Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Mol Sci ; 20(24)2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31817365

ABSTRACT

Utricularia amethystina Salzm. ex A.St.-Hil. & Girard (Lentibulariaceae) is a highly polymorphic carnivorous plant taxonomically rearranged many times throughout history. Herein, the complete chloroplast genomes (cpDNA) of three U. amethystina morphotypes: purple-, white-, and yellow-flowered, were sequenced, compared, and putative markers for systematic, populations, and evolutionary studies were uncovered. In addition, RNA-Seq and RNA-editing analysis were employed for functional cpDNA evaluation. The cpDNA of three U. amethystina morphotypes exhibits typical quadripartite structure. Fine-grained sequence comparison revealed a high degree of intraspecific genetic variability in all morphotypes, including an exclusive inversion in the psbM and petN genes in U. amethystina yellow. Phylogenetic analyses indicate that U. amethystina morphotypes are monophyletic. Furthermore, in contrast to the terrestrial Utricularia reniformis cpDNA, the U. amethystina morphotypes retain all the plastid NAD(P)H-dehydrogenase (ndh) complex genes. This observation supports the hypothesis that the ndhs in terrestrial Utricularia were independently lost and regained, also suggesting that different habitats (aquatic and terrestrial) are not related to the absence of Utricularia ndhs gene repertoire as previously assumed. Moreover, RNA-Seq analyses recovered similar patterns, including nonsynonymous RNA-editing sites (e.g., rps14 and petB). Collectively, our results bring new insights into the chloroplast genome architecture and evolution of the photosynthesis machinery in the Lentibulariaceae.


Subject(s)
DNA, Chloroplast/genetics , Evolution, Molecular , Genome, Chloroplast , Lamiales/genetics , Photosynthesis/genetics , RNA Editing
2.
Am J Physiol Renal Physiol ; 315(3): F521-F534, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29667908

ABSTRACT

The prorenin receptor (PRR) was originally proposed to be a member of the renin-angiotensin system (RAS); however, recent work questioned their association. The present paper describes a functional link between the PRR and RAS in the renal juxtaglomerular apparatus (JGA), a classic anatomical site of the RAS. PRR expression was found in the sensory cells of the JGA, the macula densa (MD), and immunohistochemistry-localized PRR to the MD basolateral cell membrane in mouse, rat, and human kidneys. MD cell PRR activation led to MAP kinase ERK1/2 signaling and stimulation of PGE2 release, the classic pathway of MD-mediated renin release. Exogenous renin or prorenin added to the in vitro microperfused JGA-induced acute renin release, which was inhibited by removing the MD or by the administration of a PRR decoy peptide. To test the function of MD PRR in vivo, we established a new mouse model with inducible conditional knockout (cKO) of the PRR in MD cells based on neural nitric oxide synthase-driven Cre-lox recombination. Deletion of the MD PRR significantly reduced blood pressure and plasma renin. Challenging the RAS by low-salt diet + captopril treatment caused further significant reductions in blood pressure, renal renin, cyclooxygenase-2, and microsomal PGE synthase expression in cKO vs. wild-type mice. These results suggest that the MD PRR is essential in a novel JGA short-loop feedback mechanism, which is integrated within the classic MD mechanism to control renin synthesis and release and to maintain blood pressure.


Subject(s)
Blood Pressure , Juxtaglomerular Apparatus/enzymology , Proton-Translocating ATPases/metabolism , Receptors, Cell Surface/metabolism , Renin-Angiotensin System , Renin/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Biosensing Techniques , Blood Pressure/drug effects , Captopril/pharmacology , Cyclooxygenase 2/metabolism , Diet, Sodium-Restricted , Dinoprostone/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , HEK293 Cells , Humans , Juxtaglomerular Apparatus/drug effects , Male , Mice, Inbred C57BL , Mice, Knockout , Prostaglandin-E Synthases/metabolism , Proton-Translocating ATPases/deficiency , Proton-Translocating ATPases/genetics , Rats, Sprague-Dawley , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , Renin-Angiotensin System/drug effects , Secretory Pathway , Signal Transduction , Vacuolar Proton-Translocating ATPases/genetics , Prorenin Receptor
3.
Proc Natl Acad Sci U S A ; 109(12): 4639-44, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22383561

ABSTRACT

Messenger RNA (mRNA) localization and regulated translation can spatially restrict gene expression to each of the thousands of synaptic compartments formed by a single neuron. Although cis-acting RNA elements have been shown to direct localization of mRNAs from the soma into neuronal processes, less is known about signals that target transcripts specifically to synapses. In Aplysia sensory-motor neuronal cultures, synapse formation rapidly redistributes the mRNA encoding the peptide neurotransmitter sensorin from neuritic shafts into synapses. We find that the export of sensorin mRNA from soma to neurite and the localization to synapse are controlled by distinct signals. The 3' UTR is sufficient for export into distal neurites, whereas the 5' UTR is required for concentration of reporter mRNA at synapses. We have identified a 66-nt element in the 5' UTR of sensorin that is necessary and sufficient for synaptic mRNA localization. Mutational and chemical probing analyses are consistent with a role for secondary structure in this process.


Subject(s)
Neuropeptides/metabolism , RNA, Messenger/metabolism , 5' Untranslated Regions , Animals , Aplysia , DNA Mutational Analysis , Electrophysiology/methods , Genes, Reporter , In Situ Hybridization, Fluorescence , Neurons/metabolism , Neurotransmitter Agents/metabolism , Nucleic Acid Conformation , Oligonucleotides, Antisense/metabolism , Sequence Analysis, RNA , Synapses/metabolism
4.
Nat Biotechnol ; 38(8): 954-961, 2020 08.
Article in English | MEDLINE | ID: mdl-32231336

ABSTRACT

Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in which expressed sgRNAs are sequenced alongside single-cell transcriptomes. Direct-capture Perturb-seq enables detection of multiple distinct sgRNA sequences from individual cells and thus allows pooled single-cell CRISPR screens to be easily paired with combinatorial perturbation libraries that contain dual-guide expression vectors. We demonstrate the utility of this approach for high-throughput investigations of genetic interactions and, leveraging this ability, dissect epistatic interactions between cholesterol biogenesis and DNA repair. Using direct capture Perturb-seq, we also show that targeting individual genes with multiple sgRNAs per cell improves efficacy of CRISPR interference and activation, facilitating the use of compact, highly active CRISPR libraries for single-cell screens. Last, we show that hybridization-based target enrichment permits sensitive, specific sequencing of informative transcripts from single-cell RNA-seq experiments.


Subject(s)
CRISPR-Cas Systems , Nucleic Acid Amplification Techniques/methods , RNA, Guide, Kinetoplastida/genetics , Gene Expression Regulation , Gene Targeting , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Single-Cell Analysis , Transcriptome
5.
PLoS One ; 13(1): e0190321, 2018.
Article in English | MEDLINE | ID: mdl-29293597

ABSTRACT

In the carnivorous plant family Lentibulariaceae, all three genome compartments (nuclear, chloroplast, and mitochondria) have some of the highest rates of nucleotide substitutions across angiosperms. While the genera Genlisea and Utricularia have the smallest known flowering plant nuclear genomes, the chloroplast genomes (cpDNA) are mostly structurally conserved except for deletion and/or pseudogenization of the NAD(P)H-dehydrogenase complex (ndh) genes known to be involved in stress conditions of low light or CO2 concentrations. In order to determine how the cpDNA are changing, and to better understand the evolutionary history within the Genlisea genus, we sequenced, assembled and analyzed complete cpDNA from six species (G. aurea, G. filiformis, G. pygmaea, G. repens, G. tuberosa and G. violacea) together with the publicly available G. margaretae cpDNA. In general, the cpDNA structure among the analyzed Genlisea species is highly similar. However, we found that the plastidial ndh genes underwent a progressive process of degradation similar to the other terrestrial Lentibulariaceae cpDNA analyzed to date, but in contrast to the aquatic species. Contrary to current thinking that the terrestrial environment is a more stressful environment and thus requiring the ndh genes, we provide evidence that in the Lentibulariaceae the terrestrial forms have progressive loss while the aquatic forms have the eleven plastidial ndh genes intact. Therefore, the Lentibulariaceae system provides an important opportunity to understand the evolutionary forces that govern the transition to an aquatic environment and may provide insight into how plants manage water stress at a genome scale.


Subject(s)
Chloroplasts/genetics , Genome, Chloroplast , Magnoliopsida/genetics , NADPH Dehydrogenase/genetics , Magnoliopsida/classification , Phylogeny
6.
Am J Physiol Regul Integr Comp Physiol ; 294(6): R1769-76, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18401004

ABSTRACT

Endothelial intracellular calcium ([Ca(2+)](i)) plays an important role in the function of the juxtaglomerular vasculature. The present studies aimed to identify the existence and molecular elements of an endothelial calcium wave in cultured glomerular endothelial cells (GENC). GENCs on glass coverslips were loaded with Fluo-4/Fura red, and ratiometric [Ca(2+)](i) imaging was performed using fluorescence confocal microscopy. Mechanical stimulation of a single GENC caused a nine-fold increase in [Ca(2+)](i), which propagated from cell to cell throughout the monolayer (7.9 +/- 0.3 microm/s) in a regenerative manner (without decrement of amplitude, kinetics, and speed) over distances >400 microm. Inhibition of voltage-dependent calcium channels with nifedipine had no effect on the above parameters, but the removal of extracellular calcium reduced Delta[Ca(2+)](i) by 50%. Importantly, the gap junction uncoupler alpha-glycyrrhetinic acid or knockdown of connexin 40 (Cx40) by transfecting GENCs with Cx40 short interfering RNA (siRNA) almost completely eliminated Delta[Ca(2+)](i) and the calcium wave. Breakdown of extracellular ATP using a scavenger cocktail (apyrase and hexokinase) or nonselective inhibition of purinergic P2 receptors with suramin, had similar blocking effects. Scraping cells off along a line eliminated physical contact between cells but did not effect calcium wave propagation. Using an ATP biosensor technique, we detected a significant elevation in extracellular ATP (Delta = 76 +/- 2 microM) during calcium wave propagation, which was abolished by Cx40 siRNA treatment (Delta = 6 +/- 1 microM). These studies suggest that connexin 40 hemichannels and extracellular ATP are key molecular elements of the glomerular endothelial calcium wave, which may serve important juxtaglomerular functions.


Subject(s)
Adenosine Triphosphate/metabolism , Calcium/metabolism , Connexins/metabolism , Kidney Glomerulus/metabolism , Animals , Calcium Signaling/physiology , Cell Line , Connexins/genetics , Endothelium/cytology , Endothelium/drug effects , Endothelium/metabolism , Glomerular Filtration Rate/physiology , Glycyrrhetinic Acid/pharmacology , Juxtaglomerular Apparatus/physiology , Kidney Glomerulus/cytology , Kidney Glomerulus/drug effects , Mice , Protein Isoforms/genetics , Protein Isoforms/metabolism , Purinergic P2 Receptor Antagonists , RNA, Small Interfering/pharmacology , Receptors, Purinergic P2/drug effects , Receptors, Purinergic P2/metabolism , Renin/metabolism , Suramin/pharmacology , Gap Junction alpha-5 Protein
7.
Hypertension ; 51(6): 1597-604, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18413493

ABSTRACT

In addition to the juxtaglomerular apparatus, renin is also synthesized in renal tubular epithelium, including the collecting duct (CD). Angiotensin (Ang) II differentially regulates the synthesis of juxtaglomerular (inhibition) and CD (stimulation) renin. Because diabetes mellitus, a disease with high intrarenal renin-Ang system and Ang II activity, is characterized by high prorenin levels, we hypothesized that the CD is the major source of prorenin in diabetes. Renin granular content was visualized using in vivo multiphoton microscopy of the kidney in diabetic Munich-Wistar rats. Diabetes caused a 3.5-fold increase in CD renin, in contrast to less pronounced juxtaglomerular changes. Ang II type 1 receptor blockade with Olmesartan reduced CD renin to control levels but significantly increased juxtaglomerular renin. Using a fluorogenic renin assay, the prorenin component of CD renin content was measured by assessing the difference in enzymatic activity of medullary homogenates before and after trypsin activation of prorenin. Trypsinization caused no change in control renin activity but a 5-fold increase in diabetes. Studies on a CD cell line (M1) showed a 22-fold increase in renin activity after trypsinization and a further 35-fold increase with Ang II treatment. Therefore, prorenin significantly contributes to baseline CD renin. Diabetes, possibly via Ang II, greatly stimulates CD prorenin and causes hyperplasia of renin-producing connecting segments. These novel findings suggest that, in a rat model of diabetes, prorenin content and release from the CD may be more important than the juxtaglomerular apparatus in contrast to the existing paradigm.


Subject(s)
Diabetic Nephropathies/metabolism , Hypertension, Renal/metabolism , Juxtaglomerular Apparatus/metabolism , Kidney Tubules, Collecting/metabolism , Renin/metabolism , Angiotensin II/metabolism , Angiotensin II/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Cell Division/physiology , Cells, Cultured , Diabetes Mellitus, Experimental/metabolism , Disease Models, Animal , Imidazoles/pharmacology , Immunohistochemistry , Juxtaglomerular Apparatus/cytology , Kidney Tubules, Collecting/cytology , Microscopy, Fluorescence , Quinacrine , Rats , Rats, Wistar , Tetrazoles/pharmacology , Trypsin , Vasoconstrictor Agents/metabolism , Vasoconstrictor Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL