Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
BMC Microbiol ; 24(1): 205, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851713

ABSTRACT

The Non-tuberculous mycobacterial (NTM) isolates should be distinguished from tuberculosis and identified at the species level for choosing an appropriate treatment plan. In this study, two molecular methods were used to differentiate NTM species, including a new designed High Resolution Melting (HRM) and Multilocus Sequence Analysis (MLSA). Seventy-five mycobacterial isolates were evaluated by sequencing four genes ( MLSA) and a HRM assay specifically targeting atpE was designed to rapidly and accurately identify and differentiate mycobacterium species. Out of 70 NTM isolates, 66 (94.3%), 65 (92.9%), 65 (92.9%) and 64 (91.4%) isolates were identified to the species level by PCR of atpE, tuf, rpoB and dnaK genes. We could identify 100% of the isolates to the species level (14 different species) by MLSA. By using HRM assay, all NTM isolates were identified and classified into eight groups, in addition, Mycobacterium tuberculosis and Nocardia were also detected simultaneously. The MLSA technique was able to differentiate all 14 species of NTM isolates. According to the results, the HRM assay is a rapid and beneficial method for identifying NTM, M. tuberculosis (MTB), and Nocardia isolates without sequencing.


Subject(s)
Multilocus Sequence Typing , Humans , Multilocus Sequence Typing/methods , Transition Temperature , Mycobacterium/genetics , Mycobacterium/classification , Mycobacterium/isolation & purification , Bacterial Proteins/genetics , Nontuberculous Mycobacteria/genetics , Nontuberculous Mycobacteria/classification , Nontuberculous Mycobacteria/isolation & purification , DNA, Bacterial/genetics , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/diagnosis
2.
BMC Infect Dis ; 24(1): 1117, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375619

ABSTRACT

BACKGROUND: This study aims to investigate the frequency of cas1 and cas3 and CRISPR1,2,3 genes in Klebsiella pneumoniae isolates, as well as their connection with antibiotic resistance. MATERIALS AND METHODS: 106 K. pneumoniae isolates were identified by biochemical assays and PCR. The susceptibility to antibiotics was determined by Kirby-Bauer disk diffusion method. Screening of ESBLs was undertaken by using double disk diffusion and standard disk diffusion methods. The E-test and mCIM techniques was used to confirm the disc diffusion-based carbapenem resistance profiles. CRISPR-Cas system genes were identified using PCR. RESULTS: ESBL production was found in 19% of isolates. Carbapenemase production was found in 46% of the isolates. Furthermore, the bacteria were classified as multidrug (76%), extensively drug-resistant (4%), or pan-drug-resistant (2%). When CRISPR/Cas systems were present, antibiotic resistance was lower; conversely, when they were absent, resistance was higher. CONCLUSIONS: If the CRISPR/Cas modules aren't present, the bacteria can still acquire foreign DNA, including antibiotic resistance genes. K. pneumoniae isolates with a CRISPR-Cas system were less likely to carry antibiotic-resistance genes than those lacking this defense system.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , CRISPR-Cas Systems , Hospitals, Teaching , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Humans , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , beta-Lactamases/genetics , Drug Resistance, Bacterial/genetics , Male , Female , Drug Resistance, Multiple, Bacterial/genetics , Middle Aged , Adult
3.
Mol Biol Rep ; 49(8): 7967-7977, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35717471

ABSTRACT

BACKGROUND: Differentiating Mycobacterium tuberculosis (MTB) from nontuberculous mycobacteria (NTM) is very important in the treatment process of patients. According to the American Thoracic Society guideline (ATS), NTM clinical isolates should be identified at the species level proper treatment and patient management. This study aimed to identify NTM clinical isolates by evaluationg rpoB, ssrA, tuf, atpE, ku, and dnaK genes, and use multilocus sequence analysis (MLSA) to concatenate the six genes. METHODS: Ninety-six Mycobacterium isolates, including 86 NTM and 10 MTB isolates, from all the patients referred to the certain TB Reference Centres were included. All isolates were evaluated by PCR amplification of rpoB, ssrA, tuf, ku, atpE, and dnaK genes and MLSA. RESULTS: Out of 96 isolates, 91 (94.8%), 87 (90.6%), 72 (75%), 84 (87.5%) and 79 (82.3%) were differentiated to the species level by rpoB, tuf, ssrA, dnaK and atpE genes, respectively. The ku gene was able to identify 69 (80.2%) isolates of the 86 NTM isolates to the species level. We could identify 100% of the isolates to the species level by MLSA. CONCLUSIONS: None of the PCR targets used in this study were able to completely differentiate all species. The MLSA technique used to concatenate the six genes could increase the identification of clinical Mycobacterium isolates and all 16 species were well-differentiated.


Subject(s)
Mycobacterium tuberculosis , Nontuberculous Mycobacteria , Humans , Multilocus Sequence Typing , Mycobacterium tuberculosis/genetics , Nontuberculous Mycobacteria/genetics , Polymerase Chain Reaction
4.
BMC Microbiol ; 21(1): 343, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34906085

ABSTRACT

BACKGROUND: This study aimed to evaluate the occurrence of Streptococcus pneumoniae and Haemophilus influenzae in sputum of patients with community-acquired pneumonia (CAP) using culture and multiplex polymerase chain reaction (M-PCR) methods and to survey the antibiotic resistance patterns of aforesaid isolates. RESULT: In total, 23.9 % (n = 22/92) of sputum samples showed positive results in the culture method. S. pneumoniae and H. influenzae were isolated from 15 (16.3 %) and 7 (7.6%) samples, respectively. Using M-PCR, 44 (47.8 %) samples were positive for S. pneumoniae and H. influenzae. Of these, S. pneumoniae and H. influenzae were detected in 33 (35.8%) and 11 (11.9%) of the sputum samples, respectively. The sensitivity, specificity, and accuracy rates of PCR in detection of S. pneumoniae in comparison with culture method were 100, 76.6, and 83.6%, respectively. While, the sensitivity, specificity, and accuracy rates of PCR in detection of H. influenzae in comparison with culture method were 100, 95.3, and 95.8%, respectively. Out of 11 isolates of H. influenzae, two strains confirmed as H. influenzae type b (Hib) and 3 isolates were type f. However, 6 isolates were non-typable. The co-trimoxazole and amoxicillin/clavulanate were the less effective antibiotics against S. pneumonia and H. influenzae, respectively. Ceftriaxone with 13.3% resistance rates was the most effective antibiotic against S. pneumoniae, while, clarithromycin, ceftriaxone, and gentamicin with resistance rates of 28.6% for each one were the most effective chemicals against H. influenzae isolates. CONCLUSION: In this study, the prevalence of S. pneumoniae was more than H. influenzae using culture and M-PCR methods. The M-PCR provided better efficiency in detecting the bacterial agents in CAP patients compared to culture method. This method can improve the early detection of pathogens contributed to CAP. The drug resistant S. pneumoniae and H. influenzae indicated the need to develop a codified monitoring program to prevent further spread of these strains.


Subject(s)
Drug Resistance, Bacterial , Haemophilus influenzae/isolation & purification , Pneumonia, Bacterial/microbiology , Streptococcus pneumoniae/isolation & purification , Anti-Bacterial Agents/pharmacology , Community-Acquired Infections/diagnosis , Community-Acquired Infections/microbiology , Cross-Sectional Studies , Haemophilus influenzae/drug effects , Haemophilus influenzae/genetics , Humans , Iran , Microbial Sensitivity Tests , Molecular Diagnostic Techniques , Multiplex Polymerase Chain Reaction , Pneumonia, Bacterial/diagnosis , Sensitivity and Specificity , Sputum/microbiology , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/genetics
6.
Health Sci Rep ; 6(1): e1011, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36582631

ABSTRACT

Introduction: This study aimed to evaluate the levels of sex hormones in patients with COVID-19 in Ahvaz, Iran. Methods: A prospective longitudinal study was conducted at Razi hospital, Ahvaz, Iran, from July 2020 to Febuary 2021. The levels of sex hormones including estradiol, progesterone, luteinizing hormone (LH), follicle stimulating hormone (FSH), and total and free testosterone were measured in 162 patients with COVID-19 infection during hospitalization and 1 month after discharge. A demographic questionnaire and a checklist were used to collect the data. Mann-Whitney U test, χ 2 test, Fisher's exact test, Wilcoxon test, and logistic regression were used to analyze the data. Results: Sex hormones were assessed in 162 patients at baseline; however, a month after discharge, only 69 patients provided consent for assessment, and 9 had passed away. The estradiol level was 407.70 ± 623.37 and 213.78 ± 407.17 pg/ml in female patients with severe and moderate diseases at baseline, respectively which reduced to 195.33 ± 380.04 and 58.20 ± 39.45 pg/ml after discharge (p = 0.011 and p = 0.001). The alteration in the levels of progesterone, LH, and FSH were not significant.The level of LH in both groups of male patients with severe (6.64 ± 2.91 IU) and moderate disease (6.42 ± 4.44 IU) was high, which reduced after discharge (4.16 ± 2.44 and 3.93 ± 3.15 IU, respectively), but this decrease was significant only in the patients with severe disease (p < 0.0001). The alteration of FSH and free testosterone were not significant. The level of testosterone was 1.19 ± 0.73 and 1.46 ± 1.22 ng/ml at baseline in patients with severe and moderate diseases which increased to 2.64 ± 1.25 ng/ml, p < 0.0001, and 2.54 ± 0.93 ng/ml, p = 0.001, respectively after discharge. Conclusion: Our findings showed that the level of estradiol in female patients increased significantly while the level of testosterone in male patients decreased during the active phase of infection. Due to the attrition of patients in the follow-up period, more studies are needed to confirm these results.

7.
Health Sci Rep ; 6(5): e1266, 2023 May.
Article in English | MEDLINE | ID: mdl-37205937

ABSTRACT

Background and Aims: Resistance to antibiotics and the capability to develop biofilm as two main virulent determinants of Klebsiella pneumoniae have important role in infection persistence. The aim of the study was to evaluate the association between the prevalence of aminoglycoside resistance and virulence genes and biofilm formation capacity in K. pneumoniae strains isolated from hospitalized patients in South-West of Iran. Methods: A total of 114 non-duplicate clinical isolates of K. pneumoniae collected from Ahvaz teaching hospitals. Identification of species was performed by biochemical tests and then confirmed by polymerase chain reaction (PCR) of rpoB gene. The susceptibility to antibiotics was determined by Kirby-Bauer disk diffusion method. Biofilm formation was assessed by microtiter plate method. Finally, PCR was conducted to detect virulence gene determinants including fimbrial genes, aminoglycoside modifying enzymes- and 16S rRNA methylase (RMTase) genes. Results: Totally, all collected strains were carbapenem resistant and showed multidrug- and extensively drug-resistance phenotype (75% and 25%, respectively). Seventy-one percent (n = 81) of isolates were non-susceptible to aminoglycosides. Among aminoglycoside antibiotics, K. pneumoniae isolates showed the highest and lowest resistance rates to tobramycin (71%) and the amikacin (25%), respectively. All biofilm producer strains were positive for the presence virulence determinants including ecpA, fimA, mrkD, and mrkA. Of 81 aminoglycosides non-susceptible isolates 33% were positive for the presence ant (2″)-Ia as the most prevalent gene followed by aac (3')-IIa and armA (27%), aac (6')-Ib (18%), and aph (3')-Ia (15%). Conclusion: K. pneumoniae isolates showed the highest and the lowest aminoglycoside resistance rates to tobramycin and amikacin, respectively. Majority of isolates were biofilm producers and there was significant association between antibiotic resistance pattern and the strength of biofilm production. The ant(2″)-Ia, aac (3')-IIa, and armA genes in aminoglycoside-resistant isolates.

8.
J Burn Care Res ; 43(2): 423-431, 2022 03 23.
Article in English | MEDLINE | ID: mdl-34236077

ABSTRACT

Burn infection continues to be a major issue of concern globally and causes more harm to developing countries. This study aimed to identify the aerobic bacteriological profiles and antimicrobial resistance patterns of burn infections in three hospitals in Abadan, southwest Iran. The cultures of various clinical samples obtained from 325 burn patients were investigated from January to December 2019. All bacterial isolates were identified based on the standard microbiological procedures. Antibiotic susceptibility tests were performed according to the CLSI. A total of 287 bacterial species were isolated from burn patients. Pseudomonas aeruginosa was the most frequent bacterial isolate in Gram-negative bacteria and S. epidermidis was the most frequent species isolated in Gram-positive bacteria. The maximum resistance was found to ampicillin, gentamicin, ciprofloxacin, while in Gram-negative bacteria, the maximum resistance was found to imipenem, gentamicin, ciprofloxacin, ceftazidime, and amikacin. The occurrence of multidrug resistance phenotype was as follows: P. aeruginosa (30.3%), Enterobacter spp (11.1%), Escherichia coli (10.5%), Citrobacter spp (2.1%), S. epidermidis (2.8%), S. aureus, and S. saprophyticus (0.7%). Owing to the diverse range of bacteria that cause burn wound infection, regular investigation, and diagnosis of common bacteria and their resistance patterns is recommended to determine the proper antibiotic regimen for appropriate therapy.


Subject(s)
Anti-Bacterial Agents , Burns , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Burns/drug therapy , Burns/microbiology , Ciprofloxacin , Drug Resistance, Bacterial , Drug Resistance, Multiple , Gentamicins , Gram-Negative Bacteria , Humans , Iran/epidemiology , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Staphylococcus aureus
9.
PLoS One ; 17(11): e0277329, 2022.
Article in English | MEDLINE | ID: mdl-36395161

ABSTRACT

Ventilator-associated pneumonia (VAP) is a prevalent nosocomial illness in mechanically ventilated patients. Hence, the aim of this study was to investigate the pattern of antibiotic resistance and biofilm formation of bacterial profiles from Endotracheal Tubes of patients hospitalized in an intensive care unit in southwest Iran. According to the standard operating method, the microbiological laboratory conducts bacteria culture and susceptibility testing on endotracheal Tube samples suspected of carrying a bacterial infection. The Clinical and laboratory standards institute (CLSI) techniques are used to determine the Antimicrobial resistance (AMR) of bacterial isolates to antibiotics using the disk diffusion method. The crystal violet staining method was used to assess the biofilm-forming potential of isolates in a 96-well microtiter plate. In total, (51%) GPBs were included in this study. The isolated GPB were coagulase-negative Staphylococcus (16%), S. aureus (14%). In total, (40%) of GNB were included in this study. The isolated GNB were Klebsiella spp. (36%), A. baumannii (22%), P. aeruginosa (35%). (32%) bacterial strains were MDR and (29%) strains were XDR. The results of biofilm formation showed (72%) were biofilm producers. VAP is a common and severe nosocomial infection in mechanically ventilated patients. Controlling biofilm formation, whether on the ET or in the oropharyngeal cavity, is thus an important technique for treating VAP. Colistin and linezolid are antibiotics that are effective against practically all resistant GNB and GPB isolates.


Subject(s)
Pneumonia, Ventilator-Associated , Staphylococcus aureus , Humans , Iran , Drug Resistance, Microbial , Intensive Care Units , Pneumonia, Ventilator-Associated/drug therapy , Bacteria , Intubation, Intratracheal/adverse effects , Biofilms , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas aeruginosa
10.
Iran J Microbiol ; 11(1): 7-12, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30996825

ABSTRACT

BACKGROUND AND OBJECTIVES: Due to the widespread distribution of Listeria monocytogenes in environmental and animal sources and serious clinical complications in human, this study was aimed to isolate L. monocytogenes from water and clinical specimens by culture and PCR methods and to investigate the presence of hlyA and inlA virulence genes. MATERIALS AND METHODS: Water and clinical samples of vaginal and fecal were screened for the presence of L. monocytogenes by phenotypic and standard biochemical tests. PCR amplification was performed on extracted DNA using primers based on the hlyA and inlA genes. A 733-bp fragment of inlA gene was used for investigation of polymorphism using RFLP analysis. RESULTS: In total, 45 phenotypically and molecularly confirmed L. monocytogenes strains were isolated from different sources including 30 (16.7%) from water, 9 (11.3%) from vaginal swabs and 6 (7.5%) from fecal samples. RFLP analysis of PCR products using AluI and Tsp509I restriction enzymes, generated two profiles with 8 to 10 bands ranging in size from 15 to 210 bp. The majority of water and clinical isolates were classified in profile 2. CONCLUSION: We demonstrated 45 L. monocytogenes isolates from tested water and clinical samples by phenotypic and molecular tests. The majority of the isolates were classified in the same RFLP profile, showing the water as a potential source of clinical complications in patients in the region of study.

11.
Infect Drug Resist ; 12: 1153-1159, 2019.
Article in English | MEDLINE | ID: mdl-31123412

ABSTRACT

Background and aim: Currently, the rate of hospital-acquired infections due to drug-resistant Pseudomonas aeruginosa strains shows an increasing trend and remains one of the principal reasons for mortalilty in burn patients. This study aimed to investigate the prevalence of genes conferring resistance to carbapenems in P. aeruginosa isolates from burn patients. Methods: A total of 50 P. aeruginosa isolates were tested for antibiotic susceptibility and presence of multidrug-resistant (MDR) and extensively drug resistant (XDR) isolates, using phenotypic tests. Screening for genes conferring resistance to carbapenems was investigated by multiplex PCR method. Results: Susceptibility testing demonstrated the highest resistance against amikacin, ceftazidime (n=44/88% each), and gentamicin (84%), while colistin sulfate was the most effective antibiotic. The rate of MDR and XDR isolates was revealed as 50% and 40% respectively. We detected the following carbapenemase genes: blaNDM (32%), followed by blaOXA-48 (18%), and blaBIC-1 (14%). This study revealed a high antibiotic resistance in P. aeruginosa isolates with a total of 40% and 50% MDR and XDR isolates respectively, and 70% carbapenem resistance. The prevalence of carbapenem conferring genes tested among carbapenem-resistant isolates was demonstrated as 65.7%. Conclusion: Due to the prevalence of P. aeroginosa strains carrying blaOXA-48 and blaNDM genes in our hospital, more attention and implementation of effective control measures against nosocomial infection are recommended.

12.
APMIS ; 126(3): 241-247, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29484749

ABSTRACT

The aim of this study was to analyze mutations occurring in the rpoB gene of Mycobacterium tuberculosis (MTB) isolates from clinical samples of extrapulmonary tuberculosis (EPTB). Seventy formalin-fixed, paraffin-embedded samples and fresh tissue samples from confirmed EPTB cases were analyzed. Nested PCR based on the rpoB gene was performed on the extracted DNAs, combined with cloning and subsequent sequencing. Sixty-seven (95.7%) samples were positive for nester PCR. Sequence analysis of the 81 bp region of the rpoB gene demonstrated mutations in 41 (61.2%) of 67 sequenced samples. Several point mutations including deletion mutations at codons 510, 512, 513 and 515, with 45% and 51% of the mutations in codons 512 and 513 respectively were seen, along with 26% replacement mutations at codons 509, 513, 514, 518, 520, 524 and 531. The most common alteration was Gln → His, at codon 513, presented in 30 (75.6%) isolates. This study demonstrated sequence alterations in codon 513 of the 81 bp region of the rpoB gene as the most common mutation occurred in 75.6% of molecularly confirmed rifampin-resistant strains. In addition, simultaneous mutation at codons 512 and 513 was demonstrated in 34.3% of the isolates.


Subject(s)
Antibiotics, Antitubercular/pharmacology , Bacterial Proteins/genetics , DNA-Directed RNA Polymerases/genetics , Drug Resistance, Bacterial/genetics , Mycobacterium tuberculosis/genetics , Rifampin/pharmacology , Tuberculosis/microbiology , Adult , Aged , Aged, 80 and over , Cells, Cultured , Female , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Point Mutation/genetics , Sequence Deletion/genetics , Young Adult
13.
Article in English | MEDLINE | ID: mdl-28144587

ABSTRACT

Definitive and rapid diagnosis of extrapulmonary tuberculosis (EPTB) is challenging since conventional techniques have limitations due to the paucibacillary nature of the disease. To increase the sensitivity of detection of Mycobacterium tuberculosis (MTB) in EPTB specimens, we performed a nested PCR assay targeting several genes of MTB on EPTB specimens. A total of 100 clinical specimens from suspected cases of EPTB were processed. Standard staining for acid fast bacilli (AFB) was performed as the preliminary screening test. Extracted DNAs from specimens were subjected to Nested PCR technique for the detection of five different MTB target genes of IS6110, IS1081, hsp65kd, mbp64, and mtp40. On performing AFB staining, only 13% of specimens were positive, of which ascites fluid (33.3%), followed by pleural effusion (30.8%) showed the greatest AFB positivity rate. We demonstrated slight improvement in yields in lymph node which comprised the majority of specimens in this study, by employing PCR targeted to IS6110- and hsp65-genes in comparison to AFB staining. However, the yields in ascites fluid and pleural effusion were not substantially improved by PCR, but those from bone and wound were, as in nested PCR employing either gene, the same positivity rate were obtained for ascites fluid (33.3%), while for pleural effusion specimens only IS1081 based PCR showed identical positivity rate with AFB stain (30.8%). The results for bone and wound specimens, however, demonstrated an improved yield mainly by employing IS1081 gene. Here, we report higher detection rate of EPTB in clinical specimens using five different targeted MTB genes. This nested PCR approach facilitates the comparison and the selection of the most frequently detected genes. Of course this study demonstrated the priority of IS1081 followed by mtp40 and IS6110, among the five tested genes and indicates the effectiveness of any of the three genes in the design of an efficient nested-PCR test that facilitates an early diagnosis of paucibacillary EPTB cases, which are difficult to diagnose with the available standard.


Subject(s)
Molecular Diagnostic Techniques/methods , Mycobacterium tuberculosis/isolation & purification , Polymerase Chain Reaction/methods , Tuberculosis/diagnosis , Bacteriological Techniques/methods , Genes, Bacterial , Humans , Mycobacterium tuberculosis/genetics , Sensitivity and Specificity
14.
Front Microbiol ; 6: 675, 2015.
Article in English | MEDLINE | ID: mdl-26191059

ABSTRACT

Present study was aimed to examine the diagnostic utility of polymerase chain reaction (PCR) and nested PCR techniques for the detection of Mycobacterium tuberculosis (MTB) DNA in samples from patients with extra pulmonary tuberculosis (EPTB). In total 80 formalin-fixed, paraffin-embedded (FFPE) samples comprising 70 samples with definite diagnosis of EPTB and 10 samples from known non- EPTB on the basis of histopathology examination, were included in the study. PCR amplification targeting IS6110, rpoB gene and nested PCR targeting the rpoB gene were performed on the extracted DNAs from 80 FFPE samples. The strong positive samples were directly sequenced. For negative samples and those with weak band in nested-rpoB PCR, TA cloning was performed by cloning the products into the plasmid vector with subsequent sequencing. The 95% confidence intervals (CI) for the estimates of sensitivity and specificity were calculated for each method. Fourteen (20%), 34 (48.6%), and 60 (85.7%) of the 70 positive samples confirmed by histopathology, were positive by rpoB-PCR, IS6110-PCR, and nested-rpoB PCR, respectively. By performing TA cloning on samples that yielded weak (n = 8) or negative results (n = 10) in the PCR methods, we were able to improve their quality for later sequencing. All samples with weak band and 7 out of 10 negative samples, showed strong positive results after cloning. So nested-rpoB PCR cloning revealed positivity in 67 out of 70 confirmed samples (95.7%). The sensitivity of these combination methods was calculated as 95.7% in comparison with histopathology examination. The CI for sensitivity of the PCR methods were calculated as 11.39-31.27% for rpoB-PCR, 36.44-60.83% for IS6110- PCR, 75.29-92.93% for nested-rpoB PCR, and 87.98-99.11% for nested-rpoB PCR cloning. The 10 true EPTB negative samples by histopathology, were negative by all tested methods including cloning and were used to calculate the specificity of the applied methods. The CI for 100% specificity of each PCR method were calculated as 69.15-100%. Our results indicated that nested-rpoB PCR combined with TA cloning and sequencing is a preferred method for the detection of MTB DNA in EPTB samples with high sensitivity and specificity which confirm the histopathology results.

SELECTION OF CITATIONS
SEARCH DETAIL