with intracerebral haemorrhage, but also seizures and cognitive impairment. Although assumed to be rare, it is important that clinicians remain vigilant for potential cases, particularly as the optimal management, prognosis, true incidence and public health implications remain unknown. This review summarises our current understanding of the clinical spectrum of iatrogenic CAA and provides a diagnostic framework for clinicians. We provide clinical details for three patients with pathological evidence of iatrogenic CAA and present a summary of the published cases to date (n=20), identified following a systematic review. Our aims are: (1) To describe the clinical features of iatrogenic CAA, highlighting important similarities and differences between iatrogenic and sporadic CAA; and (2) To discuss potential approaches for investigation and diagnosis, including suggested diagnostic criteria for iatrogenic CAA.
ABSTRACT
BACKGROUND: Prion diseases cause a range of movement disorders involving the cortical, extrapyramidal, and cerebellar systems, and yet there are no large systematic studies of their prevalence, features, associations, and responses to commonly used treatments. OBJECTIVES: We sought to describe the natural history and pharmacological management of movement disorders in prion diseases. METHODS: We studied the serial examination findings, investigation results, and symptomatic treatment recorded for 700 patients with prion diseases and 51 mimics who had been enrolled onto the prospective longitudinal National Prion Monitoring Cohort study between 2008 and 2020. We performed an analysis to identify whether there were patterns of movement disorders associated with disease aetiology, PRNP codon 129 polymorphism, disease severity rating scales, magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) findings. RESULTS: Gait disturbances, myoclonus, and increased tone are the most frequently observed movement disorders in patients with prion diseases. The typical pattern of early motor dysfunction involves gait disturbance, limb ataxia, impaired smooth pursuit, myoclonus, tremor, and increased limb tone. Disturbances of gait, increased tone, and myoclonus become more prevalent and severe as the disease progresses. Chorea, alien limb phenomenon, and nystagmus were the least frequently observed movement disorders, with these symptoms showing spontaneous resolution in approximately half of symptomatic patients. Disease severity and PRNP codon 129 polymorphism were associated with different movement disorder phenotypes. Antiepileptics and benzodiazepines were found to be effective in treating myoclonus. CONCLUSIONS: We describe the prevalence, severity, evolution, treatment, and associated features of movement disorders in prion diseases based on a prospective cohort study. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Subject(s)
Creutzfeldt-Jakob Syndrome , Movement Disorders , Myoclonus , Prion Diseases , Codon , Cohort Studies , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/pathology , Humans , Longitudinal Studies , Movement Disorders/etiology , Movement Disorders/genetics , Myoclonus/genetics , Prevalence , Prion Diseases/cerebrospinal fluid , Prion Diseases/epidemiology , Prion Diseases/genetics , Prospective StudiesABSTRACT
Prion diseases are fatal neurodegenerative conditions with highly accurate CSF and imaging diagnostic tests, but major unmet needs for blood biomarkers. Using ultrasensitive immuno-assays, we measured tau and neurofilament light chain (NfL) protein concentrations in 709 plasma samples taken from 377 individuals with prion disease during a 12 year prospective clinical study, alongside healthy and neurological control groups. This provides an unprecedented opportunity to evaluate their potential as biomarkers. Plasma tau and NfL were increased across all prion disease types. For distinguishing sCJD from control groups including clinically-relevant "CJD mimics", both show considerable diagnostic value. In sCJD, NfL was substantially elevated in every sample tested, including during early disease with minimal functional impairment and in all follow-up samples. Plasma tau was independently associated with rate of clinical progression in sCJD, while plasma NfL showed independent association with severity of functional impairment. In asymptomatic PRNP mutation carriers, plasma NfL was higher on average in samples taken within 2 years of symptom onset than in samples taken earlier. We present biomarker trajectories for nine mutation carriers healthy at enrolment who developed symptoms during follow-up. NfL started to rise as early as 2 years before onset in those with mutations typically associated with more slowly progressive clinical disease. This shows potential for plasma NfL as a "proximity marker", but further work is needed to establish predictive value on an individual basis, and how this varies across different PRNP mutations. We conclude that plasma tau and NfL have potential to fill key unmet needs for biomarkers in prion disease: as a secondary outcome for clinical trials (NfL and tau); for predicting onset in at-risk individuals (NfL); and as an accessible test for earlier identification of patients that may have CJD and require more definitive tests (NfL). Further studies should evaluate their performance directly in these specific roles.
Subject(s)
Intermediate Filaments , Prion Diseases , Biomarkers , Humans , Neurofilament Proteins/genetics , Prion Diseases/genetics , Prospective Studies , tau ProteinsABSTRACT
Blood biomarkers have great potential to advance clinical care and accelerate trials in Alzheimer's disease (AD). Plasma phospho-tau181 (p-tau181) is a promising blood biomarker however, it is unknown if levels increase in presymptomatic AD. Therefore, we investigated the timing of p-tau181 changes using 153 blood samples from 70 individuals in a longitudinal study of familial AD (FAD). Plasma p-tau181 was measured, using an in-house single molecule array assay. We compared p-tau181 between symptomatic carriers, presymptomatic carriers, and non-carriers, adjusting for age and sex. We examined the relationship between p-tau181 and neurofilament light and estimated years to/from symptom onset (EYO), as well as years to/from actual onset in a symptomatic subgroup. In addition, we studied associations between p-tau181 and clinical severity, as well testing for differences between genetic subgroups. Twenty-four were presymptomatic carriers (mean baseline EYO -9.6 years) while 27 were non-carriers. Compared with non-carriers, plasma p-tau181 concentration was higher in both symptomatic (p < 0.001) and presymptomatic mutation carriers (p < 0.001). Plasma p-tau181 showed considerable intra-individual variability but individual values discriminated symptomatic (AUC 0.93 [95% CI 0.85-0.98]) and presymptomatic (EYO ≥ -7 years) (AUC 0.86 [95% CI 0.72-0.94]) carriers from non-carriers of the same age and sex. From a fitted model there was evidence (p = 0.050) that p-tau181 concentrations were higher in mutation carriers than non-carriers from 16 years prior to estimated symptom onset. Our finding that plasma p-tau181 concentration is increased in symptomatic and presymptomatic FAD suggests potential utility as an easily accessible biomarker of AD pathology.
Subject(s)
Alzheimer Disease , Alzheimer Disease/genetics , Biomarkers , Cohort Studies , Humans , Longitudinal Studies , tau Proteins/geneticsABSTRACT
The clinical effectiveness of any disease-modifying treatment for prion disease, as for other neurodegenerative disorders, will depend on early treatment before damage to neural tissue is irrevocable. Thus, there is a need to identify markers that predict disease onset in healthy at-risk individuals. Whilst imaging and neurophysiological biomarkers have shown limited use in this regard, we recently reported progressive neurophysiological changes in individuals with the inherited prion disease mutation P102L. We have also previously demonstrated a signature pattern of fronto-parietal dysfunction in mild prion disease. Here we address whether these cognitive features anticipate the onset of symptoms in a unique sample of patients with inherited prion disease. In the cross-sectional analysis, we analysed the performance of patients at three time points in the course of disease onset: prior to symptoms (n = 27), onset of subjective symptoms without positive clinical findings (n = 8) and symptomatic with positive clinical findings (n = 24). In the longitudinal analysis, we analysed data from 24 patients who were presymptomatic at the time of recruitment and were followed up over a period of up to 17 years, of whom 16 remained healthy and eight converted to become symptomatic. In the cross-sectional analysis, the key finding was that, relative to a group of 25 healthy non-gene carrier controls, patients with subjective symptoms but without positive clinical findings were impaired on a smaller but similar set of tests (Trail Making Test part A, Stroop test, Performance IQ, gesture repetition, figure recall) to those previously found to be impaired in mild prion disease. In the longitudinal analysis, Trail Making Test parts A and B, Stroop test and Performance IQ scores significantly discriminated between patients who remained presymptomatic and those who converted, even before the converters reached criteria for formal diagnosis. Notably, performance on the Stroop test significantly discriminated between presymptomatic patients and converters before the onset of clinical symptoms [area under the curve = 0.83 (95% confidence interval, 0.62-1.00), P = 0.009]. Thus, we report here, for the first time, neuropsychological abnormalities in healthy patients prior to either symptom onset or clinical diagnosis of inherited prion disease. This constitutes an important component of an evolving profile of clinical and biomarker abnormalities in this crucial group for preventive medicine.
Subject(s)
Cognitive Dysfunction/etiology , Prion Diseases/complications , Prodromal Symptoms , Cross-Sectional Studies , Humans , Longitudinal Studies , Neuropsychological TestsABSTRACT
In vitro studies of autosomal dominant Alzheimer's disease implicate longer amyloid-ß peptides in disease pathogenesis; however, less is known about the behaviour of these mutations in vivo. In this cross-sectional cohort study, we used liquid chromatography-tandem mass spectrometry to analyse 66 plasma samples from individuals who were at risk of inheriting a mutation or were symptomatic. We tested for differences in amyloid-ß (Aß)42:38, Aß42:40 and Aß38:40 ratios between presenilin 1 (PSEN1) and amyloid precursor protein (APP) carriers. We examined the relationship between plasma and in vitro models of amyloid-ß processing and tested for associations with parental age at onset. Thirty-nine participants were mutation carriers (28 PSEN1 and 11 APP). Age- and sex-adjusted models showed marked differences in plasma amyloid-ß between genotypes: higher Aß42:38 in PSEN1 versus APP (P < 0.001) and non-carriers (P < 0.001); higher Aß38:40 in APP versus PSEN1 (P < 0.001) and non-carriers (P < 0.001); while Aß42:40 was higher in both mutation groups compared to non-carriers (both P < 0.001). Amyloid-ß profiles were reasonably consistent in plasma and cell lines. Within the PSEN1 group, models demonstrated associations between Aß42:38, Aß42:40 and Aß38:40 ratios and parental age at onset. In vivo differences in amyloid-ß processing between PSEN1 and APP carriers provide insights into disease pathophysiology, which can inform therapy development.
Subject(s)
Alzheimer Disease/blood , Alzheimer Disease/genetics , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/genetics , Presenilin-1/blood , Presenilin-1/genetics , Adult , Alzheimer Disease/diagnosis , Biomarkers/blood , Cohort Studies , Cross-Sectional Studies , Female , Genotype , Humans , Induced Pluripotent Stem Cells/metabolism , Longitudinal Studies , Male , Middle AgedABSTRACT
BACKGROUND: Inherited prion diseases are rare autosomal dominant disorders associated with diverse clinical presentations. All are associated with mutation of the gene that encodes prion protein (PRNP). Homozygous mutations with atypical clinical phenotypes have been described but are extremely rare. CASE PRESENTATION: A Chinese patient presented with a rapidly progressive cognitive and motor disorder in the clinical spectrum of sCJD. Investigations strongly suggested a diagnosis of CJD. He was found to carry a homozygous mutation at PRNP codon 200 (E200D), but there was no known family history of the disorder. The estimated allele frequency of E200D in East Asian populations is incompatible with it being a highly penetrant mutation in the heterozygous state. CONCLUSION: In our view the homozygous PRNP E200D genotype is likely to be causal of CJD in this patient. Homotypic PrP interactions are well known to favour the development of prion disease. The case is compatible with recessively inherited prion disease.
Subject(s)
Creutzfeldt-Jakob Syndrome/genetics , Prion Proteins/genetics , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/physiopathology , Humans , Male , Mutation/geneticsABSTRACT
More than two hundred individuals developed Creutzfeldt-Jakob disease (CJD) worldwide as a result of treatment, typically in childhood, with human cadaveric pituitary-derived growth hormone contaminated with prions. Although such treatment ceased in 1985, iatrogenic CJD (iCJD) continues to emerge because of the prolonged incubation periods seen in human prion infections. Unexpectedly, in an autopsy study of eight individuals with iCJD, aged 36-51 years, in four we found moderate to severe grey matter and vascular amyloid-ß (Aß) pathology. The Aß deposition in the grey matter was typical of that seen in Alzheimer's disease and Aß in the blood vessel walls was characteristic of cerebral amyloid angiopathy and did not co-localize with prion protein deposition. None of these patients had pathogenic mutations, APOE ε4 or other high-risk alleles associated with early-onset Alzheimer's disease. Examination of a series of 116 patients with other prion diseases from a prospective observational cohort study showed minimal or no Aß pathology in cases of similar age range, or a decade older, without APOE ε4 risk alleles. We also analysed pituitary glands from individuals with Aß pathology and found marked Aß deposition in multiple cases. Experimental seeding of Aß pathology has been previously demonstrated in primates and transgenic mice by central nervous system or peripheral inoculation with Alzheimer's disease brain homogenate. The marked deposition of parenchymal and vascular Aß in these relatively young patients with iCJD, in contrast with other prion disease patients and population controls, is consistent with iatrogenic transmission of Aß pathology in addition to CJD and suggests that healthy exposed individuals may also be at risk of iatrogenic Alzheimer's disease and cerebral amyloid angiopathy. These findings should also prompt investigation of whether other known iatrogenic routes of prion transmission may also be relevant to Aß and other proteopathic seeds associated with neurodegenerative and other human diseases.
Subject(s)
Alzheimer Disease/etiology , Amyloid beta-Peptides/metabolism , Cerebral Amyloid Angiopathy/etiology , Creutzfeldt-Jakob Syndrome/etiology , Drug Contamination , Human Growth Hormone/administration & dosage , Iatrogenic Disease , Adult , Alleles , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/administration & dosage , Amyloid beta-Peptides/analysis , Autopsy , Blood Vessels/metabolism , Blood Vessels/pathology , Case-Control Studies , Cerebral Amyloid Angiopathy/metabolism , Cerebral Amyloid Angiopathy/pathology , Creutzfeldt-Jakob Syndrome/complications , Creutzfeldt-Jakob Syndrome/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Gray Matter/metabolism , Gray Matter/pathology , Humans , Middle Aged , Prions/administration & dosage , Prions/metabolism , Risk FactorsABSTRACT
Mammalian prions, transmissible agents causing lethal neurodegenerative diseases, are composed of assemblies of misfolded cellular prion protein (PrP). A novel PrP variant, G127V, was under positive evolutionary selection during the epidemic of kuru--an acquired prion disease epidemic of the Fore population in Papua New Guinea--and appeared to provide strong protection against disease in the heterozygous state. Here we have investigated the protective role of this variant and its interaction with the common, worldwide M129V PrP polymorphism. V127 was seen exclusively on a M129 PRNP allele. We demonstrate that transgenic mice expressing both variant and wild-type human PrP are completely resistant to both kuru and classical Creutzfeldt-Jakob disease (CJD) prions (which are closely similar) but can be infected with variant CJD prions, a human prion strain resulting from exposure to bovine spongiform encephalopathy prions to which the Fore were not exposed. Notably, mice expressing only PrP V127 were completely resistant to all prion strains, demonstrating a different molecular mechanism to M129V, which provides its relative protection against classical CJD and kuru in the heterozygous state. Indeed, this single amino acid substitution (GâV) at a residue invariant in vertebrate evolution is as protective as deletion of the protein. Further study in transgenic mice expressing different ratios of variant and wild-type PrP indicates that not only is PrP V127 completely refractory to prion conversion but acts as a potent dose-dependent inhibitor of wild-type prion propagation.